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Abstract

Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing
observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and
processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three
aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface
parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-
scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural
application with multiple remotely sensed observations from different sources. The new method was constructed on the
basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics
were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse
spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale
as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction
based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations.
This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields
located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental
results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over
non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth
monitoring and yield prediction, and their corresponding consistency analysis evaluation.

Citation: Dong Y, Luo R, Feng H, Wang J, Zhao J, et al. (2014) Analysing and Correcting the Differences between Multi-Source and Multi-Scale Spatial Remote
Sensing Observations. PLoS ONE 9(11): e111642. doi:10.1371/journal.pone.0111642

Editor: Ke Lu, University of Chinese Academy of Sciences, China

Received September 12, 2012; Accepted September 12, 2014; Published November 18, 2014

Copyright: � 2014 Dong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the National Key Basic Research and Development Program of China (Project No. 2011CB311806), the National Natural
Science Foundation of China (Project No. 40901173 and 41071228), the Beijing Natural Science Foundation (Project No. 4141001), the Natural Science Foundation
of China (Project No. 41271345), the Beijing Municipal Talents Training Funded Project (Project No. 2012D002020000007), the Special Funds for Technology
innovation capacity building sponsored by the Beijing Academy of Agriculture and Forestry Sciences (Project No. KJCX20140417), and the Open Funds of State
Key Laboratory of Remote Sensing Science, jointly sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal
University (Project No. OFSLRSS201308). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: yanggj@nercita.org.cn

Introduction

Space remote sensing technologies have been widely applied in

the research field of agriculture for crop growth parameters

estimation, crop growth condition monitoring, and yield evalua-

tion [1–3]. Multi-source and multi-scale spatial remote sensing

observations provide wealth information for extracting character-

istics of crop growth and development with data analysis and

mining algorithms and methods [4–6]. Due to spatial heteroge-

neity in crop canopies and diversity of satellite observation

systems, differences inevitably exist among analysing results of

crop condition monitoring and yield estimation based on multiple

remotely sensed observations, which are obtained at different

spatial scales from multiple remote sensors during same time

periods, and processed by same algorithms, models or methods.

Mainly, such differences can be quantitatively described from the

following three aspects, i.e. differences of remote sensing

observations at multiple spatial scales, different degrees of non-

linearity of models and algorithms for crop growth parameters

estimation, and spatial scale effects of surface parameters [3,7]. In

this paper, we only discussed about the first factor, i.e. the focus of

our research was analysing and correcting the differences among

multi-scale spatial remote sensing surface reflectance datasets.

To meet the needs of quantitatively describing space distribu-

tion patterns and characteristics, and analysing and correcting

differences of physical and mathematical properties and their

spatial variations of remote sensing observations, which are

obtained at multiple spatial scales from different remote sources,

lots of research works have been done based on selecting or

constructing statistical or theoretical models and algorithms for

data processing [8–18]. The biases of mean value, spatial variance,

and correlation length of satellite images, and how they change
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with spatial scale are examined for snow cover patterns analysis,

which is shown that it may be difficult to infer the true snow cover

variability from the variograms, particularly when they span many

orders of magnitude [8]. Bayesian-regularized artificial neural

network with data, combined with Moderate Resolution Imaging

Spectroradiometer (MODIS) and Multi-angle Imaging Spectro-

radiometer (MISR), is used for mapping land cover distributions,

with application to estimating patterns of deforestation and

recovery in Brazil, which yields a quantitative improvement over

spectral linear un-mixing of single-angle, multi-spectral data [9].

Precision agriculture management zones are delineated based on

years of yield data, and then its scale effect is evaluated from the

aspects of relative variance reduction, test of significant differences

of the means of yield zones, spatial fragmentation, and spatial

agreement. And then, the results show that the post-classification

majority filtering eliminates lots of isolated cells or patches caused

by random variation while preserving yield means, high variance

reduction, general yield patterns, and high spatial agreement [10].

Variogram modeling is applied to evaluate the differences in

spatial variability between 8 km Advanced Very High Resolution

Radiometer (AVHRR), 1 km Systeme Probatoire d’Observation

de la Terre-Vegetation (SPOT-VGT), and 1 km, 500 m, and

250 m MODIS Normalized Difference Vegetation Index (NDVI)

products over eight Earth Observing System (EOS) validation

sites, and to characterize the decay of spatial variability as a

function of pixel size for spatially aggregated ETM+NDVI

products and a real multi-sensor dataset. Then, a new approach

is proposed to select the spatial resolution, at which differences in

spatial variability between NDVI products from multiple sensors

are minimized, and further to provide practical guidance for the

harmonization of long-term multi-sensor datasets [11]. Considered

spatial heterogeneity of leaf area index (LAI) and non-linearity of

LAI inversion models, a new statistical spatial scaling method is

proposed to quantitatively analyse scale effects and reveal scaling

rules of LAI with ground hyperspectral observations. Numerical

results show the spatial consistency of multi-scale estimated LAI

after processing with the new proposed scaling method [12]. Also,

there are a lot of researches have been done to quantitatively

analyse and correct the differences between multi-source and

multi-scale spatial remote sensing observations and products

[7,13–18].

These existed theoretical models and algorithms for differences

analysing and correcting are mainly constructed on the basis of

precise math discursion and logical discursion, which confirm their

universality theoretically. But actually physical and mathematical

properties of underlying surfaces and spatial continuity of research

objects cannot meet such preconditions of theoretical models and

algorithms strictly. While, for these statistical models and

algorithms constructed based on probability theories, though their

portability is decreased, but they have better flexibility, practica-

bility, and pertinence compared to theoretical models and

algorithms for data processing. Each kind of scheme has both

strengths and weaknesses, how to find or construct a new kind of

solution for analysing and correcting differences between remote

sensing observations at multiple spatial scales, which can meet

practical requirements and universal application needs simulta-

neously, is important for efficiently utilizing multi-source and

multi-scale remotely sensed observations for agriculture monitor-

ing and crop production.

In our research, crop canopy is selected as the experimental

object. Though crop canopy spectral reflectance as an intrinsic

property of crop canopy varies with crop types, the observed

reflectance is affected by lots of internal and external factors, when

it is measured by remote sensing technologies. For a specific crop

type, the remotely sensed crop canopy spectral reflectances are not

only influenced by diversity of morphological structure, biochem-

ical and physiological characteristics of crop canopies, but also

influenced by soil properties, field management measures,

geographical and meteorological conditions, atmospheric environ-

ments, solar azimuth and elevation angles, viewing zenith angle,

performance of optical remote sensors, earth observing systems,

and observing dates and times. So, in actual, there inevitably exist

lots of differences between measured canopy reflectances with

multiple remote sensors at multiple spatial scales during same time

periods. Amounts of existing studies have been done to describe

space distribution patterns and characteristics, and to analyse and

correct differences of multi-source and multi-scale spatial remote

sensing observations with statistical or theoretical models and

algorithms. Considering the advantages and disadvantages of

statistical and theoretical data processing schemes, we combined

these two kinds of schemes together to construct a new method

integrating parametric design into statistical theories for multiple

spatial remotely sensed surface reflectance datasets processing.

This method mainly included extraction and analysis of physical

characteristics and mathematical distribution properties, and their

spatial variations of multiple surface reflectance datasets, and

further differences correction for these multiple observations. Two

sets of multiple satellite images obtained in Inner Mongolia and

Beijing, China, which were experimental underlying surfaces with

different degrees of homogeneity, were selected for new proposed

method validation. The results of this research are important for

assessing the effectiveness of the new proposed method for use as a

tool to analyse and correct multi-scale spatial reflectance datasets

differences over non-homogeneous underlying surfaces, and

furthermore, they could be used to provide references for multi-

scale crop growth monitoring and yield prediction, and to evaluate

spatial consistency of multi-scale analysed results in agricultural

applications.

Materials and Methods

Study Area and Data
Two fields with different degrees of homogeneity were selected

for numerical experiments in this study. One field was located in

Labudalin farm (50u019 N to 53u269 N, 119u079 E to 121u499 E) of

Hailaer Farming Cultivate Bureau in Inner Mongolia, China,

which was a farm underlying surface shown in Figure 1A. In this

region, there existed lots of concentrated continuous large-scaled

farmlands with spatial structure evenly and relatively distributed,

so this field could be considered as a homogeneous underlying

surface approximately. The main crop in this area was barley, and

the main variety managed by normal field management strategies

was Kenpimai No. 7, with its seeding time during the period of the

end of May and the beginning of June, 2010, and seeding amount

around 262.5 kg=ha. In this experimental field, three multi-source

and multi-scale spatial satellite images were obtained during the

jointing-booting stage of barley, i.e. Advanced Land Observing

Satellite-Advanced Visible and Near Infrared Radiometer type 2

(ALOS-AVNIR2) [19] image with a spatial resolution of 10 m
obtained in July 8, 2010, Small Remote Sensing Satellite

Constellations A Star-CCD2 (HJ 1A-CCD2) [3] image with a

spatial resolution of 30 m obtained in July 8, 2010, and 8-day

composite MODIS Surface Reflectance Product (MOD09A1) [20]

with a spatial resolution of 500 m obtained during July 4 to 11,

2010. The other field was located in Shunyi District (40u009 N to

40u189 N, 116u289 E to 116u589 E) and Changping District

(40u229 N to 40u239 N, 115u509 E to 116u299 E) of Beijing, which

was a suburban underlying surface shown in Figure 1B. A few of

Analysing and Correcting Differences of Multiple Observations
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concentrated continuous small-scaled farmlands with unevenly

distributed spatial structure existed in this region, so this area

could be considered as a non-homogeneous underlying surface.

The main crop in this area was winter wheat, and the main

varieties managed by normal field management strategies were

Lunxuan 987, Zhongmai 12, Zhongmai 11, Jing 9428, Jingdong 8,

and Jingdong 12. In this experimental field, three multi-source and

multi-scale spatial satellite images were obtained during the flag

leaf stage of winter wheat, i.e. IKONOS-Multispectral [3] image

with a spatial resolution of 4 m obtained in May 6, 2011, Small

Remote Sensing Satellite Constellations B Star-CCD2 (HJ 1B-

CCD2) [3] image with a spatial resolution of 30 m obtained in

May 7, 2011, and MOD09A1 with a spatial resolution of 500 m
obtained during May 1 to 8, 2011.

Data Pre-Processing
Before analysing and correcting the differences among remote

sensing observations at multiple spatial scales, same data pre-

processing procedures including radiometric calibration, atmo-

spheric correction, and geometric correction were needed for these

spatial observations. Firstly, for radiometric calibration, gains and

offsets of remote sensors were used for converting calibrated

Digital Numbers (DNs) to absolute units of at-sensor spectral

radiance. Secondly, Fast Line-of-sight Atmospheric Analysis of

Spectral Hypercubes [21,22] was selected for atmospheric

correction. And then, more than 30 uniformly distributed ground

control points in each experimental field were selected for

geometric correction. All of the above data pre-processing

procedures were conducted in the software Environment for

Visualising Images (ENVI, Research Systems Inc. USA).

In this study, croplands in the overlap region of multi-source

and multi-scale satellite images were chosen as experimental

object. In order to extract croplands, image classification was

needed. Taking NDVI as the classification basis, the satellite image

with the highest spatial resolution was classified with decision tree

classification algorithm in ENVI [23,24]. Within the time periods

of multiple satellite images obtaining, NDVI of barley ranged from

0.40 to 0.95 in Labudalin farm, and NDVI of winter wheat ranged

from 0.35 to 0.95 in Shunyi and Changping districts. Then, the

classification results were used to mask multiple spatial scale

reflectance images for croplands extraction, and then for these

non-crop areas, their surface reflectances were set to zero.

New Data Analysis and Correction Method
In our research, a new method was constructed to analyse and

correct the differences among multi-source and multi-scale spatial

remotely sensed surface reflectance datasets by integrating

parametric design into statistical theories. The main theoretical

basis of this proposed method are probability theories and

mathematical statistics. According to the fact that multiple spatial

canopy reflectance datasets for a specific crop type, such as barley

or winter wheat, have different statistical characteristics within the

same region, so when we take the crop canopy reflectance as

random variables, each of these multi-scale reflectance datasets

can be quantitatively described as a normal distribution with its

own statistical properties due to the central limit theorem (CLT),

which states that, given certain conditions, the arithmetic mean of

a sufficiently large number of iterates of independent random

variables, each with a well-defined expected value and a well-

defined variance, will be approximately normally distributed [25].

Then, multi-source and multi-scale spatial crop canopy reflectance

datasets can be approximately taken as multiple normal distribu-

tions with different mean values and variances. Furthermore,

considering that the crop canopy reflectance are affected by lots of

internal and external factors as already mentioned in the

introduction, it is necessary to standardize these multiple

reflectance distributions first. The data standardization are

conducted based on their own mean values and variances,

respectively. And, after standardizing these multiple normal

distributions, the original multi-source and multi-scale spatial

crop canopy reflectance datasets can be approximately described

as multiple standard normal distributions with same mean values

and variances according to the Lindeberg-Levy central limit

theorem [26], which states that, with an increasing volume of

Figure 1. Location of the experimental fields. (A): Location of the experimental field in Labudalin farm of Hailaer Farming Cultivate Bureau in
Inner Mongolia, China. (B): Location of the experimental field in Shunyi District and Changping District of Beijing, China.
doi:10.1371/journal.pone.0111642.g001
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canopy spectral data, the standardized sequence of random

variable constructed with canopy spectral reflectances will

converge to standard normal distribution, which is a Gaussian

distribution with 0 as the arithmetic mean, and 1 as the variance.

But these multiple standard normal distributions still have

differences in distribution shapes, which decided by specific

observed multiple spatial reflectance datasets. In probability

statistics, if we take the crop canopy reflectance as the sample,

then these multi-source and multi-scale reflectance datasets can be

taken as sub-samples. According to the law of large numbers

(LLN) [27], which describes the result of performing the same

experiment a large number of times, the average of the results

obtained from a large number of trials should be close to the

expected value, and will tend to become closer as more trials are

performed. On the basis of LLN, a selected subset of canopy

reflectances, with a large enough sample size, obeys the same

statistical distribution with the original sample. Theoretically, if the

amount of crop canopy spectral reflectances is large enough,

multi-source and multi-scale spatial remote sensing observations

within the same region should have the same statistical distribution

characteristics. With this statistical hypothesis, we can do data

correction by taking the spatial observation with highest resolution

as the baseline data, i.e. taking the statistical characteristics of

Gaussian distribution at the smallest scale as the baseline data to

conduct transforming of the other large scale standard normal

distributions. Above all, the study of analysing and correcting

differences of multiple remotely sensed observations can be

converted into data analysis and correction of differences of

multiple reflectance distributions.

Before the description of procedures of the new proposed

method, we need to firstly introduce five statistical parameters and

one function, i.e. arithmetic mean (m), standard deviation (s),

variance (s2), coefficient of skewness (CS), coefficient of kurtosis

(CK), and cumulative distribution function (CDF) [3,18]. Any

Gaussian distribution is a version of the standard normal

distribution whose domain has been stretched by a factor m and

then translated by a factor s, i.e. arithmetic mean and standard

deviation can solely determine the Gaussian distribution curve

[18]. CDF describes the probability that a real-valued random

variable X with a given probability distribution will be found at a

value less than or equal to x. Concept of CDF makes an explicit

appearance in statistical analysis in two ways. Cumulative

frequency analysis is the analysis of the frequency of occurrence

of values of a phenomenon less than a reference value, and

empirical distribution function is a formal direct estimate of CDF

for which simple statistical properties can be derived and which

can form the basis of various statistical hypothesis tests. Such tests

can assess whether there is evidence against a sample of data

having arisen from a given distribution, or evidence against two

samples of data having arisen from the same population

distribution [18]. Above all, for the new method, m and s can

be used to describe Gaussian distribution characteristics, and CS,

CK, and CDF can be used for Gaussian distribution test.

For the new proposed data analysis and correction method,

differences of multi-source and multi-scale spatial remote sensing

observations were firstly analysed with these above five statistical

indexes and CDF, and then method of parametric design was

integrated into statistical model for correction of differences

between multiple remotely sensed datasets. Taking the spatial

observation with highest resolution as the baseline data, the

procedures of the new proposed method are listed as below.

A) Data initialization.

RS
C and RL

C indicate classified crop canopy spectral reflectance

datasets at small spatial scale and large spatial scale respectively,

where R means reflectance, label C means classified data, and

‘‘small spatial scale’’ and ‘‘large spatial scale’’ are abbreviated to S

and L respectively. NL and NS are the numbers of lines and

samples of RL
C respectively. Let RL

C(i, j) is the ½i, j� pixel, where

1ƒiƒNS,1ƒjƒNL, and let i~1, j~1 initially. Then, let

RS
C(i1 : in, j1 : jn) is the corresponding n|n pixel matrix of

RL
C(i, j) in RS

C. Let RL
G be the data correction result, where label G

is the abbreviation of Gaussian.

B) Data correction.

a) If RL
C(i, j)~0, then RL

G(i, j)~0 and shift to step C).

Otherwise the current process will shift to step b).

b) Firstly, finding the nonzero data in RS
C(i1 : in, j1 : jn) to

construct a one-dimensional vector VS, where V means

vector. Secondly, constructing a one-dimensional vector

VL, shown in formula (1), where Ones is a matrix with

all values as 1, size is a function to extract dimensions of

vector. Thirdly, generating a normal distribution one-

dimensional vector VG*Nor(0,C2),C2~0:001, where

‘‘Nor’’ means normal distribution, and VG and VL

have the same dimensions. Fourthly, calculating the

vectors VL
G, VL

NG, and VL
GNG, shown in formulas (2), (3),

(4) respectively. Where labels NG and GNG mean

standard normal distribution and its Gaussian transfor-

mation respectively. Among them, VL
G is a variable

obeying Gaussian distribution, and VL
NG is the stan-

dardization of VL
G, i.e. VL

NG is a standard normally

distributed variable, where VL
G and s(VL

G) are the

arithmetic mean and standard deviation of VL
G, and

VL
GNG is the transformation of Gaussian distribution, i.e.

the standard normal distribution is transformed to a

Gaussian distribution taking VS and s(VS) as the

arithmetic mean and standard deviation respectively,

which are the arithmetic mean and standard deviation

of VS respectively. Finally, set RL
G(i, j) as the value of

VL
GNG, which is the arithmetic mean of VL

GNG.

VL~RL
C(i,j) | Ones(size(VS)) ð1Þ

VL
G~VL|VGzVL ð2Þ

VL
NG~

VL
G{VL

G

s(VL
G)

ð3Þ

VL
GNG~VL

NG|s(VS)zVS ð4Þ

C) Data updating.

Analysing and Correcting Differences of Multiple Observations
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If ivNS, let i~iz1 and return the data correction process to

step B). Otherwise, if jvNL, let j~jz1, i~1, and return the data

correction process to step B). Otherwise, if j~NL and i~NS, the

data correction process ends, and RL
G is the correction result.

Above all, the new proposed method has two main components

for differences of multi-source and multi-scale spatial remote

sensing observations analysing and correcting. On one hand,

calculating the statistical parameters and CDF of multi-scale

spatial observations allows for the spatial distribution character-

istics extraction and Gaussian distribution testing of multi-scale

datasets, which provides database for further data correction. On

the other hand, data analysis results are taken as the parameters

for standardization and transformation of Gaussian distribution,

which not only preserves the spatial distribution characteristics at

each spatial scale, but also enforces the space consistency of multi-

scale observations. So, it can be known that this new method

utilising both parametric design method and mathematical model

for data analysis and correction is a robust method.

Results

In this work, two sets of actual multi-source and multi-scale

spatial remotely sensed observations in farm underlying surface

and suburban underlying surface were chosen for the validation of

the new proposed data analysis and correction method. Taken

spectral reflectances in red and near infrared as experimental

objects, the numerical experiments included multiple optical

observations pre-processing, statistical characteristics of multi-

scale observations extraction, data correction based on the

integration of parameters design method and statistical models,

and precision evaluation of the new proposed method in analysing

and correcting the differences between multi-scale datasets.

Farm Underlying Surface
In the numerical experiments, multi-source and multi-scale

spatial remotely sensed datasets observed in Labudalin farm of

Hailaer Farming Cultivate Bureau in Inner Mongolia, China were

taken as data source. Firstly, three satellite images, i.e. ALOS-

AVNIR2, HJ 1A-CCD2, and MOD09A1, were pre-processed

according to the procedures listed in section Data Pre-processing

to calculate classified multi-scale crop canopy spectral reflectances.

Secondly, five statistical parameters and CDF were calculated to

test whether the distributions of red and near infrared spectral

reflectances obey Gaussian distributions, and to extract the spatial

distribution characteristics of multiple red and near infrared

reflectances. Finally, spectral reflectance data of ALOS-AVNIR2

were taken as the baseline data to correct reflectances of HJ 1A-

CCD2 and MOD09A1 with the new method. The statistical

parameters, histograms and Gaussian distribution characteristics

of crop canopy reflectance data at different spatial scales before

and after data correction with the new method were shown in

Table 1 and Figure 2. In Figure 2, two kinds of CDF curves were

involved for Gaussian distribution test. The red CDF curve

belonged to the distribution of the sequence of standardized

spectral reflectance data, while the blue one was the empirical

CDF curve, which belonged to the standard normal distribution.

From Table 1 and Figure 2, we concluded that, except the red

reflectance of HJ 1A-CCD2 was found to have a little leptokurtic

distribution, the other red and near infrared reflectances of ALOS-

AVNIR2, HJ 1A-CCD2, and MOD09A1 all obeyed Gaussian

distribution approximatively, though there existed some small

differences among the statistical characteristics of these Gaussian

distributions. Then, the new method was selected for these

differences correction, with ALOS-AVNIR2 data as small scale

image, and HJ 1A-CCD2 and MOD09A1 data as large scale

images. Based on the analysis of the statistical characteristics of

corrected reflectance datasets, we knew that the Gaussian

distribution of satellite images at three different spatial scales were

almost the same. Taken red reflectance of HJ 1A-CCD2 as an

example, after data analysis and correction, its arithmetic mean

value changed from 0.091613 to 0.044405, which was more closer

to the arithmetic mean value of red reflectance of ALOS-

AVNIR2, i.e. 0.043538, and standard deviation value changed

from 0.073000 to 0.016235, which was more closer to the standard

deviation value of red reflectance of ALOS-AVNIR2, i.e.

0.015953. And the CDF curve of corrected HJ 1A-CCD2 was

more similar to the CDF curve of ALOS-AVNIR2. Also similar

analysed results were achieved for near infrared reflectance of HJ

1A-CCD2, and red and near infrared reflectances of MOD09A1.

That meant these multi-scale spatial reflectances had similar

Gaussian distribution properties after data processing with the new

method. Above all, for this farm underlying surface, which was an

approximately homogeneous underlying surface, the new pro-

posed method not only effectively reduced the differences between

multi-source and multi-scale spatial observations, but also had

strong adaptability and high correction accuracy.

Suburban Underlying Surface
Multiple spatial remote sensing images IKONOS-Multispectral,

HJ 1B-CCD2, and MOD09A1 observed in Shunyi District and

Changping District of Beijing, China were taken as data source for

numerical experiments. Firstly, three satellite images were pre-

processed to calculate classified reflectances. Secondly, statistical

parameters and CDF were calculated to test whether the

distribution of reflectances obey Gaussian distributions, and to

extract distribution characteristics of multi-scale spatial red and

near infrared spectral reflectances respectively. Finally, IKONOS-

Multispectral were taken as the baseline data to correct

reflectances of HJ 1B-CCD2 and MOD09A1. The statistical

parameters, histograms and Gaussian distribution characteristics

of the crop canopy reflectance data at different spatial scales before

and after data correction with the proposed new method were

shown in Table 2 and Figure 3. Two types of CDF curves in

Figure 3 have the same meanings in Figure 2.

We concluded from Table 2 and Figure 3 that all of the red and

near infrared reflectances of IKONOS-Multispectral, HJ 1B-

CCD2, and MOD09A1 obeyed Gaussian distribution approx-

imatively, though there existed some small differences among the

statistical parameters of these Gaussian distributions. For CDF

curves, there existed bigger differences among these three

sequences of random variables, due to the differences of data

amount. Then, the new proposed method was selected for these

differences correction, with IKONOS-Multispectral data as small

scale image, and HJ 1B-CCD2 and MOD09A1 as large scale

images. According to the statistical parameters of the corrected

reflectance datasets, the Gaussian distribution of satellite images at

three different spatial scales were almost the same, and according

to the CDF curves, the differences between the spatial distribution

characteristics of multi-scale observations were reduced effectively.

Taken near infrared reflectance of HJ 1B-CCD2 as an example,

after data analysis and correction, its arithmetic mean value

changed from 0.314334 to 0.233996, which was more closer to the

arithmetic mean value of near infrared reflectance of IKONOS-

Multispectral, i.e. 0.245903, and standard deviation value changed

from 0.031453 to 0.055424, which was more closer to the standard

deviation value of near infrared reflectance of IKONOS-

Multispectral, i.e. 0.066548. And the CDF curve of corrected

HJ 1B-CCD2 was more similar to the CDF curve of IKONOS-

Analysing and Correcting Differences of Multiple Observations
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Figure 2. Histograms and Gaussian distribution characteristics of the crop canopy reflectance data at different spatial scales before
and after data analysis and correction with the new method in Labudalin farm of Hailaer Farming Cultivate Bureau in Inner
Mongolia, China.
doi:10.1371/journal.pone.0111642.g002
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Multispectral. Also similar analysed results were achieved for red

reflectance of HJ 1B-CCD2, and red and near infrared

reflectances of MOD09A1. Above all, for this suburban underly-

ing surface, which was also a non-homogeneous underlying

surface, the new proposed method was also feasible and applicable

for data correction, and after data processing with the new

method, these multi-scale spatial reflectances had similar Gaussian

distribution properties.

Discussion

The current study demonstrates that the new proposed method

integrated with parameter design into statistical model for data

processing can quantitatively describe the differences between

multi-source and multi-scale remote sensing observations, and

effectively correct these differences based on probability theories

and mathematical statistics. For the new proposed method, the key

point for data correction is the standardization and transformation

of Gaussian distribution, which can reveal and quantitatively

describe the spatial relationship between small scale data (taken as

baseline data) and large scale datasets. Experimental results

validate the advantages of the proposed method in analysing

and correcting differences between multi-scale datasets in under-

lying surfaces with different degrees of homogeneity, also confirm

that the new data analysis and correction method not only

enhances the correction precision between multi-scale datasets,

but also reduces the differences both in homogeneous and non-

homogeneous underlying surfaces. Above all, the new proposed

method has a good prospect in the scientific research field for

multi-scale observations analysing and correcting.

The pre-condition of using this new proposed method is

Gaussian distribution properties of multiple remotely sensed

observations, but actually the observations may deviate from

Gaussian distributions because the processes of acquisition and

pre-processing of multi-source and multi-scale spatial remote

sensing data are influenced by soil and crop properties,

atmospheric environments, performance of optical remote sensing

systems, accuracy of radiometric calibration, atmospheric correc-

tion, and geometric calibration systems, degrees of homogeneity of

the underlying surfaces, and data sizes. So, we select five statistical

parameters and CDF for statistical characteristics extraction and

Gaussian distribution test of these multi-scale spatial observed

datasets. Then, if the datasets meet this pre-condition, the new

proposed method can be conducted. Otherwise, before conducting

multi-scale observations analysis and correction, we need to do

data pre-process at first. Conducting a statistical test of the data

firstly, and eliminating noise and outliers secondly, and doing data

transformation finally, which can transform the original dataset

into a Gaussian distributed one. Common data transformation

methods include Logarithmic normal transformation, Rank-order

transformation, and Multi-Gaussian transformation [18].

For this research, some limitations have to be noted. According

to the new method, the main theoretical basis of the method are

probability theories and mathematical statistics, so sufficient large

of the data amount is necessary for data analysis and correction.

We did not do research on how large of the data amount is enough

in this study. In future, we can try to give a judgement method to

decide whether the data amount is large enough or not for data

correction, and how the differences of the data amount of these

multiple observed datasets will affect data analysis and correction

results from the aspects of geostatistics and landscape ecology.

Another limitation of the study is that the data correction results

depend on the baseline data, which means that the reliability,

accuracy, and spatial scale of the baseline data have influences on

the data correction results. The quantitative study of how the

spatial scale of the baseline data affect the data correction results is

necessary for analysing the feasibility and robustness of the new

proposed data analysis and correction method. These problems in

this research field need to be further studied, with the aim of

qualitatively and quantitatively analysing the efficiency of new

proposed method and reliability of its correction results. Also, in

the following works, further researches of multi-scale crop growth

monitoring and corresponding space consistency analysis should

be done based on the original multiple datasets and corrected

multiple datasets to quantitatively compare the differences of

analysed results.

Conclusion

In summary, the new proposed method can be applied for data

analysis and correction of multi-source and multi-scale remote

sensing observations both in homogeneous and non-homogeneous

Table 1. Statistical characteristics of the crop canopy reflectance datasets at different spatial scales before and after data analysis
and correction with the new method in Labudalin farm of Hailaer Farming Cultivate Bureau in Inner Mongolia, China.

Spectral range
Statistical
parameters ALOS-AVNIR2 HJ 1A-CCD2

HJ 1A-CCD2
(data correction) MOD09A1

MOD09A1
(data correction)

Red

m 0.043538 0.091613 0.044405 0.052868 0.044552

s 0.015953 0.073000 0.016235 0.013671 0.008568

s2 0.000255 0.005329 0.000264 0.000187 0.000073

CS 0.205227 7.668312 0.101705 1.049189 -0.291990

CK 0.058132 76.130234 0.250088 3.179078 0.019312

Nir

m 0.216418 0.592245 0.211834 0.332550 0.210138

s 0.058143 0.133190 0.059050 0.053253 0.033355

s2 0.003381 0.017740 0.003487 0.002836 0.001113

CS 0.260935 0.242875 0.134787 20.238342 0.039368

CK 0.614903 2.269275 0.948449 0.203455 0.501980

doi:10.1371/journal.pone.0111642.t001
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Figure 3. Histograms and Gaussian distribution characteristics of the crop canopy reflectance data at different spatial scales before
and after data analysis and correction with the new method in Shunyi District and Changping District of Beijing, China.
doi:10.1371/journal.pone.0111642.g003
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underlying surfaces. The new method involved the introduction of

the statistical characteristics of multi-scale observations for data

correction, which extended the availability of this method by

considering the spatial and statistical relationships among multi-

scale datasets. Also, the standardization and transformation of

Gaussian distribution revealed the inherent links between obser-

vations at multiple spatial scales. In all, the new proposed method

effectively extended the application field of the statistical models in

data correction and enhanced the correction precision. Also,

future work is needed to improve this method so that it can be

effectively and pervasively applied in the research field of

agricultural remote sensing for differences of multi-source and

multi-scale spatial remote sensing observations analysing and

correcting.
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