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Abstract

We carried out a genome-wide association study (GWAS) for general cognitive ability (GCA) plus three other analyses of
GWAS data that aggregate the effects of multiple single-nucleotide polymorphisms (SNPs) in various ways. Our
multigenerational sample comprised 7,100 Caucasian participants, drawn from two longitudinal family studies, who had
been assessed with an age-appropriate IQ test and had provided DNA samples passing quality screens. We conducted the
GWAS across ,2.5 million SNPs (both typed and imputed), using a generalized least-squares method appropriate for the
different family structures present in our sample, and subsequently conducted gene-based association tests. We also
conducted polygenic prediction analyses under five-fold cross-validation, using two different schemes of weighting SNPs.
Using parametric bootstrapping, we assessed the performance of this prediction procedure under the null. Finally, we
estimated the proportion of variance attributable to all genotyped SNPs as random effects with software GCTA. The study is
limited chiefly by its power to detect realistic single-SNP or single-gene effects, none of which reached genome-wide
significance, though some genomic inflation was evident from the GWAS. Unit SNP weights performed about as well as
least-squares regression weights under cross-validation, but the performance of both increased as more SNPs were included
in calculating the polygenic score. Estimates from GCTA were 35% of phenotypic variance at the recommended biological-
relatedness ceiling. Taken together, our results concur with other recent studies: they support a substantial heritability of
GCA, arising from a very large number of causal SNPs, each of very small effect. We place our study in the context of the
literature–both contemporary and historical–and provide accessible explication of our statistical methods.
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Introduction

Candidate-Gene Association
General cognitive ability (GCA) is that mental capacity which is

involved to some extent in every cognitively demanding task. It is

an important individual-differences variable, and correlates non-

trivially with other variables in a considerable variety of domains

[1,2,3,4]. Decades of research from twin, family, and adoption

studies have established that general cognitive ability (GCA) is a

substantially heritable trait. Estimates of its heritability (h2), the

proportion of its variance that is attributable to genetic factors,

typically range from 0.50 to 0.70 [5,6,7], and are sometimes as

high as ,0.80 [8]. In light of the empirical fact that genes

influence cognitive ability, a natural subsequent question to ask is

which genetic polymorphisms contribute to individual variation in

the trait

Association analysis is merely a test for whether the allelic state

of a genetic polymorphism systematically covaries with the disease

or quantitative trait of interest (typically via regression analysis). It

can implicate a specific polymorphism provided that the ‘‘causal’’

polymorphism actually be typed, or alternately, lie in close

chromosomal proximity–linkage disequilibrium (LD)–to a marker

that is typed. (Linkage disequilibrium is the logical consequence of

recombination, over many generations, in entire populations. The

result is that loci very close to one another on a chromosome are

least likely to be sundered by a recombination event, and

therefore, polymorphisms within small ‘‘blocks’’ of DNA on a

given chromosome tend to be transmitted together in the

population. This essentially induces correlation between markers

in tight proximity to one another on the same chromosome.) For a

number of years, the dense genotyping needed for association

analysis was costly, so association analysis saw use primarily in

candidate-gene studies.

The rationale behind the candidate-gene study is simple: typing

markers within genes that are a priori plausibly related to the

phenotype is a focused use of limited genotyping resources, which

is (presumably) more likely to identify genetic variants that are

truly associated with the phenotype. Unfortunately, the candidate-

gene association literature has been plagued by apparent false

positives that fail to replicate. This has occurred in human genetics

at large [9,10], and has occurred in candidate-gene association

research for GCA since its inception [11]. In fact, one recent

article concluded that ‘‘most reported genetic associations with

general intelligence are probably false positives’’[12].
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Rather presciently, Risch & Merikangas [13] foreshadowed the

advent of the genome-wide association (GWAS) study in their

remark that an ‘‘approach (association studies) that utilizes

candidate genes has far greater power, even if one has to test
every gene in the genome’’ (p. 1516, emphasis supplied). The

genome-wide association scan (GWAS) grew naturally out of

researchers’ (1) demand for denser and denser coverage of

variation in more and more genes, and (2) growing dissatisfaction

with replication failures in association studies of a priori
biologically-hypothesized candidate genes. GWAS in the modern

sense involves typing individuals on at least 300,000 SNPs

throughout the genome [14]; due to LD, SNPs that are typed

can ‘‘speak on behalf’’ of non-genotyped SNPs and other

polymorphisms that are nearby on the same chromosome. It is

only within the past five years or so that biotechnology reached

such sophistication that researchers can feasibly genotype a sample

of participants on hundreds of thousands of SNPs, and engage in

the atheoretical brute-force empiricism that is GWAS. Needless to

say, there is an inherent multiple-testing problem in GWAS; the

currently accepted standard for ‘‘genome-wide significance’’ is p,
561028.

GWAS
In a sense, the IQ QTL Project [15] carried out the first

‘‘genome-wide association study’’ of GCA (via DNA pooling [16]),

with only 1,847 markers; it failed to uncover replicable association.

A ‘‘low-density GWAS’’ for IQ has been reported by Pan, Wang,

& Aragam [17], with no genome-wide significant hits. The first

two ‘‘true’’ GWAS for GCA both used samples of children from

the Twins Early Development Study (TEDS). Butcher, Davis,

Craig, and Plomin [18] reported the first; subsequently, Davis et

al. [19] ran a similar study. Butcher et al. reported that, at the

uncorrected a=0.05, their full-sample association analysis would

have 100%, 98%, and 71% power to detect an additive SNP

accounting for 1%, 0.5%, and 0.2%, respectively, of the

phenotypic variance. With a Bonferroni correction for 28

hypothesis tests yielding a per-comparison a=0.001786, Davis et

al.’s full-sample association analysis would have 99.5% and 82%

power to detect a SNP accounting for 1% and 0.5%, respectively,

of the phenotypic variance.

Butcher et al. [18] observed nominally significant association

from 6 of 37 SNPs entered into the full-sample association analysis.

After implementing Benjamini and Hochberg’s [20] step-up

procedure to control false discovery rate, only one of these SNPs,

rs1378810, was resolved as a discovery (r2 = 0.004, corrected p,
0.03). Of Davis et al.’s [19] 28 SNPs entered into the full-sample

association analysis, 9 were nominally significant, but none

survived Bonferroni correction or Benjamini and Hochberg’s

procedure.

The largest effect-size estimate that Davis et al. [19] reported is

r2 = 0.0024. The largest effect-size estimate that Butcher et al. [18]

reported is r2 = 0.004; the sum of effect sizes of their six nominally

significant SNPs was only 1.2% of the variance. Butcher et al

commented accordingly, and succinctly summarized the main

lesson of GWAS for quantitative traits (p. 442, emphasis in

original):

One possible reason for not observing larger, common,

single-locus SNP effects for g is that they do not exist…[I]t

may be that for…quantitative traits…the main finding is the

exclusion of SNPs of large effect size to the extent that

coverage for common variants is virtually complete…[W]in-

nowing the wheat from the chaff will be difficult, requiring

extremely large samples, multiple-stage designs, and repli-

cation in independent samples.

As others have pointed out, the same lesson is apparent from

GWAS for human height [21,22]. Height is highly heritable,

uncontroversial in definition, and easily measured, almost without

error. And yet, the SNPs identified by initial GWAS for height

(reviewed in Ref [22]) each accounted for around 0.3% or less of

the phenotypic variance, and in total, 3%. It would appear that

variation in quantitative traits is attributable to a very large

number of polymorphisms of very small effect. (Non-additivity of

genetic effects is another possible explanation. However, this

appears to be unlikely for GCA, since there is little evidence of

non-additive genetic variance from twin, family, and adoption

studies of this trait [23]).

Clearly, it is necessary to move beyond analyses of one SNP at a

time. We refer to GWAS, combined with analyses that aggregate

across multiple SNPs in some fashion, as ‘‘GWAS plus.’’ We

describe three such multi-SNP analyses: VEGAS, polygenic

scoring, and GCTA.

GWAS Plus: Polygenic Scoring
Both TEDS GWAS [18,19] illustrated a simple approach to

combining the effect of multiple SNPs: for each participant,

aggregate those alleles suggestively implicated in the GWAS into a

‘‘genetic score’’ for him/her. From the six nominally significant

SNPs from the GWAS, Butcher et al. simply counted how many of

the putative increaser alleles each participant carried. This score

ranged from 1 to 11 in the subsample of 2,676 children in which it

was calculated, and correlated r <0.10 with general ability–a very

significant result (p,361028). Similarly, Davis et al. created a

score from the nine nominally significant SNPs from the GWAS,

which ranged from 6 to 16, and accounted for 1.2% of phenotypic

variance. Davis et al. acknowledge that they conducted the genetic

scoring analysis with the same participants in which they

conducted the GWAS, so the analysis is almost certainly

capitalizing on chance.

S. Purcell (with the International Schizophrenia Consortium

[24]) appears to be the first to have performed genetic scoring by

weighting each selected SNP by its GWAS regression coefficient,

and cross-validating in a separate sample. Not surprisingly, the

genetic score’s predictive performance upon cross-validation

depended upon the GWAS p-value threshold set for a SNP to

be included toward the score (Ref [24], supplemental online

material); at best, the genetic score could predict around 3% of

disease risk in the cross-validation sample.

Lango Allen et al. [25] (the GIANT Consortium) utilized

genetic scoring subsequent to a GWAS for human height on a

titanic scale: a combined sample of 133,653 participants, with

called or imputed genotypes on over 2.8 million SNPs, and a

replication sample of 50,074 participants. The GIANT Consor-

tium ultimately identified 180 SNPs robustly associated with

height. The genetic score from these loci predicted around 10% of

the phenotypic variance in each cross-validation sample. When

additional SNPs at varying significance thresholds were counted

toward the score, it predicted as much as 16.8% of the variance in

a cross-validation sample.

GWAS plus: VEGAS
VEGAS (Versatile Gene-based Association Study [26]) is a

program that tests each gene (specifically, all genotyped SNPs in

each gene) for association with the phenotype, via parametric

bootstrapping. A rather clever program, it takes GWAS results as

its input, requiring only the rs numbers and GWAS p-values of

‘‘GWAS Plus’’ for IQ
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each SNP. If an Internet connection is available, the program

‘‘knows’’ (from bioinformatic databases) which of 17,787 autoso-

mal gene(s), if any, contain each SNP. Within each gene, the

program first converts each SNP p-value to the corresponding

quantile from a central chi-square distribution on 1df, and sums

them to produce an observed test statistic Tobs for that gene. The

null hypothesis is that there is no association of any SNP in the

gene with the phenotype. Under the null, and if there were zero

LD among the gene’s m SNPs, then T * chi2(m). Under the null,

but at the other extreme of perfect LD among the m SNPs, then

T=m* chi2(1).

But, VEGAS also ‘‘knows’’ the LD structure from reference

datasets for three populations: HapMap CEU (Caucasians of

European ancestry), CHB and JPT (Han Chinese and Japanese),

and YRI (West Africans). VEGAS assumes that, under the null

hypothesis, the LD pattern among SNPs in a gene dictates the

correlation pattern among the single-SNP test statistics–an

assumption made, for example, in methods for controlling Type

I Error rate in association studies of SNPs in LD with one another

[27,28]. The matrix of pairwise LD correlations for the user-

specified population, S, is employed in the random generation of

test statistics under the null hypothesis. Specifically, in each

iteration, an order-m vector is drawn from a multivariate normal

distribution with zero mean and covariance matrix equal to S.
The elements of this vector are squared and summed, yielding the

value of the test statistic for that iteration. The proportion of test

statistics exceeding Tobs provides the p-value for the gene-based

test of association. Liu et al. [26] recommend a Bonferroni-

corrected significance level of p,0.05/17,787, or 2.861026,

which is slightly conservative since genes’ boundaries overlap to

some extent.

GWAS Plus: GCTA
GCTA (Genome-wide Complex Trait Analysis) [29] is a

software package that implements what some [30] have referred

to as GREML, for ‘‘genomic-relatedness restricted maximum-

likelihood.’’ Instead of regressing a quantitative trait onto one

marker at a time, GCTA instead assesses how much of the

phenotypic variance is attributable to all the typed markers at

once, which is accomplished by treating all the markers as random

effects, and entering them into a mixed linear model fit by

restricted maximum likelihood. GCTA thereby provides an

unbiased estimate of the variance attributable to the typed SNPs,

and a matrix of (roughly) genome-wide SNP correlations among

participants–a genetic relationship matrix, obtainable from a

genotyped sample of classically unrelated participants. Put simply,

GCTA attempts to predict phenotypic similarity among individuals

from their genetic similarity, and to predict phenotypic variance

that would otherwise be treated as error. GCTA may be expected

to outperform polygenic scoring, because it does not rely upon

estimates of individual SNP effects, which are prone to sampling

error [31].

For n participants typed on m SNPs, the GCTA model [29] is

expressed as

y~XbzWuze ð1Þ

where y is a random n61 vector of scores on a quantitative trait,

X is a model matrix of scores on covariates, b is a vector of the

covariates’ regression coefficients (fixed effects), and residual vector

e * Nn 0, Is2e
� �

. Further, u is an m61 vector of random SNP

effects, such that u * Nn 0, Is2e
� �

; W is an n6m matrix of

participants’ reference-allele counts, expressed as z-scores (i.e.,

columns are standardized).

We hereby condition upon the observed value of X. Since the

random effects have zero expectation, E(yDX)~Xb. Now define

the phenotypic variance matrix, V:

V~var(yDX)~WWTs2uzIs2e ð2Þ

Matrix V is the model-predicted covariance matrix of partic-

ipants’ phenotype scores. Intuitively, each off-diagonal (covari-

ance) element of V is the degree of phenotypic similarity between

the two participants, as predicted from their genotypic similarity.

Now, further define genetic relationship matrix, A:

A~
1

m
WWT ð3Þ

Matrix A is n6n, and roughly, may be regarded as a matrix of

correlations between different participants’ genotypes. However,

this is not strictly correct, sinceW is standardized by column (SNP)

rather than by row (participant), and therefore the elements of A
may exceed unity in absolute value.

Let s2g~ms2u, the variance attributable to all SNPs. The model

may now be written:

y~Xbzgze ð4Þ

where g is an n61 vector of random genetic effects, distributed as

Nn 0, As2e
� �

. Now,

V~var yDXð Þ~As2gzIs2e ð5Þ

Where s2g is the component of variance attributable to all typed

SNPs and all untyped ‘‘causal’’ mutations in close LD with them.

The model-predicted phenotypic variance s2p~s2gzs2e . Herein,

we refer to the ratio of s2g to s2p as h
2
SNP, for it is a lower bound on

the additive heritability of the phenotype. Estimation is carried out

via restricted maximum-likelihood; details of the algorithm may be

found in Ref [29].

Recent Developments
Davies et al. [32] reported a ‘‘GWAS Plus’’ for cognitive

abilities. The discovery sample contained 3,511 unrelated partic-

ipants, combined from 5 cohorts of older adults in the United

Kingdom. The replication cohort comprised 670 Norwegian

participants of a wide range of ages (18–79). Davies et al. extracted

composite scores for both crystallized and fluid ability from the

ability measures in each cohort, and conducted separate analyses

for fluid and crystallized ability.

Davies et al. [32] combined association results from the 5 UK

cohorts via meta-analytic techniques. No single SNP achieved

genome-wide significance (p,561028). Gene-based tests in

VEGAS implicated only one gene, FNBP1L, which was not

confirmed in the replication cohort. Davies et al. performed

polygenic scoring using the most lenient SNP inclusion threshold

possible: all genotyped SNPs, irrespective of GWAS p-value. In
the UK samples, this score predicted between 0.45% and 2.19% of

the variance. Under cross-validation in the replication cohort, this

score predicted less than 1% of the variance (statistically significant

for both fluid and crystallized ability). Davies et al. emphasized

‘‘GWAS Plus’’ for IQ
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that, when treating SNPs as single fixed effects, their individual

effect sizes will be quite small, and estimated with considerable

sampling error.

Instead, GCTA, though it is silent with regard to the individual

contribution of each marker, treats all SNPs as random effects and

estimates a single omnibus variance component. (In this report, we

are chiefly interested in the simplest application of GCTA, when
only variance components and fixed-effects regression coefficients

are computed. If the original genotypic data used to calculate A is

available, then it is also possible to obtain empirical best linear

unbiased predictions (eBLUPs) of the individual SNP effects in

vector u from Equation (1).) This seems to be one of its major

advantages. In any event, the most notable results from Davies et

al. [32] were from GCTA, which produced variance-component

estimates equivalent to 40% of the variance in crystallized ability,

and 51% of the variance in fluid ability. Davies et al. (p. 1)

conclude that ‘‘human intelligence is highly heritable and

polygenic.’’.

A recent study of GCA in children and adolescents reported by

the Childhood Intelligence Consortium (CHIC)[33] has borne out

that same conclusion. The CHIC study represented a collabora-

tion of six discovery cohorts (total N=12,441) and three

replication cohorts (N=5,548). One of the replication cohorts

was a sample of Caucasian adolescent participants from studies

conducted at the Minnesota Center for Twin & Family Research

(MCTFR, N=3,367), which is a subset of the present study’s

sample. The phenotype in all cohorts was either Full-Scale IQ

score or a composite score derived from a battery of both verbal

and non-verbal tests. GWAS SNP results were combined across

discovery cohorts by meta-analysis. No SNP reached genome-wide

significance. Among the top 100 SNPs from the discovery GWAS,

none was significant after Bonferroni correction in any of the

replication cohorts, though discovery sample’s estimated regres-

sion coefficients for these 100 SNPs were moderately positively

correlated with those from two of the three replication cohorts, but

not the MCTFR cohort.

Gene-based analysis with VEGAS in Benyamin et al.’s [33]

discovery sample suggested association with FNBP1L (formin
binding protein 1-like, on chromosome 1; p=461025), which ‘‘is

involved in a pathway that links cell surface signals to the actin

cytoskeleton’’ (p. 3). This was also the most significantly associated

gene in Davies et al.’s [32] discovery cohort. However, one cohort

was common to both studies–Davies et al. used adult IQ scores

from the Lothian Birth Cohorts, whereas Benyamin et al. used

their childhood IQ scores. When Benyamin et al. combined

VEGAS results across all of their cohorts except the Lothian Birth

Cohorts, the association with FNBP1L remained nominally

significant (p=0.0137), as did the top SNP in the gene

(p=4.561025). Benyamin et al. regarded this as robust evidence

of association between GCA and polymorphisms in FNBP1L.
Benyamin et al. [33] also reported results of polygenic scoring

analyses conducted in the replication cohorts. These analyses

calculated polygenic scores from the SNP regression weights

obtained in the meta-analytic GWAS results from the discovery

sample. Eight such analyses were conducted in each replication

cohort, with a different p-value cutoff for each. That is, polygenic

score for each such analysis was computed from a set of SNPs the

p-values of which exceeded some threshold in the discovery

sample. The proportion of variance attributable to the polygenic

score varied by p-value cutoff and by replication cohort, but was

statistically significant for at least one analysis in each replication

cohort. The best achieved in the MCTFR cohort was 0.5% of

variance (p=5.5261025). Finally, Benyamin et al. reported GCTA
results for the three largest cohorts in the study, one of which was

the MCTFR cohort. Estimates of h2SNP varied from 0.22 to 0.46,

with the MCTFR estimate in between at 0.40; all three estimates

were significantly different from zero. Based on all results,

Benyamin et al. conclude that ‘‘[c] hildhood intelligence is

heritable, highly polygenic and associated with FNBP1L’’ (p. 1).
In the present study, we report the detailed results of our

‘‘GWAS Plus’’ from our full sample of 7,100 Caucasian MCTFR

participants, both adolescents and adults. We conducted our

GWAS using over 2.6 million SNPs and a method appropriate for

the complicated family structures in our dataset. We then

conducted gene-based association tests in VEGAS with the SNP

p-values calculated in our GWAS. We also carried out polygenic

scoring analyses with five-fold cross-validation, at different p-value
cutoffs (a la Benyamin et al. [33]) and under two different schemes

of weighting SNPs to compute the score. Finally, we ran GCTA to

estimate how much of the phenotypic variance is attributable to all

genotyped SNPs.

Methods

Ethics Statement
Both longitudinal family studies, the Minnesota Twin Family

Study (MTFS) and the Sibling Interaction & Behavior Study

(SIBS), and the collection, genotyping, and analysis of DNA

samples, were approved by the University of Minnesota Institu-

tional Review Board’s Human Subjects Committee. Written

informed assent or consent was obtained from all participants;

parents provided written consent for their minor children.

Sample
Participants. Our participants came from two longitudinal

family studies conducted by the MCTFR. MTFS [34,35,36] is a

longitudinal study of same-sex twins, born in the State of

Minnesota between 1972 and 1994, and their parents. There

are two age cohorts in this community-based sample, an 11-year-

old cohort (10–13 years old at intake, mean age = 11.78) and a 17-

year-old cohort (16–18 years old at intake, mean age = 17.48).

Zygosity has been genomically confirmed for all DZ twins

included in the present study [37]. SIBS [38] is a longitudinal

adoption study of sibling pairs and their parents. This community-

based sample includes families where both siblings are adopted,

where both are biologically related to the parents, or where one is

adopted and one is biologically related. As required by SIBS

inclusion criteria, any sibling in the sample who was adopted into

the family will not be biologically related to his or her co-sibling,

which has been genomically verified for all SIBS participants in

the present study [37]. The age range at intake was 10–19 for the

younger sibling, and 12–20 for the older. For the purposes of our

analyses, the sample comprises six distinct family types:

1. Monozygotic- (MZ) twin families (N=3,939 in 1143 families),

2. Digyzotic- (DZ) twin families (N=2,114, in 638 families),

3. SIBS families with two adopted offspring (N=291, in 224

families),

4. SIBS families with two biological offspring (N=472, in 184

families),

5. ‘‘Mixed’’ SIBS families with 1 biological and 1 adopted

offspring (N=204, in 107 families),

6. Step-parents (N=80).

As explained below, our method of analysis accounted for the

clustering of individual participants within families. However,

family-type #6, step-parents, do not fit neatly into a four-member

‘‘GWAS Plus’’ for IQ
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family unit; we treated them as independent observations (in a

sense, as one-person families) in our analysis. A total of N=7,100

participants were included in our analyses. Descriptive character-

istics of the sample are provided in Table 1. Details concerning

families’ patterns of data availability are provided in Table S1.

Genotype and phenotype data have been submitted to dbGaP

(accession number phs000620.v1.p1).

Genotyping. Participants who provided DNA samples were

typed on a genome-wide set of markers with the Illumina

Human660W-Quad array. Both DNA samples and markers were

subject to thorough quality-control screens. 527,829 SNPs on the

array were successfully called and passed all QC filters, which

filters include call rate ,99%, minor allele frequency ,1%, and

Hardy-Weinberg equilibrium p-value,1027. After excluding

DNA samples that failed quality-control screening, a genotyped

GWAS sample of 8,405 participants was identified.

Population stratification occurs when one’s sample of partici-

pants represents heterogeneous populations across which allele

frequencies differ appreciably, and can produce spurious genetic

association (or suppress genuine association). We therefore

restricted our analyses only to participants who are Caucasian,

of European ancestry (‘‘White’’), based upon both self-reported

ancestry as well as principal components from EIGENSTRAT

[41]. These principal components were extracted from an n6n
covariance matrix of individuals’ genotypes across SNPs (similar to

matrix A described above). A White GWAS sample of 7,702

participants was identified. The sample for the present study is the

7,100 out of 7,702 White participants with available phenotype

data. Details concerning genotyping, quality-control, and ancestry

determination can be found in Ref [37].

Imputation. Many known SNPs exist that are not on our

Illumina array. But, by combining observed SNP genotypes with

what is known–a priori, from reference data–about haplotype

frequencies in the population, the allelic state of common untyped

SNPs can often be imputed with a high degree of accuracy. For

SNP imputation, using HapMap2 [42] as the reference panel, we

first phased our observed genotypes into expected haplotypes with

BEAGLE [43], which takes information from genotyped relatives

into account to improve phasing. We then input phased data into

Minimac, a version ofMaCH [44], to impute SNP states for a total

of 2,094,911 SNPs not on the Illumina array. In our GWAS, we

used the allelic dosages of these SNPs, which are individuals’

posterior expected reference-allele counts on each SNP so

imputed. The quality of the imputation for an untyped SNP

may be assessed by its imputation R2 [44], which is the ratio of the

variance of its imputed dosages to its population variance (from

reference data). Our GWAS only included dosages of imputed

SNPs with imputation R2 .0.5, of which there were 2,018,818.

Between these imputed SNPs and the 527,829 from the array, we

analyzed a total of 2,546,647 SNPs in our GWAS.

Phenotypic measurement. Measurement of GCA was

included in the design of the intake assessment for most

participants, by way of an abbreviated form of the Wechsler

Intelligence Scale for Children-Revised (WISC-R) or Wechsler

Adult Intelligence Scale-Revised (WAIS-R), as age-appropriate

(that is, 16 or younger, and older than 16, respectively). The short

forms consisted of two Performance subtests (Block Design and

Picture Arrangement) and two Verbal subtests (Information and

Vocabulary), the scaled scores on which were prorated to

determine Full-Scale IQ (FSIQ). FSIQ estimates from this short

form have been shown to correlate 0.94 with FSIQ from the

complete test [45]. Parents in the SIBS sample were an exception,

in that they were not tested with this short form of WAIS-R until

the first SIBS follow-up assessment. By design, only one parent per

SIBS family returned for this follow-up, which was usually the

mother. As a result, IQ data for SIBS fathers is very limited in its

availability.

IQ-testing was also included in the design of the second follow-

up for both age cohorts of MTFS twins, and for the fourth follow-

up for the 11-year-old cohort. At these assessments, twins received

a further abbreviated form of WAIS-R, consisting only of the

Vocabulary and Block Design subtests, the scaled scores on which

were again prorated to determine FSIQ. Of the 3,226 twins

entered into our analysis, 903 were tested twice, and 337 were

tested three times. Multiple testing occasions were spaced

approximately seven years apart. To achieve a more reliable

assessment of the phenotype, we simply averaged all available

measures of FSIQ for each participant, and used these single

within-person averages in analysis. FSIQ among participants

entered into analysis ranged from 59 to 151 (also see Table 1).

Twelve participants with FSIQ of 70 or below were included in

analyses. Despite their low scores, these participants were not

noticeably impaired and were capable of completing the

multifaceted MTFS/SIBS assessment during their visit. They are

therefore unlikely to meet diagnostic criteria for mental retarda-

tion [46], and instead, likely represent the low end of the normal-

range distribution of GCA. (Participants who are discovered to

have a physical or mental disability severe enough to prevent them

from completing the intake assessment are retroactively ruled

ineligible to participate. This has occurred for five MTFS twin

pairs and one SIBS adoptee, whose data were eliminated from the

studies’ databases.).

Analyses
Statistical power. Because our participants are clustered

within 2,376 families, our effective sample size is less than 7,100

participants. We conducted two sets of power calculations in

Table 1. Descriptive characteristics of Study #1 sample.

Parents Twins (17yo) Twins (11yo) Non-twin Biological Offspring Adoptees Step-parents

N 3,264 1,146 2,080 414 116 80

Female(%) 60.2% 55.3% 50.1% 52.2% 46.6% 8.8%

Mean Age at Intake (SD) 43.3 (5.46) 17.5 (0.45) 11.8 (0.43) 14.9 (1.89) 15.1 (2.17) 40.6 (7.45)

Mean FSIQ (SD) 105.8 (14.2) 100.4 (14.1) 103.6 (13.5) 108.5 (13.1) 105.7 (14.3) 103.4 (15.7)

Table notes: Total N=7100, in 2376 families. FSIQ = Full-Scale IQ; 17yo = 17-year-old cohort; 11yo = 11-year-old cohort. For a minority of twins (38%), FSIQ represents a
within-person average of FSIQ scores from more than one assessment (see text). FSIQ range: 151–59 = 92. Parental intake age range: 65–28 = 37. Offspring intake age
range: 20–10 = 10.
doi:10.1371/journal.pone.0112390.t001
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Quanto [47], one that assumed 7,000 independent participants (an

aggressive estimate of our effective sample size) and one that

assumed 2,000 independent participants (a conservative estimate

of our sample size). Both assume a Type I error rate of

a~5|10{8, i.e. genome-wide significance. With 7,000 indepen-

dent participants, our GWAS would have at least 80% power to

detect a SNP accounting for 0.6% of phenotypic variance. With

2,000 independent participants, our GWAS would have at least

80% power to detect a SNP accounting for 2% of phenotypic

variance

GWAS. Our GWAS consisted of a large number of least-

squares regressions of FSIQ onto the genotype (or imputed dosage)

of each SNP, along with covariates, which were sex, birth year,

and the first 10 principal components from EIGENSTRAT [41],

to control for any crypto-stratification (i.e., lurking population

stratification in a sample of apparently homogeneous ancestry)

within this White sample. (There are three reasons why we

covaried out birth year, rather than age-at-testing. First, IQ tests

are age-normed in the first place. Second, a minority of our twins

would in a sense have more than one age-at-testing, since their

FSIQ scores entered into analysis are actually within-person

averages from more than one testing occasion. Third, the nuisance

confound of chief concern is the Flynn Effect (first reported in Refs

[39] and [40])–the secular trend of increasing IQ scores with each

generation–which is directly related to birth year, and not to age

per se. Surprisingly, at a glance, our data are not consistent with

the Flynn Effect. In the covariates-only FGLS regression, the

estimated coefficient for birth year was 20.09 (Table S2),

indicating that later birth year corresponded on average to lower

IQ.) One notable example of this kind of stratification came from a

study [48] in which a SNP in the gene for lactase (LCT) was
significantly, but spuriously, associated with height among

European-Americans. Allele frequency for the SNP in question

is known to vary among regions of Europe, and no association was

observed when participants were matched on grandparental

country-of-origin. Instead, the SNP appeared to mark participants’

ancestral origins along a northwest-southeast axis running through

the continent of Europe.

Because our participants are clustered within families, they were

not sampled independently. To further complicate matters, the

within-family covariance structure will depend upon the kind of

family in question. We therefore employed a feasible generalized

least-squares (FGLS) method in our GWAS, via RFGLS, a

package for the R statistical computing environment designed for

FGLS regression in datasets with complicated family structures

[49]. (As is widely known (see Ref [49]), in multiple regression,

when the residuals are uncorrelated and have mean zero and

constant variance, the best linear unbiased estimate of the

regression parameters is obtained as b̂bOLS~ XTX
� �{1

XTy; if the

residuals are further normally distributed and stochastically

independent, b̂bOLS is also the maximum-likelihood estimator. If

the residuals are not uncorrelated, b̂bOLS will not be maximally

efficient, and the degrees-of-freedom for its test statistics will be

mis-specified. In practice, the (non-diagonal) residual covariance

matrix must be estimated from data. If V is a consistent such

estimator, then the feasible generalized least-squares estimator of

the regression coefficients is obtained as

b̂bFGLS~ XTV{1X
� �{1

XTV{1y).

RFGLS has a ‘‘rapid-FGLS’’ approximation, which we used to

run the GWAS and which works as follows. First, an FGLS

regression of the phenotype onto covariates only is run, in which

the regression coefficients and the residual covariance matrix are

both estimated. Then, that residual covariance matrix is saved to

disk, so it can then be ‘‘plugged in’’ for use in all subsequent single-

SNP regressions, with covariates. The approximation saves a

considerable amount of computation time, since the residual

covariance matrix is calculated only once. It produces negligible

bias in the resulting p-values, so long as no SNP accounts for more

than 1% of phenotypic variance [49] (which is a very reasonable

assumption).

GWAS Plus: VEGAS. We conducted gene-based association

tests in VEGAS, inputting 2,485,149 autosomal SNPs, both

observed and imputed, and specifying HapMap CEU as the

reference data for pairwise LD correlations. We also ran VEGAS
inputting only the 515,385 autosomal SNPs on the Illumina array.

GWAS Plus: polygenic scoring. We conducted polygenic

scoring with five-fold cross-validation. Since the family is the

independent unit of observation in our dataset, we first randomly

divided the sample into five subsamples of approximately equal

numbers of families, and with each family type approximately

equally represented in each. Then, we ran a GWAS with the

observed SNPs only, five times over, each time including four of

the five subsamples–the calibration sample for that iteration.

Then, the left-out subsample served as that iteration’s validation

sample.

Each iteration, we used PLINK [50] to produce polygenic

scores for the participants in the validation sample based on the

GWAS statistics from the calibration sample, at the same eight p-
value cutoffs used by Benyamin et al. [33]: p#0.001, p#0.005, p#
0.01, p#0.05, p#0.1, p#0.25, p#0.5, and p#1 (i.e., all SNPs). We

used two different weighting methods to calculate polygenic scores.

The first simply used the GWAS regression coefficients from the

calibration sample. The second weighted each SNP as either 21

or 1, depending on the sign of its coefficient. Thus, with eight p-
value cutoffs and two weighting schemes, we produced 16

polygenic-score vectors in each validation sample.

To evaluate the performance of the polygenic scores under

cross-validation in each iteration, we first ran a FGLS regression of

the phenotype onto covariates only in the validation sample, and

retained the residualized FSIQs. We then did another FGLS

regression of the residualized FSIQ onto polygenic score, from

which we calculated Buse’s R2 [51]. Buse’s R2 is the coefficient of

determination from OLS regression, except that each sum is

instead replaced by a quadratic or bilinear form in the vector of

terms, with a weight-matrix coefficient (for our purposes, this

weight matrix is the inverse of the residual covariance matrix

obtained from regressing the residualized phenotype onto the

score). (We also calculated Nagelkerke’s [52] generalized R2, and

the squared Pearson correlation between polygenic score and

residualized phenotype. Nagelkerke’s R2 was typically very close to

Buse’s. The squared Pearson correlation was generally close to the

other two, but tended to be higher, sometimes as much as twice as

high as Buse’s).

With parametric bootstrapping, we assessed the performance of

polygenic scoring under the null hypothesis of residualized FSIQ

being independent of the SNPs, as follows. First, new phenotype

scores were simulated by generating a new residual vector for each

family and adding it to the family’s vector of predicted scores from

the GWAS covariates-only regression. Each new residual vector

was drawn from a multivariate-normal distribution with zero

mean and covariance matrix as estimated for that family in the

covariates-only regression. Thus, in each newly simulated dataset,

the within-family covariance structure and the associations among

covariates and phenotype in the real data are expected to be

preserved, but the phenotype is generated independently of SNP

genotypes (conditional on covariates). However, the procedure
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does assume that multivariate normality is a reasonable distribu-

tion for the residuals.

The simulated sample was then randomly divided so that 80%

of families were assigned to the calibration subsample, and the

remaining 20% to the validation subsample. A GWAS was then

run in the calibration sample, the results of which were used to

conduct polygenic scoring in the validation sample, in the same

way as done in the real data. We repeated this process a total of

only 50 times, as it was somewhat computationally demanding.

GWAS Plus: GCTA. We first computed the genetic relation-

ship matrix A from all 7,702 White participants with genome-wide

SNP data (which includes those for whom FSIQ scores were not

available), using the 515,385 autosomal SNPs passing QC. We

then ran GCTA to estimate h2SNP, with FSIQ as the phenotype,

and with the same covariates as used in the GWAS, as fixed

effects. An exploratory analysis involving GCTA (described in

Material S1) showed that including close relatives in the analysis

can upwardly bias ĥh2SNP by confounding variance attributable to

genotyped SNPs with variance attributable to shared environment.

We therefore restricted the analysis only to participants whose

degrees of genetic relatedness (from A) were 0.025 or smaller. To

assess how well the distributional assumptions of the GREML

method were met, we computed empirical best linear unbiased

predictions (eBLUPs) of participants’ total genetic effects–g in

Equation (4)–and residuals, both of which are assumed to be

normally distributed.

Results

GWAS
Estimates of the fixed and random effects from the covariates-

only FGLS regression are presented in Table S2. P-values from
the GWAS are depicted in Figures 1, 2, S1, and S2. Figure 1 is a

‘‘Manhattan plot’’ of the GWAS p-values from the 2,546,647

observed and imputed SNPs. The y-axis of a Manhattan plot is –

log10(p). The x-axis is divided into chromosomes, and within each

chromosome, SNPs are ordered by base-pair position. Chromo-

somes above #22 refer to different parts of the sex chromosomes

and to mitochondrial DNA (see figure captions). No SNPs reached

genome-wide significance, which in this metric would be –log10(p)
.7.30. The association signal exceeding 6 on chromosome 1 is

due to 11 SNPs (9 imputed) spanning about 14 kb, not within a

known gene. The signal exceeding 6 on chromosome 16 is due to a

single imputed SNP in the FA2H gene, rs16947526, of borderline

imputation quality (R2 = 0.52). On chromosome 21, the signal

exceeding 6 is due to a single imputed SNP in the ERG gene,

rs9982370. When only the observed SNPs are plotted (Figure S1),

the only elevation above 6 occurs on chromosome 1.

Under the null hypothesis, p-values are uniformly distributed on

interval (0, 1). Figures 2 and S2 are uniform quantile-quantile

(QQ) plots of the GWAS p-values from, respectively, the

2,546,647 observed and imputed SNPs, and the 527,829 observed

SNPs only. Under the null hypothesis, p-values from independent

statistical tests are expected to follow the diagonal red line. Both

QQ plots show some divergence from the null distribution, where

the observed p-values tend to be more extreme than expected. To

quantify this deviation, we can convert the p-values to quantiles

from a chi-square distribution on 1 df, and compare their median

and mean to the null values of 0.455 and 1, respectively. The ratio

of the observed to the expected median is known as the genomic

inflation factor, l [53]. When this is done with observed and

imputed SNPs together, median= 0.475 (l=1.044) and

mean= 1.037; when done with observed SNPs only, the medi-

an = 0.471 (l=1.035) and mean= 1.031. This departure from the

null may indicate massively polygenic inheritance of FSIQ,

wherein few if any SNPs yield genome-wide significant association

signals, but the overall distribution of test statistics reflects the

presence of a large number of nonzero effects [54].

There are clearly some p-values that lie outside the confidence

limits in Figures 2 and S2. However, because of LD among SNPs,

the assumption of independent statistical tests is violated to begin

with, and so one extreme result usually carries others with it. It

stands to reason that this effect of LD would be more pronounced

when imputed SNPs are included, since imputation methods rely

on the LD (correlation) structure among SNPs to achieve denser

coverage of the genome.

Our statistical inference from FGLS regression assumes that

families’ vectors of residuals follow a multivariate-normal distri-

bution in the population. If this assumption is met, then family

members’ residuals will be marginally distributed as univariate

normal, and the squared Mahalanobis distance from the origin of

families’ residual vectors will be distributed as chi-square. Figures

S3 and S4 present QQ plots that respectively check the observed

distributions of individual residuals and family Mahalanobis

distances against their theoretical distributions. The plots do not

show severe departures from the theoretical distributions (though

logically, these checks can only disconfirm, and not confirm,

multivariate normality). The departure from normality evident in

Figure S3 likely reflects that the far lower tail of the population IQ

distribution is poorly represented in our sample.

VEGAS
The resulting gene-based p-values from VEGAS (inputting

2,485,149 autosomal SNPs, both observed and imputed) are

depicted in Figure 3, a Manhattan plot, and Figure 4, a QQ plot.

Figure 4 suggests that VEGAS has a somewhat conservative bias

in these data. No gene in Figure 3 reaches the genome-wide

significance level recommended for VEGAS, which in this metric

would be –log10(p) .5.55. As shown in Figures S5 and S6 (results

when inputting only 515,385 genotyped autosomal SNPs), our

conclusions would be substantially unchanged if we had restricted

our analyses to observed SNPs only. Our data do not support

association of FNBP1L with GCA (p=0.727).

Polygenic scoring
Figure 5 depicts cross-validation performance (Buse’s R2) of

polygenic score, averaged across subsample, and plotted in black

by p-value cutoff and weighting scheme (in Figure S7, the R2s from

each subsample are plotted as separate trendlines). The red lines in

Figure 5 depict the 98th percentiles of Buse’s R2, among the 50

iterations of parametric bootstrapping under the null, for each

combination of p-value cutoff and weighting scheme. One notable

result here is that the polygenic score, when calculated from signed

unit-weighted SNPs, performed about as well as when it was

calculated from the actual single-SNP GWAS regression weights.

Another result evident in Figure 5 is the trend in cross-validation

performance across p-value cutoffs: the predictive accuracy is

maximized when using all genotyped SNPs (with best R2 around

0.55%). This conclusion is further supported by comparing the

black and red lines, which indicates that the ‘‘signal’’ in the real

data was only reliably distinguishable from simulated ‘‘noise’’ at

lenient p-value cutoffs.

GCTA
At Yang et al.’s [29] suggested genetic-relatedness ceiling of

0.025 in our dataset, N=3,322 of our participants were included

in analysis, yielding ĥh2SNP =0.35 (SE=0.11). Figure S8 presents
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Figure 1. Manhattan plot of GWAS p-values, all 2,546,647 observed and imputed SNPs. Chromosome 23=X chromosome, chromosome
25=pseudoautosomal region of sex chromosome. Chromosome 26 indicates mitochondrial DNA. SNPs are plotted by serial position on each
chromosome. Genome-wide significance is –log10(p) .7.30, which no SNP reaches. The peak on chromosome 1 is due to 11 SNPs (rs10922924,
rs3856228, plus 9 others imputed nearby) that span about 14 kb not within a known gene. The peaks on chromosomes 16 and 21 are each due to a
single imputed SNP, respectively rs16947526 and rs9982370.
doi:10.1371/journal.pone.0112390.g001

Figure 2. Uniform quantile-quantile plot of GWAS p-values, all 2,546,647 observed and imputed SNPs. The black curves delineate 95%
confidence limits.
doi:10.1371/journal.pone.0112390.g002
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normal QQ plots of individuals’ total genetic-effect eBLUPs and

residuals. These plots resemble those of the FGLS residuals (Figure

S3). However, the QQ plot of the eBLUPs may not be very

informative about the true distribution of the random effects, since

the eBLUPs were computed from a model that assumes normality

in the first place, and the observed distribution of BLUPs can

greatly depend upon the random effects’ assumed theoretical

distribution (e.g., Ref [55]).

Discussion

The present study is a ‘‘GWAS Plus’’ for general cognitive

ability, conducted in a sample of over 7,000 Caucasian partici-

Figure 3. Manhattan plot for gene-based p-values from VEGAS. Analysis input was GWAS p-values from 2,485,149 autosomal SNPs, both
observed and imputed. Abscissa position of each point is the gene’s beginning base-pair position, NCBI genome build 36. Genome-wide significance
is –log10(p) .5.55, which no gene reaches.
doi:10.1371/journal.pone.0112390.g003

Figure 4. Uniform quantile-quantile plot for gene-based p-values from VEGAS. Analysis input was GWAS p-values from 2,485,149 autosomal
SNPs, both observed and imputed. Black curves delineate 95% confidence limits.
doi:10.1371/journal.pone.0112390.g004
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pants from two longitudinal family studies. We conducted the

GWAS per se using 2,546,647 SNPs: 527,829 from the Illumina

660W–Quad array, plus 2,018,818 imputed with reasonable

reliability (imputation R2 .0.5). The ‘‘Plus’’ in ‘‘GWAS Plus’’

refers to our additional analyses that involve predicting the

phenotype from more than one SNP at a time. These analyses

were (1) gene-based association tests in VEGAS, (2) polygenic

scoring with five-fold cross-validation, and (3) a genomic-

relatedness restricted maximum-likelihood analysis in GCTA.
Our least interesting results were from VEGAS (Figures 3 and

4). What VEGAS essentially does is test whether all SNP p-values
in a gene significantly differ in distribution from the null. No gene

achieved genome-wide significance (p,2.861026 or –log10(p) .
5.55), and the method appears to be slightly conservatively biased

in our dataset, possibly because of differences between our actual

LD structure and that of VEGAS’ reference dataset, HapMap

CEU. Running VEGAS with LD estimated from data is possible,

but it seems doubtful that the LD misspecification could be so

severe as to suppress a robustly significant association signal.

Certainly the most a priori plausible gene, FNBP1L, is not

supported in our sample (p=0.727).

Polygenic scoring is another way of combining the predictive

power of multiple SNPs. At best, the polygenic score could predict

0.7% of variance in our analyses (Figure S7), which occurred when

calculating the score from all genotyped SNPs. Presumably, better

results could be obtained at stricter p-value cutoffs when the

calibration sample is larger. Interestingly, our cross-validation

analysis showed that signed unit SNP weights performed about as

well as GWAS regression weights. This suggests that, at least when

the calibration sample is relatively small, there is negligible loss in

predictive accuracy when fixing all SNP effects to the same

absolute magnitude, and using GWAS merely to determine the

direction of each SNP’s effect. We attempted the unit-weighting to

strike a different balance between bias and variance. The GWAS

regression weights, while unbiased, are estimated with consider-

able sampling error. On the other hand, unit weights are

presumably biased, but possibly less variable over repeated

sampling. In fact, unit weights can rival optimal least-squares

weights in terms of predictive accuracy, especially when the overall

amount of predictive error is large [56].

We are somewhat surprised at the relative performance of the

polygenic score at inclusive vis-à-vis exclusive p-value cutoffs. We

expected that the peak would occur at a relatively stringent cutoff,

and that most SNPs with p greater than 0.25 or so would be

irrelevant noise. Peak R2 occurred at stricter cutoffs for the three

replication cohorts of Benyamin et al. [33], including the one from

MCTFR (at p#0.01), which is a subsample of the present study

sample. Likewise, in Lango Allen et al.’s [25] report on height, the

average R2 across five validation samples was highest at p#0.001.

However, both Benyamin et al. and Lango Allen et al. had the

advantage of larger calibration samples than we did here. With

larger calibration samples, estimates of SNP weights have less

sampling error, and a given non-null effect size corresponds to a

smaller expected p-value in the calibration sample. Evidently, our

most significant SNPs had limited predictive power, but a heap of

non-significant SNPs can better contribute to prediction in the

aggregate. Polygenic scores calculated from all 527,829 genotyped

SNPs at best account for about 0.7% of phenotypic variance, a

value that contrasts sharply with parameter estimates from GCTA,
even though both represent the proportion of variance attributable

to every SNP on the array.

No single SNP has yet been replicably associated with human

intelligence at genome-wide significance levels, and our GWAS

results do not change that fact. This is not surprising, though, in

light of our GWAS’ limited power. Given a conservative estimate

of our effective sample size, we would have slightly above 80%

power to detect a SNP accounting for 2% of phenotypic variance,

which constitutes rather poor power. Even given an aggressive

estimate of effective sample size, we would have slightly above

80% power to detect a SNP accounting for 0.6% of variance. But

Figure 5. Five-fold cross-validation R2 of polygenic score (averaged across subsamples, in black) for predicting FSIQ residualized
for covariates, compared to results from simulated null data (98th percentiles, in red). Black lines represent cross-validation Buse’s R2 [51]
for predicting residualized FSIQ, averaged across the 5 subsamples. In each subsample, residualized FSIQ was predicted from polygenic score
calculated from regression weights obtained in the other 4 subsamples. ‘‘P-value cutoff’’ dictated how small a SNP’s p-value had to be in the
calibration GWAS to be included in calculating polygenic score for the validation sample. Red lines represent the results of 50 iterations of parametric
bootstrapping, which conducted polygenic scoring under cross-validation using data simulated under the null of independence between phenotype
and SNP genotypes (conditional on covariates). Each point plotted for the red lines is the 98th percentile, among the 50 iterations of parametric
bootstrapping, of R2 at that p-value cutoff. Polygenic score was either calculated directly from the GWAS weights (solid lines) or from signed unit
weights (dashed lines; see text).
doi:10.1371/journal.pone.0112390.g005
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if realistic effect sizes are even smaller, like on the order of 0.2% to

0.4%[18,19], this would still be inadequate. Needless to say, the

major limitation of the present study was its limited sample size

and commensurately limited power.

Even though we lacked sufficient power to detect a realistic SNP

effect at genome-wide significance levels, the overall distribution of

our test statistics and p-values differs slightly but appreciably from

the null. This kind of genomic inflation can reflect population

stratification(e.g., Ref [57]), but as shown analytically, through

simulation, and through analysis of data from the GIANT

Consortium [54], such genomic inflation is expected when there

is no lurking population structure and the number of causal SNPs

is large. Population stratification is doubtful in our case, because

we carefully ensured that all our participants are White, and

included 10 principal components from EIGENSTRAT as

covariates. Even so, we cannot rule it out completely, so we

cautiously interpret our observed genomic inflation as evidence of

the massive polygenicity of GCA.

We regard our GCTA results as the most impressive and

informative. The performance of our polygenic score at inclusive

p-value cutoffs, plus the genomic inflation evident in our GWAS,

suggest that there is a very large number of trait-relevant

polymorphisms, each with a very small individual effect on FSIQ.

Our results from GCTA–which were similar to those of earlier

studies [32,33]–provide even stronger evidence that this is so. We

surmise that few behavior geneticists, once they understood the

GREML method, were surprised that a substantial proportion of

variance in cognitive ability and in height [58] could be attributed

to genotyped SNPs on a chip. But, that is precisely why GCTA is

so monumental: it has furnished molecular genetics with the result

that quantitative genetics has predicted for decades, in support of

the classical theory of polygenic inheritance. We see now how truly

R. A. Fisher wrote when he penned these words in 1918 [59]: ‘‘the

statistical properties of any feature determined by a large number
of Mendelian factors have been successfully elucidated…In

general, the hypothesis of cumulative Mendelian factors seems to

fit the facts very accurately’’ (p. 432–433, emphasis supplied).

Readers may wonder at the discrepancy between the propor-

tions of variance explainable by polygenic scoring from all

genotyped SNPs and by GCTA, even though both methods

attempt to use SNPs to account for phenotypic variance. The

discrepancy is explainable by important differences between the

two methods [31]. The essential reason is that the performance of

polygenic scoring depends upon accurate calibration of many SNP

weights, whereas the performance of GREML methods does not.

The multiple SNP weights used to compute the polygenic score

are estimated with sampling error, which error is expected to

decrease its validation R2. In contrast, GREML does not predict

the phenotype from a linear composite of weighted genotypes.

Instead, it estimates the extent to which genetic similarity among

participants corresponds to their phenotypic similarity, based on

the same principle as biometric analysis in, say, a twin study. It

differs from biometric modeling in that it uses genome-wide

marker data to calculate genetic similarity between participants

who are not closely related, instead of relying on the expected

genetic similarity between biological relatives according to

quantitative-genetic theory. Visscher et al. [31] discuss the contrast

between polygenic scoring and the GREML method, commenting

that ‘‘the accuracy of prediction from estimated SNP effects can be

very different from the proportion of variance explained in the

population by those effects’’ (p. 524).

GCTA provided us with an h2SNP estimate of 35%, within the

range of GREML effect sizes previously observed for cognitive

ability [32,33]. But, biometrical heritability estimates for GCA are

typically in the range of 50% to 70%. This outcome, that through

GREML methods common SNPs on a genome-wide array can

account for most but not all of the heritability of a trait, also

appears typical for cognitive ability, and for that archetypal

polygenic quantitative trait, height [58]. This is known as the

problem of ‘‘hidden heritability’’[60]. Of course, biometrical

analysis and GREML each estimate different quantities: ĥh2SNP is

only a lower-bound estimate of a phenotype’s additive heritability.

What, then, might be the molecular basis for the heritability that is

not captured by GREML estimates? Since h2SNP represents the

proportion of phenotypic variance attributable to common SNPs

on the array (and variants in tight LD with them), it stands to

reason that the hidden heritability might be due to polymorphisms

that are not common, or are not SNPs (such as copy-number

variants), or are not tagged in the population by common SNPs. In

any event, if specific polymorphisms underlying variation in GCA

are to be discovered, gargantuan sample sizes, such as in the

GIANT Consortium [25], will be necessary. But in the meantime,

we can conclude that there are a great many unspecified

polymorphisms associated with GCA, each with a very small

effect–general cognitive ability is indeed ‘‘heritable [and] highly

polygenic’’ (Ref [35], p. 1). The trait-relevant SNPs are each

Lilliputian in effect size, but together, are legion in number.

Supporting Information

Figure S1 Manhattan plot of GWAS p-values from 527,829

observed SNPs only. Chromosome 23=X chromosome, chromo-

some 25= pseudoautosomal region of sex chromosome. Chromo-

some 26 indicates mitochondrial DNA. SNPs are plotted by serial

position on each chromosome. Genome-wide significance is -

log10(p) .7.30, which no SNP reaches.

(TIF)

Figure S2 Uniform quantile-quantile plot for GWAS p-values
from 527,829 observed SNPs only. The black curves delineate

95% confidence limits.

(TIF)

Figure S3 Normal quantile-quantile plots of FGLS residuals,

graphed separately by family member. Plotted residuals were

obtained from the covariates-only regression. The number of

points in each plot is provided in the y-axis label. If families’

residual vectors are multivariate-normal in the population, then

family members’ residuals are expected to be marginally

univariate-normal. It can be seen that univariate normality

provides a reasonably good approximation, except for some

divergence in the lower tail.

(TIF)

Figure S4 Chi-square quantile-quantile plots of squared Maha-

lanobis distances (from the origin) of families’ FGLS residual

vectors, graphed separately by family size.

(PDF)

Figure S5 Manhattan plot for gene-based p-values from

VEGAS, inputting observed SNPs only. Analysis input was GWAS

p-values from 515,385 autosomal SNPs on the Illumina array.

Abscissa position of each point is the gene’s beginning base-pair

position, NCBI genome build 36. Genome-wide significance is –

log10(p) .5.55, which no gene reaches.

(TIF)

Figure S6 Uniform quantile-quantile plot for gene-based p-
values from VEGAS, inputting observed SNPs only. Analysis input

was GWAS p-values from 515,385 autosomal SNPs on the

Illumina array. Black curves delineate 95% confidence limits.
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(TIF)

Figure S7 Five-fold cross-validation of polygenic score, predict-

ing FSIQ residuallized for covariates. Figure depicts cross-

validation Buse’s R2 for predicting residuallized FSIQ in the

indicated subsample from polygenic score calculated from

regression weights obtained in the other 4 subsamples. ‘‘P-value
cutoff’’ dictated how small a SNP’s p-value had to be in the

calibration GWAS to be included in calculating polygenic score

for the validation sample. Polygenic score was either calculated

directly from the GWAS weights (solid lines) or from signed unit

weights (dashed lines; see text).

(TIF)

Figure S8 Normal quantile-quantile plots of predicted GCTA
random effects. The left-hand panel depicts empirical best linear

unbiased predictions (eBLUPs) of 3,322 participants’ total genetic

effects, i.e. g in main-text Equation (4), conditional on the fixed

effects. The right-hand panel depicts those participants’ residuals,

given the fixed effects and the eBLUPs of g. As explained in the

text, quantile-quantile plots of eBLUPs should be interpreted

cautiously.

(TIF)

Table S1 Family patterns of GWAS data availability.

(DOCX)

Table S2 RFGLS parameter estimates for regression of FSIQ

onto covariates only.

(DOCX)

Material S1 Supplementary Appendix: ĥh2SNP as function of

genetic-relatedness cutoff. Includes Figures A1, A2, and A3

(PDF)
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