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Abstract

An explicit high-order, symplectic, finite-difference time-domain (SFDTD) scheme is

applied to a bioelectromagnetic simulation using a simple model of a pregnant

woman and her fetus. Compared to the traditional FDTD scheme, this scheme

maintains the inherent nature of the Hamilton system and ensures energy

conservation numerically and a high precision. The SFDTD scheme is used to

predict the specific absorption rate (SAR) for a simple model of a pregnant female

woman (month 9) using radio frequency (RF) fields from 1.5 Tand 3 T MRI systems

(operating at approximately 64 and 128 MHz, respectively). The results suggest

that by using a plasma protective layer under the 1.5 T MRI system, the SAR values

for the pregnant woman and her fetus are significantly reduced. Additionally, for a

90 degree plasma protective layer, the SAR values are approximately equal to the

120 degree layer and the 180 degree layer, and it is reduced relative to the 60

degree layer. This proves that using a 90 degree plasma protective layer is the most

effective and economical angle to use.

Introduction

Because the protection of a pregnant woman and her fetus is very important, the

algorithm that is used in mother/fetus modeling and simulation must have a high

precision and must be numerically stable.

The Finite Different Method (FDM), Finite Element Method (FEM) and Finite

Volume Method (FVM) can be used for calculating the SAR values of the mother/

fetus model. The FEM is more precise caused by the possibility to use high-order

approximations. And since the methods for the high-order calculations of the
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FVM are developed by various groups recently [1, 2], the statement that high-

order calculations are not available for the FVM does not hold true anymore at

present time. Nevertheless, the FDM is better for processing the simplified

geometries, the FEM and FVM are not necessary for the calculation of the mother/

fetus model. Furthermore, the FDM can give simpler linear equations systems

which could be solved faster. Also the finite-difference time-domain (FDTD)

scheme is one of the FDM based on the time-domain. It can cover a wide

frequency range with a single simulation and treat nonlinear material properties

in a natural way. So the FDTD scheme is considered for our mother/fetus

modeling and simulation.

To this end, our proposed high-order, symplectic, finite-difference time-

domain (SFDTD) scheme is compared to the traditional FDTD scheme and the

high-order FDTD scheme.

The traditional FDTD scheme has two shortcomings. First, it cannot accurately

model curved, complex surfaces and material discontinuities by using the stair-

casing approach with structured grids. Second, this scheme accumulates

significant errors from numerical instability, dispersion and anisotropies.

To reduce the numerical dispersion in the traditional FDTD scheme, a variety

of high-order spatial discretization strategies have been proposed [3, 4]. Based on

orthonormal Harr wavelet expansions, a multi-resolution time-domain (MRTD)

method [5, 6] was proposed. Another approach is the high-order FDTD scheme,

which uses the Fang(2,4) [7] and Ty(2,4) [8] formats, retains the simplicity of the

original Yee algorithm and can conserve computational resources by using coarse

grids compared to the traditional FDTD scheme. In addition, the discrete singular

convolution [9, 10] scheme was proposed, which uses delta cores, such as the

Shannon core, Poisson core and the Lagrange core. However, these high-order

approaches must use lower Courant-Friedrichs-Levy (CFL) numbers to comply

with the stability criterion that subsequently destroys the symplectic structure of

the electromagnetic system.

Because Maxwell’s equations can be written as an infinite-dimension

Hamiltonian system, a stable and accurate solution can be obtained by using the

symplectic integrator [11, 12], which conserves energy in the Hamiltonian system.

Although the SFDTD scheme has been used to solve the guided-wave [12],

electromagnetic radiation, penetration and scattering problems [13], little

research has been performed on bioelectromagnetic simulations. Additionally, the

traditional FDTD scheme has been used to calculate SARs using the pregnant

woman/fetus model [14, 15], but no one has used the SFDTD algorithm to this

end. In this article, we apply the high-order SFDTD scheme to a bioelectromag-

netic simulation using a simple model of a pregnant woman and her fetus.

In addition, many researchers [14, 16] model SARs, which are limited below the

safety guidelines to ensure the safety of the patient, in the human body. A

standard [17] has been developed to limit the maximum energy deposition within

human subjects undergoing an MRI scan. However, few researchers are concerned

with protective measures to reduce the risks posed by RF radiation. For lower SAR

distributions at 64 MHz, we choose a 2 cm-deep plasma protective layer to reduce
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the mother’s/fetus’s SARs from a 1.5 T MRI system. By simulating the mother/

fetus model with the SFDTD scheme used, we find an optimal angle that not only

best protects the patient, but it also significantly reduces the raw material costs.

Materials and Methods

Electromagnetic-Field-Solver General Formulations for the SFDTD

Scheme

The time-dependent Maxwell’s curl equations in free space are

LH
Lt

~{
1
m

+|E

LE
Lt

~
1
e
+|H

8>><
>>:

: ð1Þ

A helicity Hamiltonian [18, 19] for Maxwell’s equations in a homogeneous,

lossless, and sourceless medium can be introduced as

Hm(H,E)~
1
2

1
m

H:+|Hz
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E:+|E

� �
ð2Þ

Where H and E are the magnetic and electric fields. e and m are the permittivity

and permeability of the medium. + is Curl, which is a vector operator that

describes the infinitesimal rotation of a 3-dimensional vector field.

Based on the variational principle, (2) can be rewritten as
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Where 0f g3|3 is the 3|3 null matrix and R is the 3|3 matrix representing the

three-dimensional curl operator.

Now, Maxwell’s equations with the FDTD scheme applied can be written as an

infinite-dimension Hamiltonian system. A stable and accurate solution can be

obtained by using the symplectic scheme.

If x~(x1, ::: xn, j1, ::: jn),y~(y1,::: yn, j1,::: jn) [ R2n, the symplectic inner

products of R2n is defined as: v(x,y)~
Pn
i~1

(xigi{yiji). Meanwhile, if the linear

transformation w of the symplectic space (V ,v(x,y)) meets w : V?V ,Vx,y [ V ,

then v(wx,wy)~v(x,y). So, w is called a symplectic transformation or a canonical

transformation. In other words, the symplectic scheme is just the transformation,

in which the symplectic inner products are changeless.

For the temporal direction, the electromagnetic field solution of formula (3)

from t~0 to t~Dt is expressed by using the exponential operator as:

E

H

� �
Dtð Þ~ exp Dt UzVð Þð Þ

E

H

� �
(0): ð6Þ

Where exp Dt UzVð Þð Þ is the time evolution matrix of Maxwell’s equations

Using the product of elementary symplectic mappings, the exact solution (6)

can be approximately constructed as [20]:

exp Dt UzVð Þð Þ~P
m

l~1
exp dlDtVð Þexp clDtUð ÞzO Dtpz1

� �
, ð7Þ

Where cl and dl are the constant coefficients of the symplectic integrator.

m m§1ð Þ is the stages of the approximation and r is the order of the

approximation. The coefficients can be found by using the Baker-Campbell-

Hausdorff (BCH) formula [12, 20, 21, 22].

For the operator U and V containing the curl operator R, Maxwell’s equations

must be discreted in the spatial direction by the higher-order difference for the

numerical solutions.

For the spatial direction, the explicit, fourth-order-accurate difference

expressions in conjunction with the staggered Yee lattice are used to discretize the

first-order spatial derivatives as follows:

Lf n(i,j,k)

Lx
~

9
8

f n(iz 1
2 ,j,k){f n(i{ 1

2 ,j,k)

Dx

{
1

24
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Where the coefficients
9
8

and {
1

24
are derivated from the Tayor expanded

formula.
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So, the relationship between variable E and H is derived.

As each tissues in the mother/fetus are the dispersive medium, the formula (1)

is changed as:

LD
Lt

~+|H

D vð Þ~e0:e�r vð Þ:E vð Þ
LH
Lt

~{
1
m

+|E

8>>>><
>>>>:

ð9Þ

Where D is the electric displacement vector, e0 is the permittivity of vacuum,

v~2pf , f is the frequency of the incident wave and e�r vð Þ is the complex

permittivity of each tissues in the mother/fetus.

Then the normalized electric field ~E~

ffiffiffiffiffi
e0

m0

r
E and the electric flux density

~D~

ffiffiffiffiffiffiffiffiffi
1

m0e0

r
:D are introduced into the formula (9) as:
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Where m0 is the permeability of vacuum

For the complex permittivity of each tissues, e�r vð Þ is expressed as

e�r vð Þ~erz
s

jve0
ð11Þ

Where er is the averaged relative permittivity of each tissues, s is the

conductivity of each tissues.

Substituting the formula (11) into the formula (10):

~D vð Þ~er:~E vð Þz s

jve0

~E vð Þ ð12Þ

Then, with the Fourier transform ~E vð Þ~
Ð t

0
~E t0ð Þ exp ({jvt0)dt0, the formula

(12) is transformed from the frequency domain to the time domain as

~D tð Þ~er:~E tð Þz s

e0

ðt

0

~E t0ð Þdt0 ð13Þ
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So, as the integration algorithm is substituted, the formula (13) can be changed

with partial summation as:

Dn~er:E
nz

sDt
e0

Enz
sDt
e0

Xn{1

i~0

Ei ð14Þ

En can be calculated from the formula (14) as

En~

Dn{
sDt
e0

Xn{1

i~0

Ei

erz
sDt
e0

ð15Þ

With In is determined by In~
sDt
e0

Xn

i~0

Ei, the formula (15) becomes:

En~
Dn{In{1

erz
sDt
e0

ð16aÞ

In~In{1z
sDt
e0

En ð16bÞ

So, the relationship between variable D and E is derived.

From the two-dimensional Maxwell’s equations, the SFDTD scheme, which is

fourth-order-accurate in space and fifth-stage-accurate in time, can be obtained

by using the discretization approaches above. When m~5, a detailed expression

of all the components of the scaled electric field from the s-th stage to (s{1)-th

stage can be written as [12]:
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Where e~ere0 and er denotes the averaged relative permittivity. Dt is the time-

steps and D is the length of space-steps. CFL is Courant–Friedrichs–Lewy

condition, which is a necessary condition for stability while solving certain partial

differential equations numerically by the method of finite differences. Time-steps

and space-steps must satisfy the CFL condition. The coefficients s and m obey the

symmetry relations cs~cm{sz1 1ƒsƒmð Þ, ds~dm{s 1ƒsƒm{1ð Þ and dm~0.

Dz can be calculated form the formula (17) and Iz can be calculated form the

formula (19). Then Dz and Iz are substituted into the formula (18) to get Ez.

Finally, Ez is substituted into the formula (20) and the formula (21) to get Hx and

Hy to complete the whole solution of Maxwell’s equations.

Mother/Fetus Model (Month 9)

A significant amount of research has shown that only a small amount of the

body’s tissues (such as the brain) contains magnetic material. In addition, most of

the body’s tissues are made of non-magnetic material. The magnetic permeability

m of these tissues is almost 1 and does not need to be considered. For B~mH,

where B is the magnetic flux density and m<1, the relationship between B and H is

linear. So only the electric properties of D is needed to be considered. Thus, we

only address the dielectric properties of the tissues listed in Table 1. To study

protective measures for a pregnant woman and her fetus, we developed a simple

computational model of a mother and her fetus using the SFDTD scheme because

of its high precision and numerical stability. The model used in this article

consists of three different types of tissues shown in Table 1: the ‘‘uterus’’,

‘‘placenta’’ and the ‘‘fetus’’.

In Fig. 1, from the numerical model, the radius of the uterus, placenta and fetus

are set to ruterus~11:28cm, rplacenta~11:08cm, and rfetus~10:08cm to coincide with

their physical dimensions as closely as possible when the fetus is nine months old.

The SFDTD scheme is applied to Maxwell’s equations to calculate the SAR

distributions within our model. We establish a computational domain of

450|450 cells for this numerical model. Each mother/fetus model consists of a

lattice of cubic cells with a length of space-steps D~0:0006 m, which is sufficient

to provide acceptable accuracy for the calculation of the SARs for the fetus.

D~0:0006 m also is the maximum length of the grid, which is used to split the

mother/fetus model into a lot of small calculation area. For the D is smaller, the

Table 1. The dielectric properties of each tissues type, obtained from the materials database, at 64 and 128 MHz.

64 MHz 128 MHz

Tissue Density Values r kg=m3ð Þ Permittivity e=e0 Conductivity s(S=m) Permittivity e=e0

Conductivity
s(S=m)

Uterus 1052 92.19 0.91 75.47 0.961

Placenta 1058 86.50 0.95 73.19 1.00

Fetus 987 42.68 0.39 37.60 0.412

doi:10.1371/journal.pone.0114425.t001
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accuracy of the calculation is higher and the D must be less than or equal to

0:0006m. The local SARs are calculated using 800 time-steps iterations.

For harmonically varying fields, the SAR [23, 24, 25, 26] is defined as

SAR~
s

2r
E
^
����
����

2

~
s

2r
( Ex

^
����
����

2

z Ey

^
����
����

2

), ð23Þ

Where Ex

^
and Ey

^
are the peak values of the electric field components and s and

r denote the conductivity and the mass density of each tissues, respectively.

Because this mother/fetus model is just two-dimensional now, the z field of E is

not to be considered. In the future, the three-dimensional SFDTD scheme will be

expanded to the three-dimensional electromagnetic modeling and simulation of

the mother/fetus.

A plane wave is incident perpendicular to the protective layer, with frequencies

of approximately 64 and 128 MHz to simulate the RF fields of 1.5 T and 3 T MRI

systems, respectively.

To ensure the safety of the mother and the fetus, we can add a protective layer

where appropriate to reduce the body’s SAR distributions [27, 28]. In our realistic

model, we choose a plasma material that has a thickness of 2 cm, plasma

frequency of 3 GHz and collision frequency of 10 GHz as the protective layer. As

shown in Fig. 1, the angle of the plasma protective layer is 60 degree. In addition,

the angle may be 0 degree (no protection), 90 degree, 120 degree or 180 degree.

The parameter values of the numerical model can be modified according to

different requirements. By using 800 time-steps iterations, with an incident 64

MHz plane wave and a protective layer of 60 degree, the results obtained for the Ez

electric field are shown in Fig. 2

Fig. 1. Simple mother/fetus model (month 9) under the plasma protective layer [29].

doi:10.1371/journal.pone.0114425.g001
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Results and Discussions

Demonstrating the SFDTD scheme’s benefits

A one-dimensional hard source that uses a Gaussian pulse can be given as.

Ei(t)~exp {0:5 � (t{t0)2�t2
 �

: ð24Þ

A long-term simulation is performed with CFL~0:48 and the length of one

space-step D~1 cm, for which is the 10th part of a wavelength. One time-step is

D

6|1010
s. By using the perfect electric conductor (PEC) boundary condition, an

one-dimensional resonant cavity is constructed. In Fig. 3, the propagation of the

one-dimensional Gaussian pulse is simulated with the analytical solution, the

traditional FDTD scheme and the SFDTD scheme respectively at the 436th and

Fig. 2. The estimated spatial distributions of the Ez electric field after 800 time-steps iterations using the SFDTD scheme.

doi:10.1371/journal.pone.0114425.g002
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Fig. 3. The propagation of the one-dimensional Gaussian pulse for the PEC boundary at (a) 436 time-steps iterations and (b) 3146 time-steps
iterations using the SFDTD scheme.

doi:10.1371/journal.pone.0114425.g003
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3146th time-steps iteration. Note that Fig. 3 is the one-dimensional solution to

prove the SFDTD scheme’s advantage, because only the one-dimensional solution

has the analytic solutions to be compared. And the analytic solutions are the

curves of the ‘‘PLUSE’’ in Fig. 3. With the number of the time-steps iterations is

larger form 436 to 3146, the propagation distance of the pulse is longer.

In Fig. 3, all the algorithms give acceptable results for the pulse calculation with

the same waveforms after 436 time-steps iterations. However, at higher iterations,

the waveform from the traditional FDTD scheme is greatly distorted after 3146

time-steps iterations with the curve of the traditional FDTD method has been

shocked before about 50 relative cells. Where ‘‘shocked’’ means that the curve is

not stable and the traditional FDTD method cannot preserve the constant energy

of the Hamiltonian system. And relative cells are the relative number of grid. 120

relative cells in Fig. 3 are the size of the computational domain in this simulation.

In addition, the energy of the electromagnetic system computed by the

traditional FDTD scheme gradually becomes attenuated. In contrast, under the

long-term simulation at the 3146th iteration, the conservation of energy by the

SFDTD scheme is verified, as the curve is smooth and in good agreement with the

curve of the Gaussian pulse. The peak value of the curve by the SFDTD scheme is

always greater than 1 V/m at the 436th iteration or the 3146th iteration.

Nevertheless, the peak value of the curve has been less than 1 V/m at the 3146th

iteration by the traditional FDTD scheme.

Above all, this demonstrates that the SFDTD scheme can remain stable and

accurate by using the symplectic integrator, which preserves the constant energy

of the Hamiltonian system. Therefore, the SFDTD scheme can meet the

requirements for modeling the mother/fetus model and can calculate the local

SARs below with a high precision and in a numerically stable manner.

The Local SARs using the SFDTD scheme at approximately 64

MHz and 128 MHz with a 60 degree protective layer

The SAR distributions found on the surface of the mother/fetus model are shown

in Fig. 4. Different SAR patterns are observed for 64 and 128 MHz. This is mainly

caused by the MRI operating frequency as well as the conductivities used in the

mother/fetus models. Our simulation results suggest that higher local SARs are

found at 128 MHz rather than at 64 MHz. At 128 MHz, the peak SAR is greater

than 5:10|10{3(W/kg), a fourfold increase over the SAR of 1:2|10{3(W/kg) at

64 MHz. In these cases, we choose the 1.5 T MRI system operating at

approximately 64 MHz to perform a scan on a pregnant woman because this is

safer as a result of the lower SAR distributions.

The Local SARs using the SFDTD scheme, under the 64 MHz

controlled mode, with different plasma protective layer angles

In Fig. 5, in comparison to the case of no protective layer, the peak SAR is

significantly reduced using a 60 degree plasma protective layer. The maximum
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value of the SARx is reduced from 1:96|10{3(W/kg) to 1:75|10{3(W/kg), and

the maximum value of the SARy is reduced from 1:76|10{3(W/kg) to

1:55|10{3(W/kg) with a 60 degree plasma protection with a reduction of 10 to

12%. It illustrates that the plasma protective layer plays an important role in

reducing the electromagnetic radiation received by the mother and fetus.

Fig. 4. The estimated spatial distributions of the local SARs found by (a) 64 MHz and (b) 128 MHz
controlled modes using the SFDTD scheme (the number of the time-steps iterations is 800).

doi:10.1371/journal.pone.0114425.g004
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Fig. 5. The local SARs in the mother/fetus model on the (a) x-axis and the (b) y-axis using the SFDTD scheme.

doi:10.1371/journal.pone.0114425.g005
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Additionally, compared to using a 90 degree plasma protection layer, the peak

SAR is nearly equal to the 120 degree layer and the 180 degree layer, and it is lower

at 60 degree. By increasing the angle of the plasma protective layer from 60 degree

to 90 degree, the maximum value of SARx is reduced from 1:75|10{3(W/kg) to

1:69|10{3(W/kg), and the maximum value of SARy is reduced from

1:55|10{3(W/kg) to 1:42|10{3(W/kg) with a reduction of 3.4 to 8.4 per cent.

This proves that using a 90 degree plasma protection layer is most effective and

economical for the radiation protection of a pregnant woman and her fetus.

Conclusion

This article derives the SFDTD differential equations and demonstrates the

superiority of the SFDTD scheme for researching the mother/fetus model. The

SFDTD scheme can make the results more stable and accurate with high precision

and meet the requirements for calculating the local SARs of the mother/fetus

model. Also, with the SFDTD scheme used, a better frequency of the MRI system

and an optimal angle of the plasma protective layer, are found to reduce the values

of the local SARs and protect the pregnant women and fetus better.

In addition, not only the SFDTD scheme is better than the traditional FDTD

scheme and the high-order FDTD scheme, but also the geometries of the mother/

fetus model are relatively simple, therefore the SFDTD scheme is better than the

FEM and the FVM for researching the SARs and the optimal angle of the

protective layer. Also with the mother/fetus model becoming more and more

complex, the symplectic integrator is considered to be added into the FEM or the

FVM based on unstructured grids for its advantages in the future research. And

the massively parallel computing, which is based on the new algorithm, such as

the SFDTD scheme and the FEM above, is considered too. Of course, a more

realistic mother/fetus model for electromagnetic simulation will be constructed in

the future research. Also in the future, the algorithm, which is used in this article

or will be used in the future, will be improved continuously. And some clinical

experiments will need to be done to prove our results.

All the forward simulations and calculations are executed on a personal

computer with a 2.93 GHz Intel Core2 Duo processor with 2 GBs of RAM using

the C/C++ languages. After the calculated data are obtained by the C/C++ codes,

the figures above are generated by the Matlab software using these data.
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