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Abstract

Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt) provides

effective control of Asian corn borer, Ostrinia furnacalis (Guenée), and thus reduces

insecticide applications. However, whether Bt corn exerts undesirable effects on

non-target arthropods (NTAs) is still controversial. We conducted a 2-yr study in

Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt

corn on field population density, biodiversity, community composition and structure

of NTAs. On each sampling date, the total abundance, Shannon’s diversity index,

Pielou’s evenness index and Simpson’s diversity index were not significantly

affected by Bt corn as compared to non-Bt corn. The ‘‘sampling dates’’ had a

significant effect on these indices, but no clear tendencies related to ‘‘Bt corn’’ or

‘‘sampling dates X corn variety’’ interaction were recorded. Principal response

curve analysis of variance indicated that Bt corn did not alter the distribution of

NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that

Cry1Ac toxin exposure did not increase community dissimilarities between Bt and

non-Bt corn plots and that the evolution of non-target arthropod community was

similar on the two corn varieties. The cultivation of Bt corn failed to show any

detrimental evidence on the density of non-target herbivores, predators and

parasitoids. The composition of herbivores, predators and parasitoids was identical

in Bt and non-Bt corn plots. Taken together, results from the present work support

that Bt corn producing Cry1Ac toxins does not adversely affect NTAs.
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Introduction

Genetically modified (GM) crops have been planted for two decades since the first

commercialized GM crop was released in 1994 [1]. The global cultivated surface of

GM crops has increased from 1.7 million ha in 1996 to 175.2 million ha in 2013

[2]. In 2013, 18 million farmers benefited from planting GM crops in more than

30 countries worldwide [2]. The most famous and widespread GM crops are those

producing Bacillus thuringiensis (Bt) toxins, which represent the most envir-

onmentally-safe alternative to chemical insecticides for pest control in agriculture

[3,4]. In China, largely owing to the cultivation of Bt cotton against cotton

bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), the use of

insecticides decreased greatly [5–7]. The cultivation of Bt corn can even decrease

insecticide applications in agricultural fields by more than 50% [8].

The Asian corn borer (ACB), Ostrinia furnacalis (Guenée) (Lepidoptera:

Pyralidae), is the most damaging lepidopteran pest of corn in China, with an

estimated annual loss ranging from 6 to 9 million tons of corn [9]. The primary

methods for controlling ACB include insecticide applications, alternative cultural

practices (e.g., crop rotation, tillage practices and mineral nutrition), mating

disruption technique and parasitoid conservation and artificial releases [10–12].

Unfortunately, these approaches suffer from severe limitations: the efficacy of

insecticide applications is often limited because most ACB larvae develop inside

the stalk, limiting their exposure to the insecticides [13,14] and they easily develop

resistance to insecticides [15,16], while the other control methods cited above may

be very costly or too laborious for routine use. A safe and efficient alternative to

these approaches would be the use of Bt corn since it may provide effective control

of corn borers [17]. A recent work emphasized the effectiveness of Bt corn against

ACB, reducing leaf injury by 84% and borer tunnels by 99% [18]. A new corn

variety producing Cry1Ac toxins, which was mainly targeting ACB, has been

developed in recent years. Although commercialization of Bt corn has not been

allowed in China yet, field trials have been approved to monitor its impact on

target pests and non-target organisms [19]. In the foreseeable future, they may be

commercially available in China. Before commercialization, field studies are

necessary to monitor the environmental risks of Bt corn. Therefore, we conducted

this study to assess the risks of this new corn variety on non-target arthropods

(NTAs).

NTAs include all species other than those that pest management actions are

intended to suppress [20]. In corn ecosystems, NTAs provide very important

ecological functions such as biological control, regulation of arthropod pest

populations, organism decomposition, recycling of organic matter and pollination

[21,22]. The use of Bt corn may have direct (e.g., through host/prey ingestion) [3]

or indirect (e.g., through food web interactions, scale of adoption) [22] effects on

NTAs that may interfere with these functions [21]. In general, it is necessary to

conduct field studies when the main potential effects of Bt crops are caused by

complex interactions that cannot be evaluated in simple laboratory conditions

[21]. In the past decades, field studies have been conducted in many countries,
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where the authors have assessed the impact of Bt corn on NTAs [23,24]. Most of

the studies reported no harmful impact of Bt corn on NTAs [25–27]. Only few

studies reported that Bt corn affected NTAs [28–30], but the involvement of Bt

traits in these studies was not proved because the results were governed by many

interacting and uncontrollable factors [31]. In any ecosystem, there is a high

number of NTAs species that may be exposed to GM plants. However, not each of

these species can be tested. A representative subset of NTAs species (referred to as

‘‘focal species’’) should be selected for consideration on the risk assessment of GM

plants [22]. European Food Safety Authority (EFSA) provided guidelines for

selecting focal species for such studies [22]. They suggested to choose species that

can be easily tested under laboratory conditions and that are more likely to be

available in sufficient number in the field to give statistically meaningful results

[32–34]. They provided some examples of focal species of non-target organisms

that can be used to monitor the impact of Bt plants [22], which include non-target

herbivores (e.g., aphids, leafhoppers, thrips, leaf beetles), non-target natural

enemies (e.g., flower bugs, lacewings, ladybird beetles, parasitoids), pollinators

(e.g., social bees, hover flies), and decomposers (e.g., dipteran larvae, springtails).

Meanwhile, they pointed out that additional species should also be included, such

as species of economic, aesthetic or cultural value, or species of conservational

importance that are threatened or endangered [22]. In this study, we chose non-

target herbivores and natural enemies as focal species due to their abundance in

the field and ecological functions in agro-ecosystems.

The objective of this study was to evaluate the population density, biodiversity,

community composition and structure of NTAs on Bt corn producing Cry1Ac

toxins and the corresponding non-transformed near-isogenic corn in the field,

thus providing a theoretical basis for environmental risk assessment of transgenic

plants. With this aim, the abundance of NTAs in Bt and non-Bt corn plots was

recorded. Bray-Curtis dissimilarity has been widely used for multivariate analysis

of community data [35], but no data was available for the dissimilarities of NTAs

communities between Bt and non-Bt corn plots. Therefore, we analyzed the Bray-

Curtis dissimilarities between Bt and non-Bt corn plots to provide a method for

monitoring the impact of Bt corn on NTAs.

Materials and Methods

Bt and non-Bt corn

The Bt corn (Bt 799) and the corresponding non-transformed near isoline (Zheng

58, non-Bt) used in this field experiment were provided by China National Corn

Center. The transgenic corn contains a gene encoding Bacillus thuringiensis

Cry1Ac toxin, toxic for Asian corn borer (ACB). Cry1Ac levels in Bt corn leaves

ranged from 310.4 ng.g21 to 597.67 ng.g21 (fresh weight) (Xiaowen Chen,

unpublished data). Using the same method as described by He [9], we found that

leaf feeding rating by ACB in this Bt corn was 1.09 (low infection) while that in

Impact of Bt Corn on Non-Target Arthropods

PLOS ONE | DOI:10.1371/journal.pone.0114228 December 1, 2014 3 / 17



the non-Bt corn was 6.81 (high infection), indicating that Bt corn producing

Cry1Ac toxins can control ACB effectively.

Experimental design

The study was conducted in the field of Shangzhuang Agricultural Experiment

Station (Altitude, 47 m; 116 1̊7952.840E; 39 5̊7952.840N), Haidian District,Beijing,

China, in 2012 and 2013. The field was newly explored in 2011, where no crops,

including Bt crops, were planted here before. Bt and non-Bt corn plots were

arranged in a randomized block design with 3 replications, respectively. Each plot

measured 10 m by 15 m and contained 16 rows with 60 cm between them and

25 cm between individual plants. 3 m bare borders were established to serve as

isolation among plots. A 3 m strip border around the perimeter was planted with

non-Bt corn (Fig. S1). No plants were grown in the study field until the experiment

started. No herbicide or insecticide were applied before or during the study period.

In 2012 and 2013, corn was planted on June 10 and May 7, respectively.

Field sampling and species identification

In each plot, 100 corn plants were sampled following an ‘‘X’’ pattern that covered

the whole plot (Fig. S1). In order to avoid edge effects, the sampling began at

approximately 2 m into the plot [36]. The abundance of all arthropods for each

plant, including stems and both sides of the leaves, were surveyed carefully by

visual sampling. Sampling was conducted early in the morning when arthropods

were less active [25]. Unknown species collected were preserved in 75% alcohol

for further identification in the laboratory. Sampling dates between 2012 and 2013

are shown in Table S1. The arthropods collected were identified at the species

level, whenever possible. When samples were too degraded and/or when it was

hard to distinguish the morphological criteria, identification was performed at the

family level.

Statistical analysis

NTAs total abundances (N) were log(x) transformed prior to analysis. Diversity

indices such as Shannon’s diversity index (H), Pielou’s evenness index (J) and

Simpson’s diversity index (D) allow a comparison of the community structures

between different treatments in the fields [37]. All these indices are sensitive to the

abundance of the most common and dominant species in a community [38,39].

H, J and D were analyzed [40] using linear mixed models (lmer function of R

package lme4), with corn variety (Bt or non-Bt) and time (sampling date) as fixed

factors. On each sampling date, mean values of N, H, J and D were compared

using a one-way ANOVA to detect significant differences between Bt and non-Bt

corn plots.

Principal response curve (PRC) is a particular ordination method of RDA

(redundancy analysis) firstly introduced by van den Brink and ter Braak [41],

which is especially suitable for the evaluation of ecosystem experiments [42]. It is
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a multivariate technique allowing to assess the structure of species community

[43], making it suitable to investigate the impact of Bt corn on NTAs and their

changes over time. It can also be used for future monitoring studies [44]. Potential

changes in the structure of the NTAs communities due to Cry1Ac toxin exposure

were analyzed using the PRC method [45–47]. In most published papers, the PRC

was performed with CANOCO [23,45,48–50] but additional calculations were

necessary to obtain the canonical coefficients (Cdt) values. In the present study,

we used the RDA model (prc function of R package vegan) instead of CANOCO,

which is much easier to perform and provide all the Cdt values directly.

Bray-Curtis index is a measure of dissimilarity between two samples and ranges

from 0 (similar) to 1 (dissimilar) [51,52]. Temporal changes in the dissimilarities of

NTAs communities between Bt and non-Bt corn plots were performed using Bray-

Curtis index calculation. The first analysis was performed between Bt and non-Bt

corn plots. On each sampling date, Bray-Curtis distance was calculated for all the

pairs of the two corn plots. The mean values and standard errors were then

computed. The second analysis was performed within each corn plot [53]. On each

sampling date, the mean abundance of each taxonomic group in Bt and non-Bt corn

plots was calculated. Mean abundance values were then calculated to get the Bray-

Curtis distance between sampling dates for a given treatment. These values were

linearly regressed against the time-lag values. The slopes of the regression lines

obtained from the two treatments were compared by covariance analysis (ANOVA).

The arthropod community in corn plots was classified into three guilds based

on nutritional relationships, i.e., herbivores, predators and parasitoids, referring

to Heong et al. [54] and Zhang et al. [55]. For each corn variety and date, the

density of the three guilds was log (x+1) transformed prior to analysis and then

analyzed using one-way ANOVA.

The proportion of herbivores, predators and parasitoids in each treatment is

defined by the equation Pi5Ni/N, where Ni is the abundance of herbivores,

predators or parasitoids and N is the overall total abundance in each treatment.

The proportion of NTAs individuals in each guild is defined by the equation

Pi5Ni/N, where Ni is the abundance of the ith species and N is the total

abundance of the guild in each treatment. Pi,1% represents a rare group,

1%(Pi,10% represents a common group and Pi>10% represents a dominant

group [56]. Group proportion under 1% was gathered in ‘‘others’’.

In this study, the means and p values of NTAs community descriptors and the

density of herbivores, predators and parasitoids were calculated using SPSS for

Windows, version 16.0 (SPSS Inc., IL, USA). All the other tests were performed using

R for Windows, version 3.0.3 [57]. Statistical threshold was 0.05 for all the tests.

Results

Descriptors of the NTAs communities in Bt and non-Bt corn plots

The variations for all descriptors of the NTAs community structure were

monitored, and patterns were almost identical in the two treatments (Fig. 1). Of
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all the sampling dates, significant differences between Bt and non-Bt corn plots

were only observed on August 27, 2013 for total abundance (N), Shannon’s

diversity index (H), Pielou’s evenness index (J) and Simpson’s diversity index (D)

(p50.01, 0.013, 0.01, 0.024, respectively) (Fig. 1). During the two years, ‘‘corn

variety’’ didn’t have any significant effect on all the descriptors. In contrast,

‘‘time’’ had a highly significant effect on all the descriptors (Table 1). The effect of

interaction between ‘‘time’’ and ‘‘variety’’ was not significant for all the

descriptors (Table 1).

NTAs community response

PRC analysis of NTAs abundance data revealed no significant differences (F51.27,

p50.19) between Bt and non-Bt corn plots (Fig. 2). Of all the variance in the

abundance data, 79.2% was attributed to the sampling dates, and only 4.1% was

attributed to corn variety based on the first PRC. Tests for each sampling date

indicated no difference between Bt and non-Bt corn plots. In Fig. 2, species

weights between 20.5 and 0.5 were not shown because they are likely to show a

weak response or a response that is unrelated to the principal response curve [45].

Analysis of the distribution of species weight (bk) confirmed that Aphidoidea,

Berytidae, Orius sauteri, Chrysopa septempunctata, Chrysoperla sinica, Harmonia

axyridis, Apolygus lucorum, Araneida, Propylea japonica, Cicadella viridis, thrips,

Musca domestica, Sympiezomias velatus, Chouioia cunea, Monolepta hieroglyphica,

Cocconella septempunctata, Cybocephalus nipponicus, Adelphocoris fasciaticollis and

Helicoverpa armigera were more abundant in Bt corn plots than in non-Bt corn

plots. In contrast, Drosophila melanogaster, Pyrgomorphidae, Pterophoridae,

Laodelphax striatellus, Pleonomus canaliculatus, Trigonotylus ruficornis, Mythimna

separata and Episyrphus balteata were less abundant in Bt corn plots, as compared

to non-Bt corn plots.

Bray-Curtis dissimilarity between Bt and non-Bt corn plots

Mean values of Bray-Curtis dissimilarity between Bt and non-Bt corn plots

fluctuated during the study period (Fig. 3). There was no significant relationship

between Bray-Curtis dissimilarity values and elapsed time during the whole study

period (Spearman r520.26, p50.26), indicating that Cry1Ac toxin exposure did

not significantly altered NTAs community in Bt corn plots as compared to non-Bt

corn plots. The relationship between Bray-Curtis dissimilarity and time lag among

sampling dates was highly significant for both Bt (p50.026) and non-Bt

(p50.005) corn plots (Fig. 4), suggesting that the structure of the NTAs

communities evolved with time in the two corn plots. ANOVA analysis showed

that the slopes of the relations were not significantly different (t52.28, p50.75),

indicating that the rates of NTAs community changes were similar in the two corn

plots.
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Density changes of herbivores, predators and parasitoids in Bt

and non-Bt corn plots

During the whole study period, the temporal dynamics of herbivores, predators

and parasitoids density showed similar trends for Bt and non-Bt corn plots. For

Figure 1. Changes in mean ¡ SE (n53) values of descriptors of the NTAs communities in Bt and non-Bt corn. (a) Total abundance; (b) Shannon’s
diversity index; (c) Pielou’s evenness index; (d) Simpson’s diversity index. Empty squares represent Bt corn and empty circles represent non-Bt corn.
Statistically significant difference according to one-way ANOVA: *: 0.01,p#0.05; **: 0.001,p#0.01; ***: p#0.001.

doi:10.1371/journal.pone.0114228.g001

Table 1. Mean ¡ SE of the NTAs community descriptors in Bt and non-Bt corn plots during the whole study period (2012–2013).

NTAs community descriptors Bt corn Non-Bt corn Time effect Variety effect Time6Variety

F df P F df P F df P

Total abundance (N) 481.47¡102.91 399.57¡91.29 9.13 19 ,0.001 1.78 1 0.19 0.90 19 0.59

Shannon’s diversity index (H) 1.81¡0.15 1.88¡0.15 21.26 19 ,0.001 1.19 1 0.28 0.62 19 0.88

Pielou’s evenness index (J) 0.62¡0.05 0.65¡0.05 23.65 19 ,0.001 2.23 1 0.14 0.63 19 0.87

Simpson’s diversity index (D) 0.69¡0.05 0.72¡0.05 14.32 19 ,0.001 1.28 1 0.26 0.40 19 0.99

df, degrees of freedom; P, corresponding probability. All data was analyzed using linear mixed models.

doi:10.1371/journal.pone.0114228.t001
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herbivores, significant differences between the two corn plots were only observed

on July 16, 2012 (t53.10, df54, p50.036) and August 27, 2013 (t54.82, df54,

p50.009) (Fig. 5a). On July 23, 2012, a significant difference was detected

between the two corn plots for predators (t522.81, df54, p50.048) (Fig. 5b). No

Figure 2. Principal response curve (PRC) resulting from the analysis of NTAs abundance dataset for the whole study period. The vertical axis
represents the difference in community structure between Bt (filled squares) and non-Bt (empty circles) corn plots expressed as regression coefficients (Cdt)
of the PRC model. The species weight (bk) can be regarded as the affinity of the taxon to the principal response. Only species with a weight less than -0.5 or
greater than 0.5 are shown.

doi:10.1371/journal.pone.0114228.g002

Figure 3. Changes in mean ¡ SE (n56) value of Bray-Curtis dissimilarity between Bt and non-Bt corn
plots.

doi:10.1371/journal.pone.0114228.g003
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Figure 4. Time-lag analysis of NTAs community dynamics in Bt (a) and non-Bt (b) corn plots.

doi:10.1371/journal.pone.0114228.g004

Figure 5. Changes in mean ¡ SE (n53) density of NTAs in Bt and non-Bt corn plots. (a) Herbivores; (b) Predators; (c) Parasitoids. Empty squares
represent Bt corn and empty circles represent non-Bt corn. Statistically significant difference according to one-way ANOVA: *: 0.01,p#0.05; **:
0.001,p#0.01; ***: p#0.001.

doi:10.1371/journal.pone.0114228.g005
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significant effect was observed for parasitoids density between Bt and non-Bt corn

plots (Fig. 5c).

Composition of NTAs communities in Bt and non-Bt corn plots

Three guilds were identified in Bt and non-Bt corn plots during the study period.

The results showed that the most abundant guilds in Bt and non-Bt corn plots

were herbivores and predators. Parasitoids was a rare guild (Fig. 6a). Of

herbivores, Aphidoidea was the most abundant. Apolygus lucorum, T. ruficornis, C.

viridis, L. striatellus and thrips were the common groups (Fig. 6b). Of predators,

H. axyridis, P. japonica, O. sauteri, C. sinica and Araneida were the most abundant

groups. Chrysopa septempunctata represented the common groups (Fig. 6c). Of

parasitoids, T. ostriniae and C. cunea were equally abundant (Fig. 6d). During the

whole study period, the composition of NTAs communities was essentially

uniform in Bt and non-Bt corn plots (Fig. 6).

Discussion

The development of GM corn producing Cry toxins significantly reduced the use

of insecticides in the environment [8], and thus may alleviate the risks of NTAs

exposure to insecticides. With the large scale planting of transgenic Bt corn, an

Figure 6. Composition of Bt and non-Bt corn NTAs communities. (a) NTAs communities; (b) Herbivores; (c) Predators; (d) Parasitoids.

doi:10.1371/journal.pone.0114228.g006
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increasing number of scientists devoted to monitoring the environmental impact

of Bt corn on NTAs [58–60]. In this study, the potential impact of Bt corn on

NTAs was monitored during a 2-yr survey to assess the environmental risks

associated with Bt corn cultivation. Ecological indices such as Shannon’s diversity

index, Pielou’s evenness index and Simpson’s diversity index are useful indicators

of the disturbance of NTAs community condition [61]. If the cultivation of Bt

corn disrupted the biological properties, the functional indices of NTAs would be

significantly lower in Bt corn as compared to non-Bt corn. However, our results

indicated that the total abundance of NTAs, Shannon’s diversity index, Pielou’s

evenness index and Simpson’s diversity index showed similar values in Bt and

non-Bt corn plots in most cases. This suggested that Bt corn did not adversely

affect the NTAs community structure. This finding was consistent with a previous

6-yr monitoring study showing that Bt corn did not affect NTAs community in

German agricultural fields [62]. Similarly, a 2-yr study reported that environ-

mental conditions (e.g., heavy rainfall) or crop management practices had a

greater impact on NTAs community than corn variety [23].

PRC analysis revealed no significant impact of Bt corn on NTAs distribution

when compared to non-Bt corn. Among the 27 species/families monitored in this

study, more than 70% of NTAs were more abundant in Bt corn plots than in non-

Bt corn plots. It indicated that the presence of Bt toxin in the plant did not

influence the population density of the assessed NTAs communities. This is

consistent with previous work that found no effect of Bt corn producing Cry1Ab

toxins on NTAs communities [63]. Also, community level analysis of the NTAs

abundance performed in a 3-yr field study at four locations across the U.S.

revealed no significant impact on community abundance in Bt corn fields when

compared to non-Bt corn fields [64].

A large number of studies were conducted to assess the impact of Bt corn on

NTAs. However, most of the previous studies focused on changes in NTAs

abundance, resulting in the absence of data available for the dissimilarities of

NTAs communities between Bt and non-Bt corn plots. To our knowledge, this is

the first time the evolution dynamics of the NTAs communities are compared

between Bt and non-Bt corn plots by measuring the Bray-Curtis dissimilarity

index. Here we show that dissimilarities between Bt and non-Bt corn plots were

small and not significant during the study period, indicating that the presence of

Cry1Ac toxins in the corn did not induce any divergence in NTAs community

structure. Furthermore, our analysis revealed some changes in the structure of the

NTAs community over the 2 years, but the patterns of evolution were similar in

both Bt and non-Bt corn plots.

To assess potential harm of Bt corn on NTAs, representative species of corn

ecosystems need to be monitored when their relevant life stages are likely to be

exposed to Bt toxins in the field [65]. In this study, we calculated the density of

three representative guilds (herbivores, predators and parasitoids) based on their

different nutritional relationships, which can result in a reliable result for the

differences between Bt and non-Bt corn plots. Herbivores can be exposed to Bt

toxins when consuming plant materials (e.g., pollen, crop residues) [65,66]. The
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main herbivores observed in this study were aphids, bugs, leafhoppers and thrips.

Both laboratory and field studies showed that the density of these herbivores were

not affected by Bt corn [62,67–72]. Our results further supported the finding that

Bt corn did not affect the density of herbivores. Predators can be in contact with

Bt toxins in several ways: by feeding on plant materials or pollen, by feeding on

target or non-target herbivores that have ingested Bt toxins, or via the

environment (i.e., the soil when Bt proteins persist and do not lose their toxicity

after plants or insects have died) [73]. The biological functions provided by

predators or natural enemies are mandatory for a good self-regulation of insect

populations in agricultural ecosystems and they should not be harmed by the use

of Bt corn [74–76]. Consequently, the evaluation of the impact of Bt corn on

natural enemies should be addressed in the ecological risk assessment. The

predators recorded in this study mainly included ladybird beetles, green lacewings,

Orius spp. and spiders. Their densities were not affected by Bt corn, which was in

agreement with previous findings in corn fields [77–82]. Some laboratory

tritrophic studies further confirmed that predators had no preference between Bt

and non-Bt corn fed prey [75,83,84]. Unlike predators, which can feed on

different prey species, parasitoids usually complete their development on a single

host individual [85]. Parasitoids can attack a variety of herbivores occurring in

corn ecosystems [66,86]. Thus, parasitoids could be affected by ingesting the Bt

toxins present in host herbivores [87,88]. Consistent with previous observations

[89], parasitoids abundance was not adversely affected by Bt corn producing

Cry1Ac toxins in our study. A meta-analysis of 20 field studies conducted in Spain

from 1998 to 2010 to assess the risks of Bt corn on NTAs confirmed that the

densities of herbivores, predators and parasitoids were not affected by Bt corn,

which is consistent with our results [90].

The analysis of NTAs communities examined at the species/family level

revealed that the composition of the abundant, common and rare guilds or

species/families was similar in Bt and non-Bt corn plots. In field planted with Bt

corn MON 88017 expressing Cry3Bb1 toxins, no effect was found on NTAs

composition [65], which is in agreement with our findings.

No detrimental effect of Bt corn producing Cry1Ac toxins was observed on any

NTAs community indices or on the abundance of NTAs. Moreover, PRC analysis

suggested that cultivation of Bt corn did not alter the distribution of NTAs

communities. Bray-Curtis analysis showed that NTAs communities evolved with a

similar pattern in Bt and non-Bt corn plots. This study provides further evidence

that the changes in the abundance and diversity of NTAs in corn plots are driven

by time, and Cry1Ac toxin exposure only plays a negligible role, if any, in the

evolution of these NTAs communities. Interactions between corn and NTAs occur

over a wide range of time scales from hours to seasons and years and are mostly

driven by temperature, rainfall or sunshine. Therefore, long-term and large-scale

studies taking into account a large variety of environmental parameters, including

the effect of potential insecticide treatments of non Bt crops, are still required to

ensure a long term efficacy of GM crops with reduced impact on the environment

and agricultural ecosystems [4].
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