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Abstract

Saliency detection is widely used in many visual applications like image segmentation, object recognition and classification.
In this paper, we will introduce a new method to detect salient objects in natural images. The approach is based on a
regional principal color contrast modal, which incorporates low-level and medium-level visual cues. The method allows a
simple computation of color features and two categories of spatial relationships to a saliency map, achieving higher F-
measure rates. At the same time, we present an interpolation approach to evaluate resulting curves, and analyze parameters
selection. Our method enables the effective computation of arbitrary resolution images. Experimental results on a saliency
database show that our approach produces high quality saliency maps and performs favorably against ten saliency
detection algorithms.
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Introduction

The reliable extraction of ROI (Region of Interest) allows us to

detect potential regions containing objects quickly and effectively

prior to goal-driven recognition processing. Since there are many

potential regions to be recognized in a natural scene, we need to

filter out those regions unrelated to our goal while reducing miss

detection. The human visual system, tends to focus attention on

the regions with high contrasts such as intensity, color and

orientation [1], which makes it easier to notice those important

regions in a scene. This visual attention mechanism comes from

human sensitivity to contrast stimulus, and reflects a human’s

ability to understand natural scenes.

Saliency detection, which is related to this human visual

attention mechanism, aims to judge the important parts of natural

scenes automatically. It is widely used in many computer vision

applications, including image segmentation [2,3], image classifi-

cation [4,5], object recognition [6], image retrieval [7,8], and non-

photorealistic rendering [9,10]. The results of measuring saliency

values are usually represented in a saliency map, which describes

how the pixels or regions stand out in the input image. In general,

saliency detection methods are attributed to contrast features of

image regions with their surroundings. In recent years, numerous

computational models have been proposed to find the most

informative region and then further analyze vision contents in a

scene. Viewed from a data processing perspective [11], the

commonly adopted saliency detection methods can be classified as

biologically based [1] (slower, task-dependent, top-down), purely

computational [12–16] (fast, pre-attentive, bottom-up), or a

combination of these characteristics [17].

Inspired by the early primate visual system and selective

attention [18], Itti et al. [1] compute visual features by center-

surround operations, and achieve contrasts using a Difference of

Gaussians (DoG) approach. In contrast, pure computational

methods do not rely on biological vision. For instance, Ma and

Zhang [12] use a fuzzy growth model to extend saliency maps

generated based on local contrast analysis. Achanta et al. [13]

evaluate feature distances to determine salient regions using

luminance and color. Hou and Zhang [14] extract the spectral

residual in spectral domain to construct the saliency maps. Li et al.
[15] find Hou’s method uses only phase information and only

works in certain cases (e.g., detecting small salient regions in

uncluttered scenes), then perform the convolution of the image

amplitude spectrum with a low-pass Gaussian kernel of an

appropriate scale to detect image saliency. Riche et al. [16] also

propose a bottom-up visual saliency model ‘‘RARE’’, which

models both local contrast and global rarity using a sequential

features extraction, and then fuses cross-scale rarity quantization

into a single final saliency map. Furthermore, Harel et al. [17] use

Itti’s method to create feature maps and introduce Markov chains

to compute saliency values. This model incorporates ideas that are

based partly on biological vision principles and partly on pure

computations.

In this paper, we focus on the bottom-up saliency detection

method, which is mainly classified into local low-level consider-

ations and global considerations [19]. Local low-level methods aim

to continuously obtain human attention shift, and compare image

regions to their local surroundings [1,17]. These methods highlight

the intersections by differences against a small neighborhood, but

neglect the frequency and amount in which features may occur in

cluttered backgrounds. In contrast, global contrast based methods

[10,11] evaluate saliency in the entire image. This category of

methods considers global contrast differences and spatial relation-

ships, but leads to expensive computations (e.g., measuring

saliency at each pixel). Thus, by combining local saliency with

global considerations, the salient objects of interest can be assigned

a higher degree of importance [19,20].

Mainly inspired by Cheng’s method [10], an automatic saliency

detection method via regional principal color contrast is proposed

in this paper. We exploit low-level color cues to detect saliency on
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the same scale as input image, and incorporate ideas that are

based partly on local models and partly on global ones. Our goal,

is to identify the salient regions that correspond to the manually

annotated ground truth. In contrast to the methods which measure

saliency with contrasting pixel-pairs, our method is more efficient

by measuring region-pairs. Fig. 1 shows some saliency maps

generated by our method.

In the following sections we introduce and illustrate our saliency

detection algorithm. In Section Materials and Methods, regional

principal color based saliency detection is presented. Starting from

reducing the number of pixel colors to be further contrasted, we

use a quantized image to build its color histogram, and obtain

global color saliency based on pixel color statistics. Then we

segment the quantized image into regions, and represent the

saliency of each region as its principal color’s saliency. Finally, we

measure two categories of spatial relationships to produce full

resolution saliency maps. We also introduce the details of how to

select experimental parameters, and propose an assessment

approach in Section Discussion. To evaluate the performance of

our method, in Section Results, we compare our method with

[1,10–14,17,19,21] and human-labeled results [11]. The results

indicate that our method is an effective and reliable computational

model for saliency detection.

Materials and Methods

In this section, we present an effective regional principal color

model using low-level and medium-level cues. We first present a

method for detecting color saliency based on global considerations.

Next, a local model is proposed based on a segmentation

algorithm [22] with regional saliency represented by the saliency

of the regional principal color. Finally, spatial relationships are

exploited to generate a visual saliency map for the input image.

Global Color Saliency
Color contrast based methods evaluate color differences to

define color saliency. As a result, the procedure obviously requires

a number of comparison computations. In the 24 bits RGB full-

color model (the total number of colors N = 2563), directly

measuring color differences for each pair of colors takes N(N-1)/

2 times. In fact, the computational complexity of contrasts in a

natural image can be greatly reduced based on the following three

reasons: (1) the colors in a scene occupy only a small portion of the

full-color space. (2) due to the great variety of colors in a natural

image, the extremely rare colors are not typically considered as

salient, and often neglected. For example, in Fig. 2A, there are, in

total, 62,743 different colors in the RGB space, but 75.2% of them

occur only once. Although all pixels of these colors occupy

approximately 39.32% of the total number of image pixels, we still

can discard them to avoid voluminous color comparisons. (3) in

the full-color space, human vision cannot distinguish subtle

difference between two similar colors.

To reduce the number of colors in an input image, the normal

treatment is image quantization. Cheng et al. [10] uniformly

quantize each color channel of RGB model to 12 different values,

which reduce the number of colors to 123 = 1728. Uniform

quantization subdivides the color cube into equal-sized smaller

cubes, and maps the pixels within each smaller cube to the pixel

color at the center of the cube. Although the uniform quantization

scheme is straightforward, it does not consider the non-uniform

color distribution of the input image and which results in a highly

inefficient splitting of the color space [23]. By contrast, minimum

variance quantization is proposed by Heckbert [24], which

separates the color cube into several boxes of different sizes based

on color distribution in the image, and then uses the average color

in each box to create the new reduced colormap.

Let cx,y be the color value of pixel at (x, y) in the original image,

q(cx,y) be the color value in the quantized image, and d(cx,y,q(cx,y))

denotes the difference between corresponding color values. Then,

the difference between the original and quantized images, i.e.,

the total quantization error, can be measured by

D~
P
x,y

d(cx,y,q(cx,y)), and the optimal quantizer for a given

image is defined as the one which minimizes D. In [24], Heckbert

uses a simple color distance squared in the RGB space as the color

metric. After constructing an initial colormap that assigns to each

color an approximately equal number of pixels in the original

image, an iterative procedure is proposed to minimize D between

the original pixels and colors assigned from the colormap. As a

result, minimum variance quantization allocates more of the

colormap entries to colors that appear frequently, and fewer ones

that appear infrequently. Thus, for a given number of colors in the

input image, minimum variance quantization gets higher accuracy

of the resulting colors.

Saliency detection tends to search for rare or infrequent features

in a given image [15]. For example, Fig. 2A has many dark colors

Figure 1. Saliency maps vs. ground truth. Given several original images [20] (top), our saliency detection method is used to generate saliency
maps by measuring regional principal color contrasts (middle), which are comparable to manually labeled ground truth [11] (bottom).
doi:10.1371/journal.pone.0112475.g001
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(e.g., blacks and dark greens, see Fig. 2B), which are not typically

considered as salient in the image. By contrast, although yellows

occur less than the dark colors (i.e., the yellows in Fig. 2A are less

frequent), the flower is obviously dominant in the image. With

consideration to non-uniform color distribution, minimum vari-

ance quantization allocates fewer yellows and more dark colors in

the output colormap. This results in the retention of the same color

rarity as the input image. Thus, in this work, we directly quantize

the 24-bit RGB input to 8-bit output using minimum variance

quantization, that is, we reduce the number of colors to 256 (more

comparisons are discussed in Subsection Color Quantization).

Figs. 2C and 2D illustrate the RGB color distribution of uniform

quantization and minimum variance quantization of Fig. 2A,

respectively. As expected, we see in Fig. 2D that there are fewer

yellows and more entries to dark colors allocated in the output

colormap.

After quantizing the input image to 256 colors, we compute its

color histogram by counting the numbers of each color in the

RGB color space, and sort the color elements in descending order,

so that in the output color histogram, higher frequently occurring

colors contain more pixels. Considering the reason (2) given above,

we abandon those infrequently occurring colors, and only choose

high frequent ones. For the obtained color histogram, we

accumulate the number of color pixels in descending order until

retained color pixels occupy more than a[(0,1� of the total number

of image pixels (the selection of the best a is discussed in Section

Discussion). Fig. 3A is the 8 bits (or 256 possible colors) output of

the image in Fig. 2A, obtained using minimum variance

quantization just discussed. Fig. 3B shows the corresponding color

histogram of Fig. 3A, obtained by sorting the number of color

pixels in descending order.

Then, for the remaining colors which occupy less than 1-a of the

image pixels, we replace them respectively by the most similar

colors in the color histogram. Instead of the RGB color model, we

directly transform the retained colors from RGB to L*a*b*, and

measure color differences in the L*a*b* color space [10,21], which

is designed to approximate human vision. The difference between

two colors ci and cj is defined as:

D(ci,cj)~ (Li,ai,bi){(Lj ,aj ,bj)
�� ��

2
ð1Þ

where (L,a,b) is the value of color c in the L*a*b* color space, and
:k k2 represents the L2 norm of color difference. By replacing the

infrequently appearing colors in Fig. 3A, the number of colors is

further reduced to 199 (see in Fig. 3D). The visual result after

quantization and replacement is shown in Fig. 3C, which retains

similar visualization as in Figs. 2A and 3A.

As no prior knowledge regarding the size and location of the

salient object is provided, the same color in an input image can be

considered to have the same saliency with global contrast

differences. Thus, the saliency value of a retained high frequent

color ci can be obtained as [10]:

S(ci)~
Xn

j~1

fjD(ci,cj) ð2Þ

where n is the number of retained colors, and fj is the number of

pixels occupied by color cj . That is, the saliency value with respect

to color ci is computed as color contrast and corresponding

number of pixels in other colors. Then, as in Cheng’s method, we

replace S(ci) by the saliency values of m most similar colors in the

Figure 2. Color space distribution and quantization. (A) Input image [20]. (B) Original color distribution of A in the RGB color space. (C) Color
distribution of uniform quantization. (D) Color distribution of minimum variance quantization.
doi:10.1371/journal.pone.0112475.g002

Figure 3. Replacement for low frequent colors with minimum variance quantization. (A) Minimum variance quantized Fig. 2A. (B) Color
histogram of the image in A. (C) Full resolution output image resulting from the retained high frequent colors. (D) Color histogram of C.
doi:10.1371/journal.pone.0112475.g003

RPC Based Saliency Detection

PLOS ONE | www.plosone.org 3 November 2014 | Volume 9 | Issue 11 | e112475



L*a*b* color space as follows (also see [10]):

S’(ci)~
1

(m{1)T

Xm

j~1

(T{D(ci,cj))S(ci) ð3Þ

Here, the parameter n is as defined for Eq. (2), m~qd|nr is the

number of colors which are most similar to color ci, and

T~
Pm

j~1 D(ci,cj) is the sum of color contrasts between ci and

the other colors. The parameter d[(0,1� is used to control the

number of most similar colors to ci, and so that the saliency value

of ci will be smoothed by all the other colors if d~1. We also

discuss in Section Discussion details of how to select the best d.

As seen in Fig. 4, we represent each color of Fig. 3C by its

saliency value to generate the global saliency map (Fig. 4A), and

further obtain the smoothed output in the L*a*b* color space [10]

(see in Fig. 4B). For the purposes of visual demonstration, all the

saliency values of two figures are normalized to the range [0, 1].

Note that in Fig. 4B, the flower is assigned to higher importance

after color space smoothing.

Regional Principal Color Saliency
Compared to low-level cues, medium-level cues contain more

structural information for subsequent analysis. In a natural scene,

human vision tends to pay more attention to regions rather than to

pixels. Region contrasts, on the other hand, are based on human

subjective preferences regarding the main colors and the sizes of

different regions. In addition to color contrast by statistical

histogram, we introduce regional principal color for region

contrast in this section.

In region contrast based on principal color, we first segment the

quantized input image into regions using the graph-based image

(superpixel) segmentation method [22]. In recent years, super-

pixels, which segment an image into several small regions of

uniform color or texture [25], are widely used as a prior step in

many computer vision tasks such as objectness [25] and saliency

detection. The key property of superpixel segmentation is based on

the idea of preserving object boundaries, that is, all pixels in a

superpixel belong to the same object [26]. Due to similar colors

and structural information contained in a superpixel, the pixels of

a salient object can be clustered more efficiently and stably than

the original pixels themselves. Li et al. [27] use a linear

combination of the single-image saliency map (SISM) and the

multi-image saliency map (MISM) to detect co-saliency. In MISM,

the authors produce a pyramid of images with decreasing

resolutions and decompose each into superpixels. Then, two

categories of regional features are extracted to measure the

similarity between co-multilayer graphs. To detect regional

saliency based on sparse histogram comparisons, Cheng et al.
[10] segment the input image into regions using [22], which is also

used in [28] to detect salient objects with different scales. Xie et al.
[29] propose an image clustering method at the superpixel level

using sparse representation and apply it to compute the prior

distribution of saliency. Furthermore, methods of fusing the

saliency of multi-level segmentations are also adopted in [30,31].

In this paper, we directly use the C++ implementation provided

by [22]. The primary concern of our method is the results of the

superpixels clustering, where we wish to obtain color homogeneity

on a minor scale. For the segmentation parameters used in our

experiments, the width of the Gaussian filter is set to 0.5, scale

parameter and minimum region size (pixels) are all set to 50.

Fig. 5A shows the segmented result using the above parameters.

There are a total of 456 regions, which are all labeled with their

boundaries.

Using the segmentation procedure just described, although all

colors in a single region have a high level of homogeneity, there

are some other colors that also in the same region. As mentioned

earlier in this section [see reason (2)], if these colors whose pixels

occupy an extremely low ratio of the small local region, humans

commonly ignore them, and focus only on the more frequent

colors. Based on this property, we choose the most frequently

occurring color (which in this paper we call the principal color) of

each region respectively, and then replace the colors in each

region by it, as illustrated in Fig. 5B. Note that although this

procedure introduces artifacts, the flower is still salient in the

image. Moreover, when ignoring some infrequently occurring

colors, the number of colors in Fig. 5B is further reduced from 199

to 102, which will facilitate subsequent color contrast computa-

tions. Finally, the saliency value of region ri, denoted S(ri), is

obtained by the saliency value of the principal color ci [i.e., S’(ci)
in Eq. (3)]. The image shown in Fig. 5C is the saliency map

generated by principal color saliency (normalized to the range [0,

1]).

Spatial Relationships
Generally, spatial relationships play an important role in

measuring saliency in a visual space. Human visual selective

mechanisms dynamically scan a scene, and shift attention to the

different locations based on the center-surround principle [20,32].

That is, the focus of attention is shifted to one salient location, and

subsequently jumps from it to the next most salient location, which

is spatially close to the former [1]. Furthermore, Tatler [33] and

Judd et al. [34] find that observers tend to look more frequently

Figure 4. Saliency map generated by global color contrast. (A) Global color saliency. (B) Color space smoothing.
doi:10.1371/journal.pone.0112475.g004
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around the center of the scene than around the periphery.

Although there is no direct evidence that central fixation

tendencies arise from central biases in natural scenes [33], the

scene center is commonly used to extract global scene features for

initial context modeling [35]. The concept of center-bias, that is,

the salient object is usually located at the center of an image, is

usually realized as Gaussian distribution and widely used in

[30,31,36,37].

Considering spatial distances influence on regional saliency

values, we use two categories of distance metrics in our method as

follows:

(1) Spatial distance between two regions

Let fi and fj be the number of pixels in regions ri and rj , and let

D(ri,rj) be the Euclidean distance between the center points of two

regions (all of the distances are normalized to the range [0, 1]).

Then, for any region ri, the saliency value S’(ri) is obtained by

summing spatially weighted principal color contrasts:

S’(ri)~fiS(ri)z
X
j=i

fjw(ri,rj) expf{D(ri,rj)
2g ð4Þ

where

w(ri,rj)~
S(ri){S(rj) if S(ri)wS(rj)

0 otherwise

�
ð5Þ

In Eq. (4), the central coordinate (x,y) of a region is defined as

the average value of x- and y-coordinates of pixels in it, and we use

an exponential function to control the spatial distances so that

those far-away regions would influence less on the saliency value of

region ri. The factor fj in Eq. (4) also accounts for the number of

pixels in region rj , that is, bigger regions contribute more to the

saliency value of region ri than smaller ones. In contrast to [10]

which measures saliency with color contrasts between pixels in

regions [evaluating the weighted saliency value for each region

takes O(kn2) time, k is the number of regions and n denotes the

number of high frequent colors], we retain the self-saliency of

region ri, and efficiently compute region contrasts only by

exploiting the principal color of each region [i.e., computing the

saliency value of region ri using Eq. (4) takes O(k) time].

Moreover, the weighting coefficient w(ri,rj) depends on the

difference between the saliency values of the two regions [see

Eq. (5)]. For those non-salient regions, we do not wish the saliency

values of them to be indirectly increased by other sufficiently

salient regions. In this case, the difference value remains

unchanged when the saliency value of region ri is larger than rj ,

otherwise w(ri,rj) is set to zero.

Fig. 6A is the spatial weighted result of the image in Fig. 5C,

obtained using spatial relationships across regions just discussed.

Note the non-salient patch in the lower right-hand corner of

Fig. 6A, in which the saliency is further remarkably restrained. In

contrast to Fig. 5C, our method decreases the saliency of

background regions, and improves the visual contrasts between

salient and non-salient regions.

(2) Spatial distance between regional center and image center

Let C represent the coordinate (x,y) of the center point of

Fig. 6A, and let D(ri,C) denote the Euclidean distance between

the center of region ri and the image center. Like the first category

of distance metric just discussed, all of the distances are also

normalized to the range [0, 1]. A simple approach to measure this

category of distance metric is direct controlling spatial weighting,

where we compute an estimate, S’’(ri), of the saliency value of

region ri simply by dividing S’(ri) by the exponential function of

the weighted D(ri,C), as follows:

S’’(ri)~
S’(ri)

expfD(ri,C)2
�

sg
ð6Þ

where, as noted at the beginning of this subsection, the parameter

s[ 0,1ð � is the strength of the response of the spatial weighting used

to compute S’’(ri). This indicates that, for a fixed value of s, the

regions which are further away from the image center, will be

assigned smaller saliency values than those immediate neighbors of

the image center. However, the sufficiently salient regions are still

more salient with an appropriate s, even if Eq. (6) makes regions

around the periphery have lower saliency. Similarly, we will

discuss the selection of the best s in Section Discussion. The image

in Fig. 6B is obtained using Eq. (6) with s~0:2. In comparing this

image with Fig. 6A, we note a generally slight decrease of saliency

throughout the entire image but, as expected, those non-salient

regions around the image are considerably more affected.

Finally, the image shown in Fig. 6C is simply obtained by

thresholding Fig. 6B with an adaptive threshold (see Section

Results for a discussion). Comparing this result with the manually

labeled ground truth, we get a high quality object, and see that it is

a reasonable representation of what we would consider to be

salient in Fig. 2A.

Results

We present empirical evaluation and analysis of the proposed

method against ten saliency detection methods on the MSRA-

1000 salient object database [20], with the manually labeled

ground truth provided by Achanta et al. [11], including IT [1], AC

[13], GB [17], MZ [12], SR [14], FT[11], CA [19], LC [21], HC

[10], RC [10]. In our experiments, for all ten methods mentioned

Figure 5. Regional principal color contrast. (A) Regional boundaries of using the graph-based segmentation method. (B) Each region
represented by its principal color. (C) Saliency map obtained with the saliency values of regional principal colors.
doi:10.1371/journal.pone.0112475.g005
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above, we directly use the saliency maps provided by Cheng et al.
[10]. Fig. 7 shows some visual sample results of our method

compared with others, where higher pixels indicate higher

saliency. Our method can effectively handle complex foreground

and background.

In order to objectively evaluate the accuracy of our method for

salient object detection, following the settings in [11], three

comparison measures are used in our experiments. For an input

image, let A denote the manually labeled ground truth, and let B
represent the binary segmented result of our saliency map, we

compute precision and recall value (denoted as P and R,

respectively), as follows [38]:

P~
P

(B\A)=
P

B

R~
P

(B\A)=
P

A

�
ð7Þ

Since A and B are all binary, we simply use the logical AND
operation (i.e., B\A) to obtain the intersection of these two

images (1-valued), and use the expression
P

(B\A) to denote the

number of pixels in the image regions where A and B overlap.

Moreover, to acquire both high precision and high recall, we

evaluate F-measure [11] (represented by F) as:

F~
(1zb2)P|R

b2|PzR
ð8Þ

here, we also use b2 = 0.3 to weigh precision more than recall.

For a given saliency map, with the saliency values in the range

[0, 255], we performed two experiments to compare the

segmentation results with ground truth. In the first experiment,

we binarize the saliency map with 256 fixed thresholds. In the

second experiment, the saliency map is segmented by adaptive

thresholding.

(1) Segmentation by fixed thresholding
For every image from MSRA-1000, we vary the threshold Tf

from 0 to 255 sequentially, and obtain 256 binary segmentation

results. Then, we compute the average precision, recall, F-measure

of 1000 images at each possible threshold, and plot precision-recall

curves (as shown in Fig. 8A) and F-measure curves (see Fig. 8B).

Figure 6. Saliency map with measuring two categories of spatial relationships. (A) Between two regions. (B) Between regional center and
image center. (C) Binary segmented result simply obtained by thresholding B with an adaptive threshold.
doi:10.1371/journal.pone.0112475.g006

Figure 7. Visual results of our method compared with ground truth and other methods on dataset MSRA-1000. (A) Original images
[20]. (B) Ground truth [11]. (C) IT [1]. (D) SR [14]. (E) FT [11]. (F) CA [19]. (G) RC [10]. (H) Ours.
doi:10.1371/journal.pone.0112475.g007
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Generally, the accuracy of the saliency maps can be observed in

the plots of precision-recall curves, and we wish to achieve higher

precision in the entire recall range. However, because each

method produces different precision and recall values at the same

threshold, this comparison method is rough and subjective. In

quantitative evaluation, we use an interpolation approach to

measure the precision-recall curves objectively.

We first generate a linearly spaced vector of n points (with

n = 1000 in this case) in the entire recall range [Rmin, Rmax]. Then,

we compute 1000 interpolated values of precision using linear

interpolation, and obtain the average value of them (represented

by Ps). The first row of Table 1 compares the average interpolated

precision taken by each method. In contrast, we produce the

highest Ps, which means that our approach achieves higher

precision in most recall range (see in Fig. 8A).

(2) Segmentation by adaptive thresholding
Most saliency detectors exploit saliency maps in salient objects

segmentation. For instance, Ma and Zhang [12] use fuzzy growing

on their saliency maps to find rectangular salient regions. Achanta

et al. [13] retain only the regions whose average saliency is greater

than a constant threshold, and further improve this method with

an adaptive threshold [11]. Cheng et al. [10] iteratively apply

GrabCut [39] to refine the segmentation results initially obtained

by thresholding the saliency maps.

Although more sophisticated approaches can be used to obtain

more accurate segmentation results, simple thresholding reflects

the essence of saliency maps making salient objects stand out. In

other words, the accuracy of saliency detection methods depends

entirely on how well the saliency maps can be obtained. Inspired

by [11,38], in our experiments, we directly determine the adaptive

threshold (Ta) as twice the average value of all saliency regions:

Ta~
2P

fi

X
fiS’’(ri) ð9Þ

where, fi and S’’(ri) in this equation are as defined in Eqs. (4) and

(6). For a saliency map, any regional saliency value greater than

the threshold Ta is set to 1 (white), and all others are set to 0

(black).

With Ta as set in Eq. (9), we obtain binary segmented results of

salient objects from each saliency detection method. Average

values of precision, recall and F-measure are also obtained over

1000 images from the MSRA-1000 database, as mentioned earlier

in this section. The comparisons are shown in Fig. 8C, and the last

three rows of Table 1. Among all the methods, our method

achieves the best accuracy with higher recall (71.89%), and the

best F-measure (79.74%). The RC model [10] achieves higher

precision scores but their recall value is much lower than our

algorithm. Note that, our method computes regional contrasts by

exploiting only 102 principle colors in Fig. 5A, and uses the

simplest thresholding in salient object segmentation.

Although our method performs well in experimental results, it

does fail in some cases. Here, we respectively segment the 1000

saliency maps by adaptive thresholding Ta in Eq. (9) as described

earlier, and sort the F-measure values of binary results in

descending order. From the last ten images, we collect several of

the incorrect saliency detection results in Fig. 9. The third row of

Fig. 9 is the color histogram similar to Fig. 3D, the forth row is the

saliency maps generated based on global color contrast (see

Subsection Global Color Saliency) and the last row is the final

results. As an improvement over global contrast based method,

regional principal color based saliency detection method produces

incorrect results while the former can incur wrong responses. Why

does global color contrast based saliency detection method fail in

these cases?

Saliency detection amounts to searching for unusual features in

a given image [16], which means that those salient regions are

expected to be rare or infrequent when compared with other

regions [15]. In this paper, our method employs only low-level

color features to detect saliency, it cannot satisfactorily deal with

salient parts with similar colors as the non-salient regions. For

example, in Figs. 9B and 9C, color features of human-labeled

ground truth are similar to other parts in the scenes (ground and

wood). In certain cases (e.g., both Fig. 9F and Fig. 9G), manually

labeled parts consist of high frequent colors, which are not usually

considered as salient regions. Similarly, in Fig. 9A, the salient

objects occupy the large parts of the image, but our method locates

the centers of the doughnuts with infrequent dark colors.

Furthermore, our bottom-up model is not task-dependent, it

totally fails to highlight the salient regions in Figs. 9D and 9E.

There are two ways to alleviate these issues: one is to introduce

more complex features (intensity, orientations, etc.) [1] or

biological vision principles [17], the other is to adopt a multi-

scale strategy (as used in [1,15,16]) or hierarchical model [31]. The

first method introduces prior knowledge or task information not

included in our bottom-up saliency model, and predicts human

eyes fixations using attention trajectories to locate the regions of

visual attraction. The second method considers that cue maps

could be quite different in different scales, and multiple layers

Figure 8. Quantitative comparison on dataset MSRA-1000 (N/A represents no center-bias). (A) Precision-Recall curves. (B) F-measure
curves. (C) Precision-Recall bars.
doi:10.1371/journal.pone.0112475.g008
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would contain both small regions and large-scale structures. By

fusing multi-layer saliency maps, this category of approaches is

able to highlight both small and large salient regions.

Discussion

Color Quantization
As described earlier in Subsection Global Color Saliency, in

contrast to Cheng’s method [10], we use minimum variance

quantization to reduce the number of colors in the input images.

To compare the accuracy of two kinds of quantization methods in

our saliency detection model, we perform two groups of

experiments using the optimal combination of a~0:95, d~1=4
and s~0:2 as discussed in the following subsection. In these

experiments, we follow the same procedure, except that we make

the changes in color quantization. In the first group of

experiments, we uniformly quantized each color channel of

RGB model to i[f3,4,:::,16g different values, so the resulting

colors are varied from 33~27 to 163~4096. In the second group

of experiments, we directly quantize the 24-bit RGB input to i-bit

output (i[f4,5,:::,16g) using minimum variance quantization.

Moreover, we add an additional 1728 into the second group of

experiments.

Then, for every image from MSRA-1000, we follow the same

procedure mentioned in Section Results. With 256 fixed

thresholds, we compute the average precision, recall, F-measure

of 1000 binary results segmented by fixed thresholding, then the

average interpolated precision (Ps) is obtained in the entire recall

range (as shown in the first row of Tables 2 and 3). Several of the

precision-recall curves are plotted in Fig. 10A (uniform quantiza-

tion denoted as u, and minimum variance quantization denoted as

m). Furthermore, with Ta in Eq. (9), all saliency maps are

segmented by adaptive thresholding, and we obtain the average

values of precision (P), recall (R), F-measure (F) over the whole

1000 images (see the last three rows of Tables 2 and 3). Several of

the precision-recall bars and F-measure curves are also plotted in

Figs. 10B and 10C, respectively.

First, as can be seen in Table 2 and Fig. 10C, the precision,

recall and F-measure values of uniform quantization increase

significantly as the number of colors increases. By contrast, these

measures obtained using minimum variance quantization increase

slowly (see Table 3). Second, two kinds of quantization methods

have similar performance while employing adequate colors (e.g.,

4096), but resulting tremendous color comparisons. Finally,

comparing Table 2 with Table 3, we can see that minimum

variance quantization is superior to uniform quantization, while

providing the same number of colors. Thus, in consideration of

achieving high accuracy and simultaneously reducing computa-

tional complexity in our method, we quantize the input images to

8-bit output using minimum variance quantization.

Parameter Selection
As mentioned in previous sections, so far there are three

undetermined parameters to be used in our approach:

(1) The value of a is the ratio of the pixels of high frequent colors

to the total number of image pixels (see Subsection Global Color
Saliency). As a increases, more colors in the quantized image will

be retained, but increasing color contrast computations.

(2) The value of d in Eq. (3) is the ratio of the most similar colors

(to ci) to the total number of colors in saliency smoothing. To

reduce quantization artifacts, more similar regional principal

colors to ci will be used to smooth the saliency value of region ri, as

d increases.
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(3) The value of s in Eq. (6) is the spatial weighting to measure

the effect of distance between region ri and image center. As s
decreases, the resulting saliency maps would be more center-

biased. That is, the salient regions mainly concentrate on image

center, with farther regions being assigned smaller saliency values.

The three parameters a, d, and s are therefore selected as

follows. In order to acquire the optimal selection, we consider the

various combinations associated with particular values, and

perform two experiments using different comparison measures as

mentioned earlier in Section Results. Our ultimate goal is to

obtain both the best average interpolated precision value (Ps) in

salient object segmentation by fixed thresholding, and the best F-

measure (F) in segmentation by adaptive thresholding.

In our experiments, a is set to 0.9 or 0.95, and d is set to 1/16 or

1/4 (partly referred to the work of [10]). In terms of the parameter

s of Eq. (6), we set it to a value in two possible closed intervals:

[0.01, 0.09] with a step size of 0.01, or [0.1, 1] with a step size of

0.1 (a total of 19 values; only ten are chosen for demonstration

purposes in this paper). For an arbitrary set of parameter

combination, in the first experiment, we measure the average

interpolated precision values (Ps) in the entire recall range. The

first row of Fig. 11 shows the precision-recall curves, F-measure

curves and Ps bars, for ten different values of s respectively, with

a~0:95 and d~1=4. And as shown in Fig. 11C and Table 4, we

obtain the best Ps (83.6%) with s~0:2 (y-axis) in this case.

In the second experiment, we segment the saliency maps

generated by our method using an adaptive threshold Ta as set in

Eq. (9), and mainly measure the average F-measure values over

1000 input images. Table 4 shows the numeric comparison of the

average interpolated precision (Ps), precision (P), recall (R) and F-

measure (F) for various combinations of a, d and s. Note that we

always achieve the best Ps and the best F with s~0:2, regardless

of the combinations of a and d. On the other hand, in all

combinations discussed here, we obtain almost the best metrics

with a = 0.95 and d~1=4. Thus, we use fixed parameters of 0.95,

1/4, 0.2 for a, d, and s in our method, respectively, for all the

images from MSRA-1000.

Furthermore, in visual comparison, we plot precision, recall, F-

measure for various combinations of a, d, and s by adaptive

thresholding, as shown in the second row of Fig. 11. As illustrated

in Fig. 11D, the image in it shows three sets of curves of a = 0.9,

d~1=16 (solid lines) vs. a = 0.95, d~1=16 (dash-dot lines) with

varying s from 0.01 to 1 (x-axis). Similarly, two plots of

comparison curves for other combinations of a, d, and sare

shown in Figs. 11E and 11F. First, Figs. 11D–11F show that we

can achieve higher precision, recall, F-measure with bigger a at the

same d, and higher recall with bigger d at the same a. On the other

hand, the precision values increase slowly as s increases, and reach

the peak when s is approximately equal to 0.1. The F-measure

curves have similar increasing trends, but will decrease slowly

when s is approximately bigger than 0.2.

Center-bias Factor
As discussed in Subsection Spatial Relationships, we employ the

spatial distance between regional and image centers [see Eq. (6)],

and hence introduce the center-bias effect in our saliency detection

model. In [15], Li et al. consider that the center-bias factor affects

the equality of measuring ROC directly, and then calibrating this

post-processing in order to make a fair comparison. To eliminate

the influence of center-bias, we discard the second spatial

relationship, and compute the average interpolated precision (Ps)

using fixed thresholding, the average precision (P), recall (R), F-

Figure 9. Hard image cases of our method in detecting salient regions. (Top to bottom) Original images [20], ground truth (GT) [11], color
histogram similar to Fig. 3D, global color contrast, and regional principal color based saliency detection.
doi:10.1371/journal.pone.0112475.g009
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measure (F) using adaptive thresholding. The experimental results

are shown in Fig. 8 and Table 1, in which N/A represents no

center-bias.

As can be seen in Table 1, although N/A still achieves the best

recall (72.6%), its performance is close to HC [10] but lower than

RC [10]. There are three factors leading to the experimental

results. First, as mentioned in Subsection Regional Principal Color
Saliency, we represent regional saliency value as only the saliency

value of its principal color, and hence reduce precision of regional

contrasts while decreasing computation complexity. Second, to

avoid the saliency values of non-salient regions to be indirectly

increased by other sufficiently salient regions, we set the weighting

coefficient w(ri,rj) to zero [see Eq. (5)], resulting in partly

suppressed sizes and saliency values of the salient regions. Finally,

it should be admitted that the dataset itself has a certain built-in

bias [40]. Since the performance of our method is significantly

improved while introducing center-bias factor, the salient regions

on MSRA-1000 are mostly located at the image centers.

Conclusions

In this paper, we propose a principal color method via regional

contrasts and spatial relationships to detect salient regions in

natural scenes. We use low-level color features to build color

Figure 11. Quantitative comparison for various combinations of parameters. (A)–(C) Varying s from 0.01 to 1 with a = 0.95 and d = 1/4: (A)
Precision-Recall curves. (B) F-measure curves. (C) Ps Bars. (D)–(F) Plots of precision, recall, and F-measure for various values of s: (D) a = 0.9, d = 1/16
vs. a = 0.95, d = 1/16. (E) a = 0.9, d = 1/4 vs. a = 0.95, d = 1/4. (F) a = 0.95, d = 1/16 vs. a = 0.95, d = 1/4.
doi:10.1371/journal.pone.0112475.g011

Figure 10. Uniform quantization vs. minimum variance quantization. (A) Precision-Recall curves. (B) Precision-Recall bars. (C) F-measure
curves.
doi:10.1371/journal.pone.0112475.g010
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histograms based on minimum variance quantization, and

compute global color saliency in the quantized image. Then, we

segment the quantized image into regions, and define the saliency

for each region using the saliency value of the regional principal

color. Based on two categories of spatial relationships at the region

level, the spatial weighting schemes are subsequently introduced.

In addition, we present an interpolation approach in order to

quantitatively evaluate precision-recall curves, and discuss color

quantization, parameters selection and center-bias factor. We

evaluate the proposed method on a data set of 1,000 typical

images with manually labeled ground truth. Experimental results

demonstrate the effectiveness of our method. In contrast to

measuring regional saliency differences with pixel-pairs, our

method incorporates low-level and medium-level visual cues,

and computes saliency with region-pairs while remaining simple,

which consequently, can be easily applied in ROI extraction,

image segmentation, and potential object detection for natural

scenes.

The ultimate goal of our research is to develop a pedestrian

detection system using multi-spectral image sensors. In the future,

first, we plan to employ more effective features to deal with hard

image cases. In this paper, we only use low-level color features to

detect saliency, which results in failure when the salient parts and

non-salient regions have similar colors. Since the regional

principal color based detection method is effective, it is desirable

to introduce other principle features extracted from image cues to

handle the cluttered images. Second, in this paper, only one

saliency map is generated as the final result. Due to the changeful

scales of pedestrian in the images, the method of fusing multi-layer

saliency maps is able to highlight both small and large pedestrian

regions. Third, because pedestrians are partly salient in the

infrared images, we plan to introduce prior knowledge of

pedestrian structures, and iteratively employ multiple center-

biased salient regions in the initial salience map to improve the

detection results. Finally, the proposed method is not real-time and

needs several seconds to operate the algorithm in a MATLAB

implementation. However, we have noted that a decrease of about

0.5% of the performances can make our algorithm twice as fast.

Our future work consists in the optimization of the proposed

model so that it works in real-time.
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