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Abstract

Non-invasive Brain-Machine Interfaces (BMIs) are being used more and more these days to design systems focused on
helping people with motor disabilities. Spontaneous BMIs translate user’s brain signals into commands to control devices.
On these systems, by and large, 2 different mental tasks can be detected with enough accuracy. However, a large training
time is required and the system needs to be adjusted on each session. This paper presents a supplementary system that
employs BMI sensors, allowing the use of 2 systems (the BMI system and the supplementary system) with the same data
acquisition device. This supplementary system is designed to control a robotic arm in two dimensions using
electromyographical (EMG) signals extracted from the electroencephalographical (EEG) recordings. These signals are
voluntarily produced by users clenching their jaws. EEG signals (with EMG contributions) were registered and analyzed to
obtain the electrodes and the range of frequencies which provide the best classification results for 5 different clenching
tasks. A training stage, based on the 2-dimensional control of a cursor, was designed and used by the volunteers to get used
to this control. Afterwards, the control was extrapolated to a robotic arm in a 2-dimensional workspace. Although the
training performed by volunteers requires 70 minutes, the final results suggest that in a shorter period of time (45 min),
users should be able to control the robotic arm in 2 dimensions with their jaws. The designed system is compared with a
similar 2-dimensional system based on spontaneous BMIs, and our system shows faster and more accurate performance.
This is due to the nature of the control signals. Brain potentials are much more difficult to control than the
electromyographical signals produced by jaw clenches. Additionally, the presented system also shows an improvement in
the results compared with an electrooculographic system in a similar environment.

Citation: Costa Á, Hortal E, Iáñez E, Azorı́n JM (2014) A Supplementary System for a Brain-Machine Interface Based on Jaw Artifacts for the Bidimensional Control
of a Robotic Arm. PLoS ONE 9(11): e112352. doi:10.1371/journal.pone.0112352

Editor: Mikhail A. Lebedev, Duke University, United States of America

Received June 19, 2014; Accepted October 5, 2014; Published November 12, 2014

Copyright: � 2014 Costa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: This research has been funded by the Commission of the European Union under the BioMot project - Smart Wearable Robots with Bioinspired Sensory-
Motor Skills (Grant Agreement number IFP7-ICT- 2013-10-611695). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: acosta@umh.es

Introduction

In our society there is an increasing concern about helping and

assisting people who suffer from motor disabilities. Emerging from

this concern, each day, different areas of research are focusing

their efforts on developing Human-Machine systems to help

people suffering from these conditions [1,2]. Brain-Machine

Interfaces (BMIs) are a clear example of these systems. Depending

on the nature of the neural phenomenons analyzed, these systems

can be classified as evoked or spontaneous. On the one hand,

spontaneous BMIs study those brainwaves that can be voluntarily

controlled by a subject. To achieve this control it is usually

necessary to have a training period during which the users learn

how to control their brain potentials. On the other hand, evoked

BMIs rely on the analysis of brain potentials that cannot be

controlled by the users. These potentials appear in response to a

external stimulus like flashlights or sounds among others [3,4].

Spontaneous systems are usually focused on generating commands

to control a device taking advantage of the users capability to

control their EEG signals [5–7]. Regarding evoked systems, there

are studies focused on generating control commands [8,9] and also

on the evaluation of the brain response to different external

stimulus with diagnosis purposes [10–12]. Besides, BMIs (both

spontaneous and evoked) are used on other topics in the field of

human health, such as the measurement of the mental state of a

patient (workload, attention level, emotional state,...) [13] or as

support systems on rehabilitation processes [14].

BMI systems can also be divided into two big groups depending

on the invasion level needed to register signals. Invasive BMI

systems register signals directly from the brain using electrodes

implanted inside the cortex [15,16]. This method provides an

excellent signal to noise ratio because the electrodes used are

placed much closer to the source of the electrical signals. However,

their use is limited due to the risk and ethical questions associated

to the surgery needed to implant the electrodes under the scalp.

On the other hand, for non-invasive BMIs, surgery is not needed.

Instead, a set of electrodes is placed over the scalp in order to

register the EEG signals. Nowadays, there are many studies
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focused on helping people with motor diseases based on non-

invasive BMI systems, like [17–19]. The main disadvantage of

non-invasive BMI systems is the quality of the registered signals.

Due to volume conduction which is defined as the property,

associated to biological tissues, of transmiting electric and

magnetic fields from an electric primary source current, the scalp

filters electric signals from the brain and there is mixing of signals

from different sources. This makes difficult to isolate the signals

produced in a single brain area. Due to the localization of those

electrodes, EEG signals are also contaminated by several noise

sources produced by other physiological factors like blood

pressure, skin tension, muscular and ocular movements, etc. All

of these unwanted signals are considered artifacts when the goal of

the study is to evaluate how EEG signals behave. For that reason,

on non-invasive systems, the signal to noise ratio is a critical factor

and detecting and filtering artifacts is a fundamental part of the

data analysis [20–22].

Some signals (usually considered artifacts on BMI systems) can

be controlled by users, like those produced by voluntary

movements of the eyes (electrooculographic (EOG)) and muscles

(electromyographic (EMG)). In this work, the use of EMG signals

generated voluntarily by subjects is proposed in order to

implement a supplementary system for a BMI. The architecture

that appears in Figure 1 shows how this system and the BMI

system will coexist. The main advantage of this architecture is that

they share the same set of EEG electrodes, instead of including

EMG electrodes or other sensors.

The supplementary system proposed uses EMG signals

(extracted from the EEG signals of the BMI), which are generated

by the users clenching their jaws, in order to control the 2-

dimensional movement of a robotic arm. These clench signals

affect a wide range of frequencies (1–128 Hz) according to [23].

For that reason is not possible to use this system simultaneously

with a BMI system. However, it is possible to freely alternate

between both systems (non-simultaneous control). The proposed

system, controlled voluntarily by the user as in a spontaneous

BMI, has a decreased training time, improved classifier stability

and accuracy, and an increased number of the detected tasks.

Since this system allows users a better control of a device, it could

be used as a complement for a BMI focused on solving other

problems also related with the improvement of the quality of life of

people with disabilities. For example, internet browsers based on

evoked potentials [24] can be complemented with the supplemen-

tary system described on this article. Thus the evoked BMI could

be used to write text in the browser, while our system could be

used to control the cursor.

Materials and Methods

Data Acquisition
EEG signals are acquired using an amplifier (g.USBamp, g.Tec,

GmbH, Austria) with active electrodes to increase their signal/

noise ratio by introducing a pre-amplification stage (g.GAMMA-

box, g.Tec, GmbH, Austria). The acquisition of EEG signals is

done using 10 electrodes placed over the scalp with the following

distribution: FC5, FC1, FC2, FC6, C3, C4, CP5, CP1, CP2 and

CP6 (see Figure 2) according to the International 10/10 System,

with a monoauricular reference in the right earlobe and ground in

AFz. Information is digitalized at 1200 Hz. A bandpass filter from

0.1 to 100 Hz has been applied. Also, a 50 Hz Notch filter to

remove the power line interference is used. Finally, all the data are

sent to a computer system where the processing and classification

algorithms are applied. Figure 3 shows an image of the equipment

used for the EEG recordings. Electrodes C3 and C4 are the main

goal of our analysis. Their readings show the best classification

results compared to the other electrodes analyzed. These

electrodes are also associated with the sensorimotor areas where

right and left motor imagery tasks are detected. The other

electrodes shown in Figure 2 (FC5, FC1, FC2, FC6, CP5, CP1,

CP2, CP6) are used in the processing stage to remove their power

contribution from electrodes C3 and C4.

Data analysis
The signals are processed in real time as in [25]. To do that, the

time between data windows must be small enough for the

algorithm to provide feedback to the user in real time. Also, the

Figure 1. Block interconnection diagram. EEG data from the scalp
is acquired, processed and classified in real time. The classification
results are used as control commands for 2 different systems. The
Supplementary System block is the main goal of the present work. It
should be activated and controlled with EMG signals registered from a
BMI set of electrodes. If no EMG signals are detected in the EEG data,
the BMI system is used. When the user wants to use the Supplementary
System, he/she has to generate an EMG signal.
doi:10.1371/journal.pone.0112352.g001

Figure 2. Electrode distribution. FC5, FC1, FC2, FC6, C3, C4, CP5,
CP1, CP2 and CP6 (darker circles) according to the International 10/10
System.
doi:10.1371/journal.pone.0112352.g002
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window length should not be too long to avoid delays in the

feedback. Every 50 ms a data window of 400 ms is stored,

resulting in a 350 ms overlap between the windows. This overlap

increases the stability of the classification results by using the

information of previous data windows. Then, a four nearest

neighbor Laplacian algorithm [26] is applied to the temporal data

from electrodes C3 and C4. This algorithm uses the information

received from the four nearest electrodes of C3 and C4 and their

distances from them in order to reduce the unwanted signal

contribution that these electrodes have on C3 and C4. The result

is a smoother time signal where the main contribution comes from

the electrode of interest. The Laplacian is computed according to

the formula,

VLAP
i ~VCR

i {
X

jESi

gijV
CR
j ð1Þ

where VLAP
i is the result of applying this algorithm to the electrode

i, VCR
i is the electrode i signal before the transformation and,

gij~

1

dij

X
jESi

1

dij

ð2Þ

where Si is the set of electrodes that surround electrode i and dij is

the distance between i and j electrodes.

Then, the power spectral density of the Laplacian waveforms is

computed through the maximum entropy method (MEM) [27].

To differentiate between left and right clenches a frequency

analysis is made. For each frequency from 1 to 100 hz, the power

spectral density (PSD) of electrodes C3 and C4 is calculated. The

difference between these 2 values (C4-C3) is computed when the

user clenches the left side of the jaw (C4-C3)L and when the

clench is produced on the right side (C4-C3)R. After that, the

difference (C4-C3)L - (C4-C3)R is calculated and represented on

Figure 4. This initial analysis shows that most differences in the

signal power for left and right clenches were present between 57

and 77 Hz and for algorithm only the integral of power spectrum

between 57 and 77 Hz was calculated.

Classification
We have developed a classifier based on the application of

different thresholds. First of all, each incoming feature is stored in

the first position of a 10 position vector (at first filled with zeros)

and the rest of the vector is shifted so the oldest value is lost. Every

50 ms, when a new data window (400 ms length with 350 ms

overlap with the previous window) arrives, the average of this

vector is compared with four thresholds in order to classify the

signals. Five tasks have been established according to the power

levels received from this average. Each task is associated with a jaw

area and the level of clench pressure, and they are defined as

follows:

- HardR: Hard right clench

- SoftR: Soft right clench

- Relax: Not clenching

- SoftL: Soft left clench

- HardL: Hard left clench

These tasks are classified through the comparison of 4

thresholds defined as HRthr, SRthr, SLthr and HLthr. Horizontal

lines on Figure 5 show a representation of these thresholds, and

the areas represent the 5 possible tasks. In Figure 6, PSD levels of

tasks SoftR, Relax and SoftL are shown. The central graph shows

two vectors of the classifier input from a subject who is not

clenching the jaw (Relax). The right and left graphs display the

waveforms caused by clenching right and left jaw areas

respectively (SoftR and SoftL). This analysis shows that PSD

levels from electrode C3 are higher than PSD levels from C4 when

the clenching occurs on the left side of the jaw. In a similar way,

C4 levels become dominant when clenching is produced on the

right side. On the relax task, the PSD from C3 and C4 are similar

so the absolute value of the factor C4-C3 is considerably lower.

The absolute value of C4-C3 becomes higher when the clench

pressure is higher. If the subjects clench the jaw in such a way that

the thresholds HRthr or HLthr are exceeded, tasks HardR and

Figure 3. Equipment. Amplifier and GammaCap from g.Tec are used to register EEG Signals. Data are processed and classified in the computer,
which is also used to provide visual feedback to the user.
doi:10.1371/journal.pone.0112352.g003
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HardL (depending on the jaw side) are detected. If the subjects

clench the jaw in such a way that the thresholds SRthr or SLthr

are exceeded without reaching HRthr or HLthr, tasks SoftR or

SoftL are detected depending, again, on the jaw area where the

clench is produced. Finally, if the subject is not clenching his/her

jaw, no threshold is exceeded and the relax task is detected.

User Training
In order to learn how to control the 2-dimensional movement of

a cursor on a screen, two graphical interfaces and a three steps

training program have been defined. Training steps 1 and 2 use

the first graphical interface, while training step 3 uses the second

one. Real time data are processed during all three steps and the

interfaces provide visual feedback to the users. This way, the users

know how the training is progressing in order to improve their

results by adapting the way they clench the jaw. In next section,

both graphical interfaces are described. The model used through

the training is further described on the section Training Steps.

Graphical Interfaces. Two graphical interfaces are de-

signed. Both of them show a red cursor with a diameter of 25

pixels (about 1.2 cm with a screen size of 38.5633 cm). The 2-

dimensional movement of this cursor is controlled by the user.

Depending on the interface, training step and task, the feedback

will be different. This is properly explained on each training step

on the section Training Steps.

First Interface. This interface is shown on Figure 7. A white

cross is shown for 3 seconds on the screen. During this time, the

user rests. Afterwards, an image is shown for 2 seconds to indicate

the required task to the user. During these seconds, the user is

asked to start performing the task. Finally, a red cursor appears on

the screen for 10 seconds. This cursor provides feedback of the task

detected by making different movements (in this case only left and

right movement are used as feedback, which are further explained

in the Training Step section). The control of the cursor depends on

the training step. Over one run, this sequence is repeated 15 times

making each run 4 minutes long. This interface is used to register

data of concrete tasks and create a model adapted to each user.

Second Interface. Figure 8 shows how the second interface

works. First, a white cursor appears on the screen for 3 seconds.

After that, a target appears randomly on the screen and both the

target and the white cursor remain on the screen for 2 more

seconds. Finally, the cursor starts moving depending on the users

commands generated by jaw clenches. The main goal of this

interface is to simulate the bidimensional movement of the cursor

controlled by the user. To do that, the model defined during the

training is used. If the user reaches the target, the cursor becomes

white and blinks several times as a reward.

Training Steps. During these three steps, the user is going to

gradually learn how to control the two dimensional cursor

movement by clenching the jaw. Each step uses one of the

graphical interfaces previously described. All data are processed in

real time. From the beginning of the training, the interfaces

provide visual feedback to the user by generating cursor

movements. In order to produce these movements, a model must

exist along the three steps. At first, a default model is defined.

During the training, this model is modified to be adapted to the

signals of each user.

Step 1: Getting used to the clench. The first step starts with

the default model (set of thresholds) [10000 100 -100 -10000]

(HRthr, SRthr, SLthr and HLthr, respectively from Figure 6). The

first graphical interface is used in order to provide visual feedback.

The user is asked randomly by the interface to clench softly the

Figure 4. Frequency analysis results. The blue line represent the average Power Spectral Density(PSD) difference between electrodes C3 and C4
for each frequency. The red line represents the minimum spectral level required for a frequency to be target of analysis. These results were obtained
from the user 2 (system developer) and compared with the other 3 volunteers to confirm that the optimum range of frequencies does not experience
huge changes between users.
doi:10.1371/journal.pone.0112352.g004
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right and left jaw areas (tasks SoftR and SoftL). The model is not

modified along this step. If the tasks are correctly classified, the red

cursor moves right if the clench is produced on the right side, and

left if it is produced on the left side. If the clench exceeds

thresholds HRthr or HLthr, tasks HardR and HardL are detected

and the cursor becomes blue and stops moving. If no threshold is

reached, task Relax is detected and the cursor remains red and

stopped. During this step, the user gets used to the kind of clench

which feels more comfortable with. It has been found that by using

this default threshold set, after one 4-minutes run, a user who has

never used the system before, is able to control right and left cursor

movements. The fact that this default model provides similar

results in different users means that the signals do not experience

big changes between users.

Step 2: Creating the model. The second step also starts with

the default threshold set [10000 100 -100 -10000]. The same

interface from step 1 is used but, this time, tasks SoftR, SoftL and

Relax are randomly asked. As in step 1, the user has to clench

right and left jaw areas softly when tasks SoftR and SoftL are asked

(respectively) and keeps the jaw released when the system asks for

Relax task. The visual feedback provided by the interface is the

same provided in step 1. Tasks SoftR and SoftL move the cursor

right and left, respectively, task Relax makes the cursor stop, and

tasks HardR and HardL stop the cursor and makes it blue. In this

step, after each 10 seconds performed task by the user, a matrix

Figure 5. Thresholds and Tasks. Horizontal lines represent the set of thresholds used as model to classify the processed signals. Each threshold
represents a level of Power Spectral Density (PSD). Each value on X-axis represents one processed data window. Each data window is classified
depending their position on the Y-axis (PSD). Each area delimited by the thresholds represents one of the 5 possible tasks.
doi:10.1371/journal.pone.0112352.g005

Figure 6. Results obtained for three different tasks during two trials. Signals from the right graph represent two trials (blue and green)
where the user clenches the right area of the jaw (SoftR). Signals from the left graph represent two trials where the user clenches the left area of the
jaw (SoftL). Signals from the center graph represent two trials where the user releases the jaw (Relax). These signals were recorded from user 2.
doi:10.1371/journal.pone.0112352.g006
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like the one shown in Figure 9 is modified. It is a 365 matrix

whose rows represent each requested task, while the columns

represent the number of classified data windows according to the

established set of thresholds (there are three rows because only

tasks SoftR, SoftL and Relax are requested while there are five

columns because tasks HardR and HardL can be also classified).

Each 50 ms a new data window is classified, and the matrix is

updated by increasing in one the value of the position indicated by

the row requested and the column classified. This way, every 10

seconds it is possible to know which tasks were requested and

which tasks were classified by looking at the matrix. According to

the amount of wrong classified data windows, thresholds are

modified to adjust each task area to the users’ skills. If the success

rate is 100%, those thresholds that delimit the requested task are

reduced by 30%. This way, it is possible to reduce the strength of

the clench if the user is able to achieve the same results with softer

clenches. Also, reducing the area of the tasks performed could

allow the inclusion of new tasks above HardR and below HardL in

future works. Otherwise, the thresholds will be increased

according to the percentage of misclassified tasks. This process

makes threshold values converge to their optimal point. However,

this process is endless. Therefore, when thresholds are close to

their optimal values, they oscillate around them. After five 4-

minutes runs, thresholds reach their oscillation point around their

optimal values. The final values are decided by seeing the

thresholds evolution and manually selecting them. On Figure 10

this evolution and the final set of thresholds selected are shown for

all the users. These final thresholds become the model that best fits

the signals produced by each user.

Step 3: 2-dimensional movement. In the last step, the

starting model is the one obtained from step 2 and it does not

evolve during this training step. This time, the second interface is

used. Eight targets (with the same cursor size) are defined in eight

fixed positions and they appear randomly during this step. The

user is requested to reach them by controlling the movement of a

two dimensional cursor before a time limit is reached. A target is

successfully reached when there is less that 15 pixels (0.72 cm) on

each axis (X and Y) between the cursor and the target position.

Figure 11 shows a state machine that describes the behavior of the

cursor depending on the tasks performed by the user. The 2-

dimensional axes are not simultaneously controlled by the user but

he/she is able to alternate between movement axis using HardR

and HardL tasks. This axis alternation is represented by the

change of the color of the cursor from red to blue and viceversa.

When the cursor turns red, the horizontal dimension is controlled

and when it becomes blue, the vertical dimension is controlled.

Tasks HardR and HardL are achieved by making a strong clench

for a short period of time (less than 0.5 seconds, like a quick bite)

on right or left areas of the jaw, respectively. The cursor

movement is controlled by tasks SoftR and SoftL (right and left,

or up and down according to the current selected axis,

respectively). Tasks SoftR and SoftL are achieved by clenching

softly the respective area of the jaw. Task Relax stops the cursor

movement.

During this step, the user gets used to the 2-dimensional

movement of the cursor and learns how to control it. Figure 12

shows the signals produced by a user when the two dimensional

movement is being controlled. It clearly shows the difference

between tasks SoftR, SoftL, HardR and HardL. Eight sessions are

performed during this step and in each run, 10 targets appear. The

user has 25 seconds to reach each target. Otherwise, the target

counts as not reached and a new target appears.

Protocol Summary
Each run is approximately four minutes long, taking one minute

break between them. The total training time needed to control the

two dimensions with the cursor can be computed as:

- Step 1: One start up run to get used to the kind of jaw

movements the system requires.

- Step 2: Five runs where a model is defined for the user

(selection of thresholds).

- Step 3: Eight final runs where the user learns how to control

the two dimensional movement.

Figure 7. First Interface Protocol. The user is asked to relax during
the first 3 seconds, after that, an image appears for 2 seconds to show
the task (one of three possible ones) that the user has to perform. For
the next 10 seconds, the cursor moves left, right or remains stopped
depending on the classified task. After these 10 seconds, the sequence
is repeated.
doi:10.1371/journal.pone.0112352.g007

Figure 8. Second Interface Protocol. The user is asked to relax
during the first 3 seconds, after that, the user is asked to reach a target.
The cursor moves left, right, up, down or remains stopped depending
on the classified task until it reaches the target.
doi:10.1371/journal.pone.0112352.g008

Figure 9. Task classification matrix. Rows represent the tasks
requested by the interface and columns represent the tasks classified by
the system. Only tasks SoftR, SoftL and Relax are requested while all five
tasks (HardR, SoftR, Relax, SoftL and HardL) can be detected. The matrix
is initialized with zeros at the beginning of each run and these values
are updated with every classification. The thresholds are modified trying
to get a diagonal matrix.
doi:10.1371/journal.pone.0112352.g009
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The training process takes approximately 70 minutes. After

that, the user has an accurate control of the system and he/she is

ready to start controlling the robotic arm as it is shown on the next

section.

Robot Control System
After the user is trained in the 2-dimensional control of the

cursor, the system is going to be adapted to control the end-

effector of a robotic arm on a 2-dimensional plane. Two different

Figure 10. Threshold convergence. The evolution of HRthr, SRthr, SLthr and HLthr are shown for all users. Also the final value selected for each
threshold and user is represented with a horizontal line. Y-axis represents the Power Spectral Density and the X-axis represents the number of tasks
requested to the user along the 5 runs.
doi:10.1371/journal.pone.0112352.g010

Figure 11. Cursor State Machine. Each group of 3 states represents one of the dimensions. The left group represents the horizontal dimension
and the right group represents the vertical dimension. Tasks HardL and HardR are used to alternate between horizontal and vertical dimensions. Once
the dimension is selected, tasks SoftR and SoftL control the direction of the movement (on the horizontal dimension, SolfR moves the cursor to the
right and SoftL moves the cursor to the left, on the vertical dimension, SoftR moves the cursor up and SoftL moves the cursor down). Relax task stops
the cursor no matter the dimension selected.
doi:10.1371/journal.pone.0112352.g011
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processes are running simultaneously to achieve this goal. A

Matlab function is in charge of the processing and classification of

signals and it also provides a simple graphical interface to help the

users on their first contact with the robotic arm. A C++ program

translates the classification results into control commands and

sends them to the robotic arm.

Robotic Arm. For the kind of movements wanted on this

research, a 2.5D plotter robot may be a more suitable option but

due to equipment already available in the research facility, the

robotic arm used is the Fanuc LR Mate 200iB. It is a six degrees of

freedom robot that can be moved in a three dimensional

workspace. Figure 13 shows the robot appearance. The robotic

arm is controlled using a C++ program through a local computer

network. This program is used to send movement instructions to

the LR Mate 200iB. It also receives information about the current

position of the robot. Moreover, the C++ program runs a control

panel whose main goal is to provide a set of simple instructions to

control the interaction with the robot [1]. Through this panel, it is

possible to connect and disconnect the robot. It also implements a

function to send the robot to a home position and another function

is in charge of sending movement instructions to the robot in real

time according to the classification results provided by Matlab.

Graphical Interface. A Matlab-based application algorithm

registers, processes and classifies the information recorded from

the sensorimotor scalp areas. The C++ program uses the final data

provided by Matlab in order to send movement instructions to the

robotic arm. A communication system has been implemented to

make possible the interaction between both processes. This

communication introduces a small delay (less than 0.5 seconds)

between the moment when the user executes the task and the

moment when the robotic arm starts moving. For that reason, a

graphical interface has been designed to provide visual feedback of

each classified direction. This visual feedback uses the image

shown in Figure 14. Each circle represents a direction in a two

dimensional plane. This way, it is possible for a user to move the

robotic arm to one of these directions. The full circle correspond-

ing to the direction where the robot is moving gets coloured blue

while the others remain empty. This interface is only used on the

Figure 12. Online results from a user reaching a target (3rd step). SoftR corresponds to the low positive values, SoftL to the low negative
values, HardR to the high positive values, and HardL to the high negative values. Relax task is not used (its power level is lower than SoftR and SoftL).
Y-axis represents the PSD difference between C3 and C4. X-axis represents the number of analyzed data windows (each 50 ms a new data window is
analyzed).
doi:10.1371/journal.pone.0112352.g012

Figure 13. Robotic Arm Environment. It allows movements in a
three dimensional workspace. Z-axis remains fixed during tests. The
spots show the position of the 8 targets defined.
doi:10.1371/journal.pone.0112352.g013
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first run performed with the robotic arm. After that, the user gets

used to the small delay and the interface can be removed.

Real Time Test. Tests have been made over a two

dimensional workspace. Z-axis is fixed and X-axis and Y-axis

are restricted to a rectangle area DIN-A3 size. This way, the users

who trained on a computer screen are familiar with the movement

area. Figure 13 shows the mentioned workspace. As it can be seen,

8 targets have been placed on the workspace. The users were

requested to reach these targets by controlling the robotic arm.

Each user has performed nine runs. In the first run no target is

requested. The user uses this run to get used to the system delay.

The eight remaining runs are used to reach the eight possible

targets shown on Figure 13. On each run, a different target is

requested and the robotic arm movement stops when the target is

reached. Robotic arm movement is controlled by the user through

the five tasks previously described. In order to keep HardR and

HardL as short duration tasks, a state machine (Figure 15) is

designed. As it can be seen, the control of the two dimensional

movement is similar to the one used on training step 3. The

differences are due to the delay limitations introduced by the

robot. Although the movement increment is detected by the

system each 50 ms, the robotic arm cannot respond with such

speed. For this reason, movement commands are sent only when a

change of direction is detected in order to reduce the delay times.

For instance, if a right movement state is detected, the robotic arm

starts a right continuous movement until a new state is detected. At

that moment, the current robot movement is stopped and a new

movement begins.

Results and Discussion
The system was tested with four healthy volunteers (capable of

moving their jaws) with ages between 22 and 28 (24.25 6 2.62)

(three men with previous experience with this kind of tests and one

woman without any, all of them right-handed). All the volunteers

were sat while performing the experiment. They were told not to

blink nor perform neck movements, except in rest periods

indicated during the tests. The results presented on this work

were obtained over a period of 3 months. The data of the cursor

movement were registered in the first month and the robot arm

control data in the third month. Human data presented in this

article have been acquired under an experimental protocol

approved by the ethics committee for experimental research of

the Miguel Hernández University of Elche, Spain. Written consent

according to the Helsinki declaration was obtained from each

subject. Also the participants shown in Figure 3 and on referred

videos have given written informed consent (as outlined in PLOS

consent form) to publish these case details.

Cursor Movement Results
During step 1, all users got used to the kind of clenching that

the system is able to identify. They also achieved a successful

threshold convergence during the 5 runs from step 2. On the

third step, users 1, 2 and 4 noticed that tasks SoftR and SoftL are

correctly detected by making a small jaw movement to the side

the user wants to move the cursor without the need of clenching

their teeth. User 3 kept clenching the jaw. All the users achieved

tasks HardR and HardL by making a quick bite with the right or

left side of the jaw. Table 1 shows the success and fail rate

depending on the number of targets reached by a user in each

run. User 2 is the system developer so it has more experience

than the rest. As a consequence, he reached all the targets under

the time limit. As it has been mentioned, the learning process

takes place from runs 1 to 3. During these 3 runs, success rate

experiences a huge improvement and after that it remains

constant. The control that the user achieves after the third run is

very similar to the control anyone can achieve using a joystick or

other manual control as shown on video S1. In section Protocol

Summary, the training time was estimated as 70 minutes, but by

seeing these results, in 3 runs the control of the system is really

close to its optimum. Thus it is reasonable to say that the training

process could be reduced to 45 min. Table 2 shows the time

efficiency in the reaching of targets where the time efficiency

coefficient has been defined as follows:

Figure 14. Visual feedback. The full circle represents the direction
identified by the algorithm. The robotic arm moves according to the
direction shown on this interface.
doi:10.1371/journal.pone.0112352.g014

Figure 15. Robotic Arm State Machine. When a state changes, a
continuous movement starts in the direction indicated by the current
state.
doi:10.1371/journal.pone.0112352.g015
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CopT~
Optimum Time

Time used
ð3Þ

The time used is the time spent for the user to reach the target,

and optimum time is the time needed to reach the target if the

cursor is controlled manually. To obtain the optimum time, an

algorithm that allows a subject to control the cursor by using the

key arrows is implemented. All users were asked to reach each

target using this manual control. The optimum time for each target

is calculated as the average of the time employed by all users using

this manual control (this average presents a very small deviation

meaning that the optimum times are very similar between users).

The non-reached targets were not computed to obtain these

results. CopT is in average 0.8 throughout the 8 runs for all

subjects. In order to prove the efficiency of this system, the average

value of the obtained CopT is compared with the average CopT of a

BMI system based on motor imagery tasks and a system based in

electrooculography (which usually provides better results than

motor imagery systems). The optimum time is calculated on these

systems according to the methodology previously explained.

Analyzing the results from [27,28] (which are previous works

done by our group in a similar environment with a hieralchical

motor imagery BMI system and a electrooculographic system) the

average CopT obtained in the BMI system is 0.033, which is 30.30

times worse than the optimum time, and the average CopT

obtained in the electrooculographic system is 0.588, which is 1.7

times worse than the optimum time. Using our system to move a

cursor on a screen, the average CopT for all runs and users is 0.8,

which is 24.24 times quicker than the motor imagery BMI system

(0.033) and 1.36 times quicker than the electrooculographic system

(0.588).

Robotic Arm Movement Trials Results
After the training section, users are ready to control the robotic

arm in two dimensions. They are requested to reach eight different

targets. Time required to reach each target is measured. Table 3

shows the values of CopT obtained by the users to reach each target

referred to the minimum time needed by the robot to reach them

(manually controlled) under the same conditions. The strategy

used in the previous section was applied here to obtain the values

of the optimum time. All users were also requested to reach the

targets using the arrow keys. In this case, there is no improvement

along runs due to the similarities between the cursor movement

system (Training section) and the robot movement system. Results

are also compared with the needed time percentages to reach

targets using a system based on motor imagery tasks seen on the

last section (0.033). This time, the improvement is, in average,

0.818, which is 24.78 times better than a motor imagery BMI

system and 1.4 times better than the electrooculographic system.

On videos S2 and S3 are shown 2 subjects who have completed

the training in a free movement test reaching a target with and

without obstacles in the workspace.

System Limitations
The number of states able to be detected on this system is

limited by the behavior of the measured signals. For soft clenching,

the PSD increment can be easily controlled by the user, but when

the clench is higher, the PSD behaves similar to an exponential

function, increasing considerably the control difficulty. Also,

thresholds have been defined in order to benefit tasks SoftR,

SoftL, HardR and HardL, but making hard for some users the
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control of the Relax state. This point should be further studied in

future works.

Conclusion

A supplementary application for a BMI system has been

designed. A very similar system could also be implemented placing

a couple of electromyographic electrodes on both cheeks or

placing pressure sensors on the teeth. However, the goal of this

research is to use the electrodes of a BMI system in order to

implement a supplementary system based on the skill of a user to

control EMG signals produced by clenching different areas of the

jaw. Results prove that the control acquired by users who can

move their jaws is close to the control that a healthy user can

acquire using a joystick or the movement arrows of a keyboard.

On the basis of this study, the architecture shown on Figure 16

is proposed as a future work. A BMI system would work while the

jaw is relaxed. At the moment the user wants to alternate to jaw

control, a quick bite (tasks HardR or HardL) would activate the

jaw control algorithm. The change to the BMI system should be

produced when the user remains several consecutive seconds on

the Relax state. Our supplementary system should be comple-

mented with an appropriate BMI system, i.e. a menu application

that allows a patient to select the rehabilitation strategy desired

while a BMI system measures the mental state of the patient in

order to evaluate how the selected strategy affects the mental

workload of the patient. It is also proposed its use in combination

with a BMI system previously developed by our group [24], where

visual evoked potentials were used to control an internet browser,

allowing a user to write and move the cursor on the screen. The

BMI system provides a quick and fluid writing but the cursor

control can be improved by using the supplementary system

designed. On the same work, the BMI system is used to control a

robot arm in 3 dimensions. For that purpose, the user first selects

the movement plane and then, a 2-dimensional control also based

on evoked potentials is used. Using the 2-dimensional control

implemented in the current work, it would be possible to improve

the performance of the 3-dimensional control described in [24], by

combining the plane selection algorithm of the evoked BMI system

and the 2-dimensional control implemented in our supplementary

system. As a conclusion, this supplementary system allows us to

implement a control system in combination with a BMI system

using the same set of sensors. This system is oriented to help

people who suffer from motor disabilities which deprive them from

moving their arms or legs but still have mobility on the jaw. In the

future, this system should be tested on this kind of patients. The

system might be also adapted for 3-dimensional movement by

alternating between three space axes instead of two. Another

research line would be to compare a third electrode from a central

position (like Cz or CPz) with C3 and C4 in order to measure

separately the level of clench from left and right areas of the jaw so

both dimensions, X and Y, would be simultaneously controlled.

Supporting Information

Video S1 User 2 controlling a cursor on a screen.

(MP4)

Video S2 User 2 controlling the robotic arm.

(MP4)

Video S3 User 1 controlling the robotic arm.

(MP4)
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Figure 16. Block interconnection diagram. The supplementary system is activated with tasks HardR or HardL, while the control is returned to
the BMI system when the user stays on the Relax state for several seconds.
doi:10.1371/journal.pone.0112352.g016
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27. Hortal E, Úbeda A, Iáñez E, Azorı́n JM (2014) Control of a 2 dof robot using a

brainmachine interface. Computer Methods and Programs in Biomedicine
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