Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism Is Not a Major Determining Factor in the **Development of Sporadic Alzheimer Disease: Evidence** from an Updated Meta-Analysis

Xue-bin Wang¹, Ning-hua Cui², Jie Yang¹, Xue-ping Qiu¹, Jia-jia Gao¹, Na Yang¹, Fang Zheng¹*

1 Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China, 2 Department of Clinical Laboratory, Children's Hospital of Zhengzhou, Zhengzhou, Henan, China

Abstract

Angiotensin-converting enzyme gene (ACE) insertion/deletion (I/D) polymorphism have long been linked to sporadic Alzheimer disease (SAD), but the established data remained controversial. To clarify this inconsistency, a comprehensive meta-analysis was conducted. Through searching of Pubmed, Embase, Alzgene, China National Knowledge Infrastructure (CNKI) and manually searching relevant references, 53 independent studies from 48 articles were included, involving a total of 8153 cases and 14932 controls. The strength of association was assessed by using odds ratios (ORs) with 95% confidence intervals (CIs). Further stratified analyses and heterogeneity analyses were tested, as was publication bias. Overall, significant associations were revealed between I/D polymorphism and SAD risk using allelic comparison (OR = 1.09, 95%CI = 1.01–1.17, p = 0.030), homozygote comparison (OR = 1.17, 95%CI = 1.01–1.34, p = 0.030) and the dominant model (OR = 1.16, 95%CI = 1.04-1.29, p = 0.008), but they were not sufficiently robust to withstand the false-positive report probability (FPRP) analyses. Otherwise, in subgroup analyses restricted to the high quality studies, the large sample size studies and studies with population-based controls, no significant association was observed in any genetic models. In summary, the current meta-analysis suggested that the ACE I/D polymorphism is unlikely to be a major determining factor in the development of SAD.

Citation: Wang X-b, Cui N-h, Yang J, Qiu X-p, Gao J-j, et al. (2014) Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism Is Not a Major Determining Factor in the Development of Sporadic Alzheimer Disease: Evidence from an Updated Meta-Analysis. PLoS ONE 9(10): e111406. doi:10.1371/journal.pone.0111406

Editor: Michael Bader, Max-Delbrück Center for Molecular Medicine (MDC), Germany

Received June 5, 2014; Accepted September 23, 2014; Published October 31, 2014

Copyright: © 2014 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

Funding: This study was supported by grants from the National Basic Research Program of China (973 Program, 2012CB720600). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: zhengfang@whu.edu.cn

Introduction

Alzheimer's disease (AD) is the most common form of dementia in the elderly, and it is characterized by progressive memory loss and cognitive dysfunction [1]. Although some AD cases are familial, about 90% are sporadic [2]. Sporadic Alzheimer's disease (SAD) is considered to be a multifactorial disease with a complex interaction of both genetic and environmental factors [3]. One of the proposed mechanisms for SAD is the amyloid hypothesis, which suggests that deposition of beta-amyloid $(A\beta)$ is a primary event in the pathological cascade for SAD [4]. The balance between the expression and the degradation of A β changes, and aggregate of $A\beta$ would cause complex reactions, such as phosphorylation of protein Tau [5], loss of neurotransmitter [6] and finally formation of senile plaques (SP), as well as intracellular neurofibrillary tangles.

Recently, growing evidence has implicated angiotensin-converting enzyme (ACE), a zinc metalloprotease widely expressed in brain, as a possible modulator of A β metabolism [7]. The ACE gene is located on chromosome 17q23 and consists of 26 exons and 25 introns. The most common polymorphism of ACE gene is the insertion/deletion (I/D) variant of 287 base pairs in intron 16, which has been suggested to be associated with serum ACE protein levels [8], the specific activity of ACE protein domain [9], the transcriptional activity of ACE gene promoter region [10] and resulted in the susceptibility to SAD. A study published in 1999 first reported the association between the I/D polymorphism and SAD in a combined sample of three case-control samples from the United Kingdom [11]. Since then, a great number of studies have been performed on this polymorphism with SAD risk in different populations but have generated equivocal results. Therefore, in 2003-2005, three meta-analyses [12-14] have been published and implied possible association of the I/D polymorphism on AD risk. However, there were more and further single studies after 2005. Hence, an updated meta-analysis combining all available studies was performed to derive a more precise estimation of this relationship.

Materials and Methods

Literature search

This meta-analysis was performed according to the methodology advocated by the PRISMA statement [15]. All studies included in the meta-analysis were selected by searching the Pubmed, EMBASE, Alzgene and China National Knowledge Infrastructure (CNKI) databases up to May 2014 using the following keywords: "(Alzheimer or AD) and (angiotensinconverting enzyme gene or ACE) and (polymorphism or variant or genotype)". In addition, the reference lists of reviews and retrieved articles were checked for potential studies. Articles that reported results from more than 1 population were considered as separate studies. Only studies published in English or Chinese were included.

Inclusion criteria

The studies included in the meta-analysis were required to meet the following criteria: (1) case-control or cohort design; (2) association between I/D polymorphism and SAD risk; (3) application of standardized clinical or pathologic criteria for the diagnosis of SAD; (4) sufficient genotype distributions for calculation of odds ratios (ORs) with 95% confidence intervals (CIs);

The following were excluded: (1) reports with incomplete data; (2) review articles, abstracts, case reports; (3) studies based on familiar Alzheimer's disease (FAD) or mild cognitive impairment (MCI); (4) studies about other ACE polymorphisms. When the articles contained duplicated data, the most recent or complete studies were selected.

Data extraction

Data were extracted from eligible articles independently by two of the authors, with any disagreement resolved by consensus. The following information was collected in a predefined data collection form: first author's name, publication year, country, geographical location of participants (North European, South Caucasian, Asian, etc), sample size, AD diagnosis criteria, genotyping methods, source of controls, risk allele frequency in controls, results of Hardy-Weinberg equilibrium (HWE) in controls and quality assessment of studies.

Quality score assessment

The quality of each study was independently assessed by two authors who used quality scoring criteria modified from previous studies [16,17] (Table S1 in File S1). The modified criteria cover the representativeness of cases, the credibility of controls, genotyping examination, association assessment and total sample size. Quality scores ranged from 0 point (worst) to 12 points (best). Studies scoring higher than 9 points were classified as high quality.

Statistical analysis

First, deviance from HWE was assessed for the controls of each study using the chi-squared test. Second, genotype distributions of controls were used to estimate the frequency of the putative risk allele (I allele) in various geographic location using the inverse variance method [16]. Third, we mainly examined the overall effects for I/D polymorphism. Briefly, the pooled ORs along with their corresponding 95% CIs were estimated for allelic comparison (I vs D), additive model (homozygote comparison: II vs DD; heterozygote comparison: ID vs DD), the recessive model (II vs ID+DD) and the dominant model (II+ID vs DD).

Cochran's Q statistic was used to test for heterogeneity, and the percentage variability of the heterogeneity between studies was quantified using the I^2 statistic. Thus, I^2 values around 25%, 50% and 75% would indicate low, medium and high heterogeneity respectively [18]. The random-effect model (DerSimonian-Laird) [19] was used to assess pooled ORs when I^2 (%)>50% or P (Q)< 0.10. Otherwise, the fixed-effect model (Mantel-Haenszel) [20] was used. Subgroup analyses were performed, when feasible, according to geographic location (ethnicity), sample size, quality appraisal score, genotyping methods, source of controls, and publication time. In addition, a meta-regression procedure was adopted to find potential sources of heterogeneity [21]. Further, Galbraith plots were used to visualize the impact of individual studies on the overall homogeneity, which identified the outliers as possible major sources of heterogeneity [22]. Cumulative metaanalyses of associations for I/D polymorphism were also performed to investigate the trend and the stability of risk effects as evidence accumulated over time (by publication year). In addition, sensitivity analyses were carried out to evaluate the stability of the results through sequential removal of each study or after excluding those studies that deviated from HWE. Moreover, sensitivity analyses limited to only the English-language studies were conducted to investigate the influence of Chinese-language studies on the overall meta-analysis. Publication bias was assessed graphically by funnel plots [23] and formally by Egger's tests [24] and Begg's tests [25], given a significant value of 0.05. All of the above analyses were conducted using RevMan 5.2 (The Nordic Cochrane Centre, The Cochrane Collaboration) & STATA 12.0 (Stata, College, TX, USA).

For each statistically significant association, the false-positive report probability (FPRP) analyses were performed using the method reported by Wacholder et al [26]. The FPRP value is determined by the p value, the prior probability for the association, and statistical power. We calculated FPRP assuming a prior probability of 0.001 as previously proposed [27] for candidate gene analyses. Statistical power was based on the ability to detect an OR of 1.5, with α equal to the observed p value. An FPRP cutoff value of 0.2 was used [26] and only the results with FPRP value less than 0.2 were referred as noteworthy. Statistical power and FPRP analyses were computed using the Excel spreadsheet provided by Wacholder et al [26].

Result

Study characteristics

A total of 166 relevant articles were initially identified from Pubmed, EMBASE, Alzgene and CNKI databases. After titles and abstracts were screened, 93 articles were excluded because of irrelevant data. The full texts of the remaining 73 records were carefully reviewed (Fig. 1). Among these articles, 16 articles were about other ACE SNPs; two articles were excluded because of FAD [28] or MCI data [29]; four articles were excluded due to case reports [30] or review papers [31-33]; four articles were excluded owing to overlapped [34-36] or insufficient data [37]. Manual search of references cited in the published articles revealed one additional article [38]. Four of the eligible articles [11,39-41] contained data from 9 independent studies. Therefore, 48 articles including 53 studies were included in the present meta-analysis [11,12,14,38-82]. Among these studies, a total of 18 studies reported on North European populations; 14 studies on South Caucasians (defined here as from the Mediterranean or Jews); 15 studies on Asians and 6 studies on other ethnicities. Deviation of

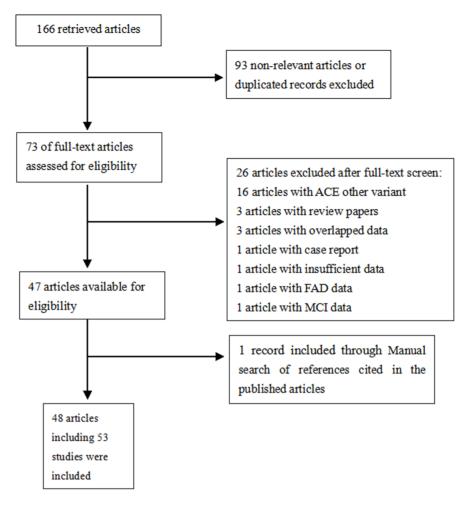


Figure 1. Flow chart of article selection in our meta-analysis. doi:10.1371/journal.pone.0111406.g001

HWE was detected in the control subjects of eight studies [39,40,48,50,52,64,66,71]. The flowchart for the process of including/excluding articles is shown in Figure 1, and the characteristics of all included studies are summarized in Table 1.

Pooled prevalence of I/D polymorphism in controls

Overall, the eligible studies included 8153 cases and 14932 controls, and all these samples were genotyped. The pooled frequencies of the *ACE* I allele in control populations demonstrated variation among geographic location/ethnicity groups. Frequencies of the I allele were highest among Asians (59.3%, 95%CI = 54.5-63.9%, using random-effect model), followed by North Europeans (46.9%, 95%CI = 46.2-47.7%, using fixed-effect model) and South Caucasians (39.7%, 95%CI = 36.6-42.8%, using random-effect model). Sensitivity analyses excluding the HWE-deviated studies showed similar results.

Meta-analysis results

Summaries of the odds ratios for different comparisons were provided in Table 2. In brief, the associations between I/D polymorphism and SAD risk were revealed using allelic comparison (OR = 1.09. 95%CI = 1.01-1.17), homozygote comparison (OR = 1.17, 95%CI = 1.01-1.34) and the dominant model (OR = 1.16, 95%CI = 1.04-1.29). However, FPRP values at the pre-specified prior probability of 0.001were all higher than 0.2

(Table 3), indicating that the associations were not noteworthy. Otherwise, the recessive model showed no significant association in the overall comparisons and all subgroup analyses.

When studies were stratified by sample size (Figure 2) and quality appraisal score (Figure 3), the significant associations were especially found in studies with small sample size and the low quality subgroup (Table 2). However, FPRP analyses suggested that the positive results were weak evidence of true associations (Table 3). Otherwise, it was noted that the significant associations between I/D variant and SAD risk disappeared when we restricted to the large sample size studies and the high quality studies (Table 2).

We also investigated potential influence arising from the use of different genotyping method (genotyping with insertion-specific primers prevents mistyping of ID to DD and is thus considered to be more accurate compared with the original method [83]) (Table 2). No statistically significant finding was observed in either the PCR with original primers subgroup or the PCR with insertion-specific primers counterpart, with one exception: a fragile significant finding was seen in the latter subgroup for the dominant model (OR = 1.17, 95%CI = 1.01-1.35), while it was not sufficient robust to withstand the FPRP analysis (Table 3).

When studies were stratified by source of controls (Table 2), significant elevated SAD risks were associated with the I/D polymorphism in the non population-based control subgroup for

• 1. Characteristics of included studies in this meta-analysis evaluating the effects of I/D polymorphism on the risk of de
-

								l allele		1
No.	First author (Year)	Country	Ethnicity	Sample size (Case/Control)	Criteria for SAD diagnosis	Genotyping method	Source of control	frequency (%)	HWE (p)	Quality score
	Scacchi 1998 [42]	Italy	South Caucasian	80/153	NINCDS/ADRDA	PCR (original primer)	4	36.9	Y (0.764)	8
	Chapman 1998 [43]	Israel	South Caucasian	49/40	NINCDS/ADRDA and DSM-III-R	PCR (original primer)	Ь	33.8	Y (0.754)	7
	Kehoe (London) 1999 [11]	UK	North European	135/111	NINCDS/ADRDA	PCR (insertion specific primer)	Ь	41.4	Y (0.251)	6
	Kehoe (Belfast) 1999 [11]	UK	North European	209/198	NINCDS/ADRDA	PCR (insertion specific primer)	Ь	51.5	Y (0.485)	10
	Kehoe (Cardiff) 1999 [11]	ΩK	North European	198/77	NINCDS/ADRDA	PCR (insertion specific primer)	Ь	40.3	Y (0.820)	10
	Palumbo 1999 [44]	Italy	South Caucasian	140/40	NINCDS/ADRDA	PCR (insertion specific primer)	4	37.5	Y (0.109)	6
	Hu 1999 [45]	Japan	Asian	132/148	NINCDS/ADRDA	PCR (original primer)	Ъ	61.8	Y (0.618)	10
	Alvarez 1999 [46]	Spain	South Caucasian	350/517	NINCDS/ADRDA	PCR (insertion specific primer)	4	37.3	Y (0.458)	11
	Farrer (Moscow) 2000 [39]	Moscow	North European	151/206	NINCDS/ADRDA	PCR (original primer)	¥	47.6	Y (0.221)	11
	Farrer (Mixed) 2000 [39]	Mixed	North American	235/162	NINCDS/ADRDA	PCR (original primer)	4	38.6	N (0.022)	10
	Mattila 2000 [47]	Finland	North European	80/67	NINCDS/ADRDA and CERAD	PCR (insertion specific primer)	Ь	38.1	Y (0.879)	6
	Crawford 2000 [48]	USA	North American	171/175	NINCDS/ADRDA	PCR (insertion specific primer)	Р	38.3	N (0.018)	11
	Myllykangas 2000 [49]	Finland	North European	121/75	NINCDS/ADRDA and CERAD	PCR (original primer)	A	57.3	Y (0.166)	6
	Yang 2000 [50]	China	Asian	188/227	NINCDS/ADRDA and DSM-IV	PCR (original primer)	т	57.5	N (<0.001)8	œ
	Narain 2000 [52]	ΓK	North European	239/342	CERAD	PCR (insertion specific primer)	Ь	47.2	N (<0.001) 10	10
	Isbir 2000 [51]	Turkey	South Caucasian	35/29	NINCDS/ADRDA	PCR (original primer)	Ч	48.3	Y (0.356)	7
	Zuliani 2001 [53]	Italy	South Caucasian	40/54	NINCDS/ADRDA	PCR (original primer)	Ч	42.6	Y (0.317)	6
	Perry 2001 [54]	USA	African American	111/78	NINCDS/ADRDA	PCR (original primer)	Ь	32.1	Y (0.302)	6
	Richard (Cohort 1) 2001 [40]	France	South Caucasian	433/475	NINCDS/ADRDA and DSM-III-R	PCR (insertion specific primer)	Ч	45.2	Y (0.833)	11
	Richard (Cohort 2) 2001 [40]	France	South Caucasian	56/221	NINCDS/ADRDA and DSM-III-R	PCR (insertion specific primer)	¥	50.7	N (0.050)	10
	Buss 2002 [55]	Europe	North European	261/306	NINCDS/ADRDA	PCR (insertion specific primer)	Ь	46.7	Y (0.618)	10
	Wu 2002 [56] ^a	China	Asian	96/96	DSM-IV	PCR (original primer)	Ь	49.5	Y (0.839)	6
	Lendon 2002 [57]	ΩK	North European	214/99	NINCDS/ADRDA and DSM-III-R	PCR (original primer)	Ь	49.5	Y (0.365)	10
	Monastero 2002 [58]	ltaly	South Caucasian	149/149	NINCDS/ADRDA	PCR (original primer)	Ь	39.9	Y (0.444)	10
	Cheng 2002 [59]	China	Asian	173/116	NINCDS/ADRDA	PCR (insertion specific primer)	Ч	64.7	Y (0.545)	11
	Panza 2003 [60]	Italy	South Caucasian	141/268	NINCDS/ADRDA	PCR (insertion specific primer)	Ь	37.7	Y (0.115)	11
	Seripa (Italy) 2003 [41]	Italy	South Caucasian	126/106	NINCDS/ADRDA	PCR (insertion specific primer)	Ч	37.7	Y (0.708)	10
	Seripa (USA) 2003 [41]	USA	North American	124/97	NINCDS/ADRDA and CERAD	PCR (insertion specific primer)	A	45.4	Ү (0.098)	10
	Kehoe 2003 [12]	ΓK	North European	333/109	CERAD	PCR (insertion specific primer)	A	45.9	Y (0.681)	11
	Carbonell 2003 [61]	UK	North European	80/65	NINCDS/ADRDA	PCR (original primer)	W	49.2	Y (0.903)	8
	Camelo 2004 [62]	Columbia	South American	83/68	NINCDS/ADRDA	PCR (original primer)	Ч	47.8	Y (0.456)	7
	Chalmers 2004 [63]	UK	North European	83/58	CERAD	PCR (insertion specific primer)	А	43.1	Y (0.904)	6
	Feng 2004 [64] ^a	China	Asian	26/68	DSM-IV	PCR (insertion specific primer)	Ч	60.3	N (<0.001) 7	2
			1 - -				:		(012.0) \	¢,

Tal	Table 1. Cont.									
Š.	First author (Year)	Country	Ethnicity	Sample size (Case/Control)	Criteria for SAD diagnosis	Genotyping method	Source of control	l allele frequency (%)	HWE (p)	Quality score
35	Kolsch 2005 [65]	Germany	North European	351/348	DSM-IV	PCR (insertion specific primer)	Ъ	45.3	Υ (0.174)	12
36	Zhang 2005 [66]	China	Asian	192/195	NINCDS/ADRDA and DSM-IV	PCR (original primer)	4	65.4	N (0.006)	8
37	Sleeger 2005 [67]	Netherland	North European	250/6403	DSM-III-R	PCR (insertion specific primer)	Ч	47.1	Y (0.428)	12
38	Keikhaee 2006 [68]	Iran	Asian	117/125	NINCDS/ADRDA	PCR (original primer)	Ь	43.2	Y (0.806) 8	8
39	Meng 2006 [69]	Israel	South Caucasian	92/166	NINCDS/ADRDA	PCR (original primer)	Ъ	31.0	Y (0.993)	8
40	Wehr 2006 [70]	Poland	North European	100/144	NINCDS/ADRDA	PCR (insertion specific primer)	Ъ	48.6	Y (0.492)	6
41	Wang B 2006 [71]	China	Asian	104/128	DSM-III-R	PCR (original primer)	Ч	62.1	N (0.013)	7
42	Wang HK 2006 [72]	China	Asian	151/161	NINCDS/ADRDA and DSM-IV	PCR (insertion specific primer)	Р	76.1	Y (0.929)	11
43	Nacimas 2007 [73]	Italy	South Caucasian	235/303	DSM-IV	PCR (insertion specific primer)	Ч	33.7	Y (0.145)	12
44	Liu 2007 [74] ^a	China	Asian	39/50	NINCDS/ADRDA and DSM-IV	PCR (original primer)	Ч	57.0	Y (0.311)	7
45	Han 2008 [75] ^a	China	Asian	55/59	NINCDS/ADRDA	PCR (original primer)	Ч	61.1	Y (0.441)	7
46	Vardy 2009 [38]	UK	North European	94/188	NINCDS/ADRDA	PCR (insertion specific primer)	т	47.9	Y (0.980)	10
47	Miners 2009 [76]	UK	North European	86/49	CERAD	PCR (insertion specific primer)	A	34.7	Y (0.487) 8	8
48	Ning 2010 [77]	China	Asian	138/469	NINCDS/ADRDA and DSM-III-R	PCR (original primer)	Ч	61.3	Y (0.528)	11
49	Nirmal 2011 [78]	India	Asian	95/130	DSM-IV	PCR (insertion specific primer)	Ч	45.4	Y (0.937)	10
50	Cousin 2011 [79]	France	South Caucasian	421/460	NINCDS/ADRDA	PCR (original primer)	Ь	44.5	Y (0.582)	10
51	Lucatelli 2011 [80]	Brazil	South American	35/67	NINCDS/ADRDA and DSM-IV	PCR (original primer)	Ъ	53.7	Y (0.072) 8	8
52	Yang 2011 [81]	China	Asian	257/137	NINCDS/ADRDA	PCR (insertion specific primer)	Ь	74.1	Y (0.213)	12
53	Zhang 2014 [82] ^a	China	Asian	96/102	NINCDS/ADRDA and DSM-IV	PCR (original primer)	т	49.5	Y (0.999)	80
NIN	"DA/ADRDA: The National Institut	te of Neurological a	and Communicative Di	sorders and Stroke-A	NINCDA/ADRDA: The National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association: DSM: Diagnostic and Statistical Manual of Mental Disorders. CFBAD:	Inders Association: DSM: Diagnostic	and Statistical	Manual of Me	ntal Disorde	s: CFRAD:

NINCDA/ADRDA: The National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association; DSM: Diagnostic and Statistical Manual of Mental Disorders; CERAD: Consortium to Establish a Registry for Alzheimer's Disease; P: population-based controls; M: Mixed; A: autopsy controls; H: Hospital-based controls; HWE: Hardy-Weinberg equilibrium; Y: Yes; N: No. ^aChinese-language studies. doi:10.1371/journal.pone.0111406.t001

PLOS ONE | www.plosone.org

5

Variables	z	Allelic comparison (I vs D)	on (I vs C		Additive model (II vs DD)	vs DD)		Additive model (ID vs DD)	(ID vs DC	6	Recessive model (II vs ID+DD)	-	Dominant model (II+ID vs DD)	sv (IHI)) DD
		OR (95%CI) ^a	P (%)	P (Q)	OR (95%CI) ^a	P (%)	P (Q)	OR (95%CI) ^a	<i>F</i> (%)	P (Q)	OR (95%CI) ^a	P (%) P (Q)	OR (95%CI) ^a	P ² (%)	P (Q)
Overall	53	1.09 (1.01, 1.17)	60	<10 ⁻³	1.17 (1.01, 1.34)	52	<10 ⁻³	1.11 (0.98, 1.25)	60	<10 ⁻³	1.08 (0.96, 1.21)	53 <10 ⁻³	³ 1.16 (1.04, 1.29)	51	<10 ^{_3}
All in HWE	45	1.11 (1.03, 1.20)	56	<10 ⁻³	1.19 (1.02, 1.38)	49	<10 ⁻³	1.08 (0.95, 1.24)	58	<10 ⁻³	1.10 (0.97, 1.25)	$52 < 10^{-3}$	³ 1.17 (1.05, 1.31)	45	0.001
English-language articles	s 48	1.07 (0.99, 1.15)	56	<10 ⁻³	1.13 (0.98, 1.29)	48	<10 ⁻³	1.09 (0.96, 1.24)	62	<10 ⁻³	1.05 (0.94, 1.17)	$48 < 10^{-3}$	³ 1.14 (1.02, 1.27)	50	<10 ⁻³
Geographic location															
North European	18	1.11 (1.01, 1.21)	36	0.067	1.24 (1.05, 1.48)	24	0.176	1.16 (0.91, 1.48)	34	0.100	1.12 (0.97, 1.29)	25 0.165	1.22 (1.03, 1.45)	25	0.125
South Caucasian	14	0.99 (0.91, 1.09)	15	0.292	0.96 (0.80, 1.16)	6	0.356	0.98 (0.83, 1.15)	32	0.118	0.92 (0.78, 1.10)	13 0.307	1.04 (0.93, 1.17)	0	0.525
Asian	15	1.19 (0.96, 1.49)	80	<10 ⁻³	1.38 (0.94, 2.04)	75	<10 ⁻³	1.16 (0.86, 1.57)	56	0.004	1.27 (0.96, 1.67)	$76 < 10^{-3}$	³ 1.26 (0.91, 1.75)	68	<10 ⁻³
Other ethnicities	9	1.04 (0.82, 1.31)	25	0.150	1.02 (0.69, 1.52)	39	0.148	1.24 (0.90, 1.73)	41	0.131	0.90 (0.69, 1.18)	0 0.421	1.15 (0.82, 1.63)	54	0.053
Study quality															
High (>9)	28	1.05 (0.97, 1.15)	63	<10 ⁻³	1.10 (0.94, 1.30)	54	<10 ⁻³	1.02 (0.88, 1.25)	65	<10 ⁻³	1.05 (0.91, 1.21)	$63 < 10^{-3}$	³ 1.10 (0.98, 1.23)	45	0.005
Low (≤9)	25	1.14 (0.99, 1.30)	57	<10 ⁻³	1.27 (0.99, 1.63)	50	0.003	1.25 (1.02, 1.54)	46	0.007	1.13 (0.94, 1.36)	35 0.046	1.25 (1.01, 1.55)	56	<10 ⁻³
Sample size															
Large (≥250)	28	1.04 (0.95, 1.14)	66	<10 ⁻³	1.09 (0.92, 1.29)	59	<10 ⁻³	1.01 (0.87, 1.18)	67	<10 ⁻³	1.04 (0.90, 1.20)	$63 < 10^{-3}$	³ 1.08 (0.96, 1.23)	54	<10 ⁻³
Small (<250)	25	1.17 (1.03, 1.32)	49	<10 ⁻³	1.32 (1.04, 1.66)	39	0.024	1.28 (1.06, 1.55)	35	0.042	1.16 (0.96, 1.40)	34 0.048	1.29 (1.06, 1.56)	45	0.009
Source of control															
PB	40	1.08 (0.99, 1.18)	63	<10 ⁻³	1.15 (0.96, 1.37)	60	<10 ⁻³	0.98 (0.90, 1.06)	65	<10 ⁻³	1.08 (0.94, 1.24)	$58 < 10^{-3}$	³ 1.13 (0.99, 1.28)	55	<10^3
Non PB	13	1.11 (0.95, 1.28)	52	0.015	1.18 (0.98, 1.43)	5	0.400	1.29 (1.11, 1.50)	0	0.624	1.04 (0.86, 1.25)	27 0.175	1.24 (1.01, 1.52)	35	0.102
Date of publication time															
After or during 2003	28	1.06 (0.95, 1.18)	65	<10 ⁻³ 1.10	1.10 (0.91, 1.33)	53	0.001	0.94 (0.80, 1.10)	52	0.001	1.10 (0.93, 1.30)	$61 < 10^{-3}$	³ 1.05 (0.92, 1.20)	38	0.023
Before 2003	25	1.12 (1.01, 1.24)	56	<10 ⁻³	1.24 (1.01, 1.53)	52	0.001	1.30 (1.10, 1.54)	54	0.001	1.06 (0.91, 1.23)	41 0.017	1.28 (1.09, 1.52)	58	<10 ⁻³
Genotyping method															
PCR (insertion-specific)	27	1.06 (0.96, 1.17)	63	<10 ⁻³	1.14 (0.94, 1.38)	58	<10 ⁻³	1.11 (0.92, 1.34)	72	<10 ⁻³	1.03 (0.88, 1.19)	54 0.001	1.17 (1.01, 1.35)	58	<10 ⁻³
PCR (original primer)	26	1.11 (0.99, 1.25)	59	<10 ⁻³	1.20 (0.98, 1.47)	47	0.005	1.10 (0.94, 1.28)	33	0.054	1.14 (0.96, 1.36)	51 0.001	1.14 (0.97, 1.33)	44	0.008
N: number of studies; OR: odd ratio; CI: confidence interval; I ² : value of P^2 for heterogeneity test; P (Q): p value of the Cochran's Q test for heterogeneity. ³ A random-effect model was used when P (Q) < 0.10 or $P^2 > 50\%$; otherwise, a fixed-effect model was used. Bold values are significant associations before the FPRP analyses.	R: odd r was us nt assoc 011140	atio; CI: confidence ed when P (Q) <0.1 ⁱ iations before the F (6.002	interval; I ² 0 or <i>I</i> ² >50 PRP analy:	: value of %; othen ses.	f <i>f</i> ² for heterogeneity t wise, a fixed-effect mo	test; P (Q) odel was u	: p value - used.	of the Cochran's Q	test for h	eterogen	aity.				

Table 2. Summary odds ratio and heterogeneity of the I/D polymorphism on SAD risk.

	Cas Events		Conti Events		Weight	Odds Ratio M-H, Random, 95% Cl	Year	Odds Ratio M-H, Random, 95% Cl
<u>Study or Subgroup</u> 1.4.1 Large sample size	LIVING	. ortai		, or car				
Alvarez 1999	301	700	386	1034	2.8%	1.27 [1.04, 1.54]	1999	-
Hu 1999	190	264	183	296	1.9%	1.59 [1.11, 2.26]		- .
Kehoe(Cardiff) 1999	203	396	62	154	1.8%	1.56 [1.07, 2.28]		
Kehoe(Belfast) 1999	240	418	204	396	2.3%	1.27 [0.96, 1.67]		
Yang 2000	249	376	261	454	2.3%	1.45 [1.09, 1.92]		-
Crawford 2000	148	342	134	350	2.2%	1.23 [0.91, 1.67]		
Farrer(Mixed) 2000	170	470	125	324	2.2%	0.90 [0.67, 1.21]		
Farrer(Moscow) 2000	136	302	196	412	2.2%	0.90 [0.67, 1.22]		
Narain 2000	171	478	263	684	2.5%	0.89 [0.70, 1.14]		-+
Richard(cohort1) 2001	387	866	429	950	2.8%	0.98 [0.82, 1.18]		+
Richard(cohort2) 2001	42	112	224	442	1.6%	0.58 [0.38, 0.89]		
Buss 2002	226	522	286	612	2.6%	0.87 [0.69, 1.10]		
Cheng 2002	249	346	150	232	1.9%	1.40 [0.98, 2.01]		
Lendon 2002	206	428	98	198	2.0%	0.95 [0.68, 1.33]		+
Monastero 2002	122	298	119	298	2.1%	1.04 [0.75, 1.45]		+
Kehoe 2003	317	666	100	218	2.2%	1.07 [0.79, 1.46]		+
Panza 2003	109	282	202	536	2.2%	1.04 [0.77, 1.40]		+-
Zhang 2005	234	384	255	390	2.2%	0.83 [0.62, 1.11]		
Lehmann 2005	234 196	406	235	496	2.2%	1.09 [0.84, 1.42]		
Kolsch 2005	365	702	315	490 696	2.4%	1.31 [1.06, 1.62]		
Sleeger 2005	239	500	6026		2.9%	1.03 [0.86, 1.23]		+
Wang HK 2006	239 189	302	245	322	2.9%	0.53 [0.37, 0.74]		
Meng 2006	50	184	245 103	332	2.0%	0.83 [0.56, 1.24]		
			204			the second second second to a second		1
Nacimas 2007 Vordy 2000	158	470 100		606 276	2.4%	1.00 [0.77, 1.29]		↓
Vardy 2009 Ning 2010	91 203	188 276	180 575	376 020	1.9%	1.02 [0.72, 1.45] 1.76 [1.30, 2.37]		
Ning 2010			575	938	2.2%	NAME AND ADDRESS ADDRE		
Yang 2011 Causin 2014	345	514	203	274	2.1%	0.71 [0.51, 0.99]		1
Cousin 2011 Subtotal (05% CD	365	842	409	920	2.8%	0.96 [0.79, 1.15]	2011	
Subtotal (95% CI)	6004	12034	40400	25746	62.9 %	1.04 [0.95, 1.14]		
Total events Heterogeneity: Tau² = 0.0	5901	20.00 -	12166		43.17.00	or		
Test for overall effect: Z =	Y							
1.4.2 Small sample size								
Chapman 1998	33	98	27	80	1.0%	1.00 [0.53, 1.86]		
Chapman 1998 Scacchi 1998	61	160	113	306	1.7%	1.05 [0.71, 1.56]	1998	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999	61 134	160 270	113 92	306 222	1.7% 1.9%	1.05 [0.71, 1.56] 1.39 [0.97, 1.99]	1998 1999	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999	61 134 104	160 270 280	113 92 30	306 222 80	1.7% 1.9% 1.3%	1.05 [0.71, 1.56] 1.39 [0.97, 1.99] 0.98 [0.59, 1.65]	1998 1999 1999	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000	61 134 104 81	160 270 280 160	113 92 30 51	306 222 80 134	1.7% 1.9% 1.3% 1.4%	1.05 [0.71, 1.56] 1.39 [0.97, 1.99] 0.98 [0.59, 1.65] 1.67 [1.05, 2.66]	1998 1999 1999 2000	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000	61 134 104 81 31	160 270 280 160 70	113 92 30 51 28	306 222 80 134 58	1.7% 1.9% 1.3% 1.4% 0.8%	1.05 [0.71, 1.58] 1.39 [0.97, 1.99] 0.98 [0.59, 1.65] 1.67 [1.05, 2.66] 0.85 [0.42, 1.71]	1998 1999 1999 2000 2000	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001	61 134 104 81 31 90	160 270 280 160 70 222	113 92 30 51 28 50	306 222 80 134 58 156	1.7% 1.9% 1.3% 1.4% 0.8% 1.6%	1.05 [0.71, 1.56] 1.39 [0.97, 1.99] 0.98 [0.59, 1.65] 1.67 [1.05, 2.66] 0.85 [0.42, 1.71] 1.45 [0.94, 2.22]	1998 1999 1999 2000 2000 2001	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001 Zuliani 2001	61 134 104 81 31 90 26	160 270 280 160 70 222 80	113 92 30 51 28 50 46	306 222 80 134 58 156 108	1.7% 1.9% 1.3% 1.4% 0.8% 1.6% 1.0%	1.05 [0.71, 1.56] 1.39 [0.97, 1.99] 0.98 [0.59, 1.65] 1.67 [1.05, 2.66] 0.85 [0.42, 1.71] 1.45 [0.94, 2.22] 0.65 [0.35, 1.19]	1998 1999 1999 2000 2000 2001 2001	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001 Zuliani 2001 Monastero 2002	61 134 104 81 31 90 26 122	160 270 280 160 70 222 80 298	113 92 30 51 28 50 46 119	306 222 80 134 58 156 108 298	1.7% 1.9% 1.3% 1.4% 0.8% 1.6% 1.0% 2.1%	1.05 [0.71, 1.56] 1.39 [0.97, 1.99] 0.98 [0.59, 1.65] 1.67 [1.05, 2.66] 0.85 [0.42, 1.71] 1.45 [0.94, 2.22] 0.65 [0.35, 1.19] 1.04 [0.75, 1.45]	1998 1999 2000 2000 2001 2001 2001 2002	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001 Zuliani 2001 Monastero 2002 Wu 2002	61 134 104 81 31 90 26 122 124	160 270 280 160 70 222 80 298 192	113 92 30 51 28 50 46 119 95	306 222 80 134 58 156 108 298 192	1.7% 1.9% 1.3% 1.4% 0.8% 1.6% 1.0% 2.1% 1.7%	1.05 [0.71, 1.56] 1.39 [0.97, 1.99] 0.98 [0.59, 1.65] 1.67 [1.05, 2.66] 0.85 [0.42, 1.71] 1.45 [0.94, 2.22] 0.65 [0.35, 1.19] 1.04 [0.75, 1.45] 1.86 [1.24, 2.80]	1998 1999 2000 2000 2001 2001 2001 2002 2002	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003	61 134 104 81 31 90 26 122 124 77	160 270 280 160 70 222 80 298 192 160	113 92 30 51 28 50 46 119 95 64	306 222 80 134 58 156 108 298 192 130	1.7% 1.9% 1.3% 1.4% 0.8% 1.6% 1.0% 2.1% 1.7% 1.5%	1.05 [0.71, 1.56] 1.39 [0.97, 1.99] 0.98 [0.59, 1.65] 1.67 [1.05, 2.66] 0.85 [0.42, 1.71] 1.45 [0.94, 2.22] 0.65 [0.35, 1.19] 1.04 [0.75, 1.45] 1.86 [1.24, 2.80] 0.96 [0.60, 1.52]	1998 1999 2000 2000 2001 2001 2002 2002 2002	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perny 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia(America) 2003	61 134 104 81 31 90 26 122 124 77 119	160 270 280 160 70 222 80 298 192 160 248	113 92 30 51 28 50 46 119 95 64 88	306 222 80 134 58 156 108 298 192 130 194	1.7% 1.9% 1.3% 1.4% 0.8% 1.6% 1.0% 2.1% 1.7% 1.5% 1.8%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.65 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.85 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.86 \left[1.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \end{array}$	1998 1999 2000 2000 2001 2001 2002 2002 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Perny 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia (America) 2003 Seripa (Italy) 2003	61 134 104 81 31 26 122 124 77 119 97	160 270 280 160 70 222 80 298 192 160 248 252	113 92 30 51 28 50 46 119 95 64 88 80	306 222 80 134 58 156 108 298 192 130 194 212	1.7% 1.9% 1.3% 1.4% 0.8% 1.6% 1.0% 2.1% 1.7% 1.5% 1.8% 1.8%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.65 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.85 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.86 \left[1.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \\ 1.03 \left[0.71 , 1.50 \right] \end{array}$	1998 1999 2000 2000 2001 2001 2002 2002 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Perry 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia(America) 2003 Seripa(Italy) 2003 Chalmers 2004	61 134 104 81 31 26 122 124 77 119 97 80	160 270 280 160 222 80 298 192 160 248 252 166	113 92 30 51 28 50 46 119 95 64 88 80 50	306 222 80 134 58 156 108 298 192 130 194 212 116	1.7% 1.9% 1.3% 1.4% 0.8% 1.6% 1.0% 2.1% 1.7% 1.5% 1.8% 1.8% 1.8%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.85 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.85 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.86 \left[1.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \\ 1.23 \left[0.76 , 1.98 \right] \end{array}$	1998 1999 2000 2000 2001 2001 2002 2002 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Perry 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia(America) 2003 Serpia(Haly) 2003 Chalmers 2004 Camelo 2004	61 134 104 81 31 90 26 122 124 77 119 97 80 84	160 270 280 160 222 80 298 192 160 248 252 166 166	113 92 30 51 28 50 46 119 95 64 88 80 50 65	306 222 80 134 58 156 108 298 192 130 194 212 116 136	1.7% 1.9% 1.3% 0.8% 1.6% 1.0% 1.7% 1.5% 1.8% 1.8% 1.8% 1.8%	1.05 [0.71, 1.56] 1.39 [0.97, 1.99] 0.98 [0.59, 1.85] 1.67 [1.05, 2.66] 0.85 [0.42, 1.71] 1.45 [0.94, 2.22] 0.65 [0.35, 1.19] 1.04 [0.75, 1.45] 1.86 [1.24, 2.80] 0.96 [0.60, 1.52] 1.11 [0.76, 1.62] 1.23 [0.76, 1.98] 1.12 [0.71, 1.76]	1998 1999 2000 2000 2001 2001 2002 2002 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe (London) 1999 Palumbo 1999 Mattia 2000 Perry 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia (America) 2003 Serpia (Italy) 2003 Chalmers 2004 Feng 2004	61 134 104 81 31 90 26 122 124 77 119 97 80 84 21	160 270 280 160 70 222 80 298 192 160 248 252 166 166 52	113 92 30 51 28 50 46 119 95 64 88 80 50 65 82	306 222 80 134 58 156 108 298 130 194 212 116 136 136	1.7% 1.9% 1.3% 1.4% 0.8% 1.6% 1.0% 1.7% 1.5% 1.8% 1.8% 1.4% 1.5% 0.9%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.65 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.85 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.86 \left[1.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \\ 1.03 \left[0.71 , 1.50 \right] \\ 1.23 \left[0.76 , 1.98 \right] \\ 1.12 \left[0.71 , 1.76 \right] \\ 0.45 \left[0.23 , 0.86 \right] \end{array}$	1998 1999 2000 2000 2001 2001 2002 2002 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia(America) 2003 Serpia(Italy) 2003 Chalmers 2004 Camelo 2004 Feng 2004 Keikhaee 2006	61 134 104 81 31 26 122 124 77 119 97 80 84 21 102	160 270 280 160 70 222 80 298 192 160 248 252 166 166 52 234	113 92 30 51 28 50 46 119 95 64 88 80 50 65 82 108	306 222 80 134 58 156 108 298 192 192 194 212 116 136 136 250	1.7% 1.9% 1.3% 1.4% 0.8% 1.6% 1.6% 1.5% 1.8% 1.8% 1.8% 1.4% 1.5% 0.9%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.65 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.86 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.86 \left[1.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \\ 1.03 \left[0.71 , 1.50 \right] \\ 1.23 \left[0.76 , 1.98 \right] \\ 1.12 \left[0.71 , 1.76 \right] \\ 0.45 \left[0.23 , 0.86 \right] \\ 1.02 \left[0.71 , 1.46 \right] \end{array}$	1998 1999 2000 2000 2001 2001 2002 2002 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia(America) 2003 Serpia(Italy) 2003 Chalmers 2004 Camelo 2004 Feng 2004 Keikhaee 2006 Wehr 2006	61 134 104 81 31 90 26 122 124 77 119 97 80 84 21 102 102	160 270 280 160 70 222 80 298 192 160 248 252 166 166 52 234 200	113 92 30 51 28 50 46 119 95 64 88 80 50 50 82 82 108 140	306 222 80 134 58 156 108 298 192 130 194 212 116 136 250 288	1.7% 1.9% 1.3% 1.4% 0.8% 1.6% 1.0% 2.1% 1.5% 1.5% 1.5% 1.4% 1.5% 0.9% 1.9%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.65 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.85 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.86 \left[1.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \\ 1.03 \left[0.71 , 1.50 \right] \\ 1.23 \left[0.76 , 1.98 \right] \\ 1.12 \left[0.71 , 1.76 \right] \\ 0.45 \left[0.23 , 0.86 \right] \\ 1.02 \left[0.71 , 1.46 \right] \\ 1.10 \left[0.77 , 1.58 \right] \end{array}$	1998 1999 2000 2000 2001 2001 2002 2003 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia(Merica) 2003 Serpia(Italy) 2003 Chalmers 2004 Camelo 2004 Feng 2004 Keikhaee 2006 Wehr 2006	61 134 104 81 31 90 26 122 124 77 119 97 80 80 84 21 102 102 102	160 270 280 160 70 222 80 298 192 160 248 252 166 166 52 234 200 208	113 92 30 51 28 50 46 119 95 64 88 80 50 65 82 108 140 159	306 222 80 134 58 156 298 192 130 194 212 116 136 250 288 256	1.7% 1.9% 1.3% 1.4% 0.8% 1.0% 2.1% 1.7% 1.5% 1.8% 1.5% 1.8% 1.4% 0.9% 1.9% 1.9%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.65 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.85 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.86 \left[1.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \\ 1.03 \left[0.71 , 1.50 \right] \\ 1.23 \left[0.76 , 1.98 \right] \\ 1.12 \left[0.71 , 1.76 \right] \\ 0.45 \left[0.23 , 0.86 \right] \\ 1.02 \left[0.77 , 1.46 \right] \\ 1.10 \left[0.77 , 1.58 \right] \\ 1.54 \left[1.04 , 2.28 \right] \end{array}$	1998 1999 2000 2001 2001 2002 2002 2003 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia(America) 2003 Serpia(Mareica) 2003 Serpia(Italy) 2003 Chalmers 2004 Camelo 2004 Feng 2004 Keikhaee 2006 Wehr 2006 Wang 2006 Liu 2007	61 134 104 81 31 90 26 122 124 77 119 97 80 84 21 102 102 149 56	160 270 280 160 222 80 298 192 160 248 252 166 166 52 234 200 208 78	113 92 30 51 28 50 46 119 95 64 88 80 50 65 82 108 140 159 57	306 222 80 134 58 156 108 298 192 130 194 212 116 136 136 136 250 288 256 100	1.7% 1.9% 1.3% 1.6% 1.6% 2.1% 1.7% 1.5% 1.8% 1.8% 1.8% 1.9% 1.9% 1.9%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.65 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.85 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.86 \left[1.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \\ 1.03 \left[0.71 , 1.50 \right] \\ 1.23 \left[0.76 , 1.98 \right] \\ 1.12 \left[0.71 , 1.76 \right] \\ 1.02 \left[0.71 , 1.58 \right] \\ 1.02 \left[0.71 , 1.58 \right] \\ 1.54 \left[1.04 , 2.28 \right] \\ 1.92 \left[1.02 , 3.61 \right] \end{array}$	1998 1999 2000 2001 2001 2002 2002 2003 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perny 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia(America) 2003 Serpia(America) 2003 Serpia(Italy) 2003 Chalmers 2004 Camelo 2004 Feng 2004 Keikhaee 2006 Wehr 2006 Wang 2006 Liu 2007 Han 2008	61 134 104 81 31 90 26 122 124 77 119 97 80 84 21 102 102 149 56 67	160 270 280 160 222 80 298 192 160 248 252 166 166 52 234 200 208 78 110	113 92 30 51 28 50 46 199 95 64 88 80 50 65 82 108 140 159 57 66	306 222 80 134 58 156 108 298 192 130 194 212 116 136 136 256 288 256 100 118	1.7% 1.9% 1.3% 1.6% 1.6% 2.1% 1.7% 1.5% 1.8% 1.8% 1.8% 1.9% 1.9% 1.9% 1.2%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.65 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.85 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.06 \left[0.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \\ 1.03 \left[0.71 , 1.50 \right] \\ 1.23 \left[0.76 , 1.98 \right] \\ 1.12 \left[0.71 , 1.76 \right] \\ 0.45 \left[0.23 , 0.86 \right] \\ 1.02 \left[0.71 , 1.46 \right] \\ 1.01 \left[0.77 , 1.58 \right] \\ 1.54 \left[1.04 , 2.28 \right] \\ 1.92 \left[1.02 , 3.61 \right] \\ 1.23 \left[0.72 , 2.08 \right] \end{array}$	1998 1999 2000 2001 2001 2002 2002 2003 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perny 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia(America) 2003 Serpia(America) 2003 Seripa(Italy) 2003 Chalmers 2004 Camelo 2004 Feng 2004 Keikhaee 2006 Wang 2006 Liu 2007 Han 2008 Miners 2009	61 134 104 81 31 90 262 124 77 119 97 80 84 21 102 102 102 149 56 67 85	160 270 280 160 292 80 298 192 160 248 252 166 166 52 234 208 208 78 110 172	113 92 30 51 28 50 46 119 95 64 88 80 50 65 82 108 140 169 57 66 34	306 222 80 134 58 156 108 298 192 130 194 212 116 136 250 288 256 100 118 98	1.7% 1.9% 1.3% 1.6% 1.6% 2.1% 1.7% 1.5% 1.8% 1.8% 1.8% 1.9% 1.9% 1.9% 1.7% 1.2% 1.3%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.65 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.85 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.86 \left[1.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \\ 1.03 \left[0.71 , 1.50 \right] \\ 1.23 \left[0.76 , 1.98 \right] \\ 1.12 \left[0.71 , 1.76 \right] \\ 0.45 \left[0.23 , 0.86 \right] \\ 1.02 \left[0.71 , 1.46 \right] \\ 1.10 \left[0.77 , 1.58 \right] \\ 1.54 \left[1.04 , 2.28 \right] \\ 1.54 \left[1.04 , 2.28 \right] \\ 1.23 \left[0.72 , 2.08 \right] \\ 1.84 \left[1.10 , 3.07 \right] \end{array}$	1998 1999 2000 2000 2001 2002 2002 2003 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perny 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia(America) 2003 Serpia(America) 2003 Serpia(Haly) 2003 Chalmers 2004 Camelo 2004 Feng 2004 Keikhaee 2006 Wang 2006 Luiu 2007 Han 2008 Miners 2009 Lucatelli 2011	61 134 104 81 31 90 26 122 124 77 119 97 80 84 21 102 102 102 102 102 56 67 85 25	160 270 280 160 292 80 298 192 160 248 252 166 166 52 234 200 208 78 110 172 70	113 92 30 51 28 50 46 119 64 88 80 50 65 82 108 140 159 66 34 72	306 222 80 134 58 156 108 298 192 130 194 212 116 136 250 288 256 288 256 100 118 98 134	1.7% 1.9% 1.3% 1.6% 1.6% 1.7% 1.5% 1.8% 1.8% 1.8% 1.9% 1.9% 1.9% 1.9% 1.2% 1.3%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.65 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.85 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.86 \left[1.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \\ 1.23 \left[0.76 , 1.98 \right] \\ 1.12 \left[0.71 , 1.50 \right] \\ 1.23 \left[0.76 , 1.98 \right] \\ 1.12 \left[0.71 , 1.76 \right] \\ 0.45 \left[0.23 , 0.86 \right] \\ 1.02 \left[0.71 , 1.46 \right] \\ 1.10 \left[0.77 , 1.58 \right] \\ 1.54 \left[1.04 , 2.28 \right] \\ 1.92 \left[1.02 , 3.61 \right] \\ 1.23 \left[0.72 , 2.08 \right] \\ 1.84 \left[1.10 , 3.07 \right] \\ 0.48 \left[0.26 , 0.87 \right] \end{array}$	1998 1999 2000 2001 2001 2002 2002 2003 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Seripa(Marerica) 2003 Seripa(Italy) 2003 Chalmers 2004 Chalmers 2004 Camelo 2004 Keikhaee 2006 Wang 2006 Liu 2007 Han 2008 Miners 2009 Lucatelli 2011 Nirmal 2011	61 134 104 81 31 90 26 122 124 77 119 97 80 84 21 102 102 102 102 149 667 85 25 100	160 270 280 160 298 192 298 180 248 252 166 166 52 234 200 208 78 110 172 70 190	113 92 30 51 28 50 46 119 9 95 64 88 80 50 65 82 108 140 159 57 66 34 72 118	306 222 80 134 58 156 108 298 192 130 194 212 116 136 250 288 256 200 118 98 134 260	1.7% 1.9% 1.3% 1.4% 0.8% 1.6% 2.1% 1.5% 1.5% 1.8% 1.5% 0.9% 1.9% 1.9% 1.2% 1.2% 1.3% 1.2%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.65 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.65 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.86 \left[1.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \\ 1.03 \left[0.71 , 1.50 \right] \\ 1.23 \left[0.76 , 1.98 \right] \\ 1.12 \left[0.71 , 1.76 \right] \\ 0.45 \left[0.23 , 0.86 \right] \\ 1.02 \left[0.77 , 1.46 \right] \\ 1.10 \left[0.77 , 1.58 \right] \\ 1.92 \left[1.02 , 3.61 \right] \\ 1.23 \left[0.72 , 2.08 \right] \\ 1.84 \left[1.10 , 3.07 \right] \\ 0.48 \left[0.26 , 0.87 \right] \\ 1.34 \left[0.92 , 1.95 \right] \end{array}$	1998 1999 2000 2000 2001 2002 2002 2003 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia(America) 2003 Serpia(America) 2003 Chalmers 2004 Camelo 2004 Feng 2004 Keikhaee 2006 Wang 2006 Liu 2007 Han 2008 Miners 2009 Lucatelli 2011 Nirmal 2011 Zhang 2014	61 134 104 81 31 90 26 122 124 77 119 97 80 84 21 102 102 102 102 102 56 67 85 25	160 270 280 160 222 80 298 192 160 248 252 166 52 234 200 208 78 110 172 70 190	113 92 30 51 28 50 46 119 64 88 80 50 65 82 108 140 159 66 34 72	306 222 80 134 58 156 108 298 192 130 194 212 116 136 250 288 256 100 118 98 134 260 204	1.7% 1.9% 1.3% 1.6% 1.0% 2.1% 1.5% 1.5% 1.5% 1.5% 1.9% 1.9% 1.9% 1.9% 1.9% 1.2% 1.2% 1.1% 1.2%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.65 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.85 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.86 \left[1.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \\ 1.03 \left[0.71 , 1.50 \right] \\ 1.23 \left[0.76 , 1.98 \right] \\ 1.12 \left[0.71 , 1.76 \right] \\ 1.02 \left[0.71 , 1.76 \right] \\ 1.02 \left[0.71 , 1.46 \right] \\ 1.10 \left[0.77 , 1.58 \right] \\ 1.54 \left[1.04 , 2.28 \right] \\ 1.23 \left[0.72 , 2.08 \right] \\ 1.84 \left[1.03 , 0.7 \right] \\ 1.84 \left[0.26 , 0.87 \right] \\ 1.84 \left[0.26 , 0.87 \right] \\ 1.82 \left[1.22 , 2.72 \right] \end{array}$	1998 1999 2000 2000 2001 2002 2002 2003 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia(America) 2003 Serpia(America) 2003 Chalmers 2004 Camelo 2004 Feng 2004 Keikhaee 2006 Wang 2006 Liu 2007 Han 2008 Miners 2009 Lucatelli 2011 Nirmal 2011 Zhang 2014 Subtotal (95% CI)	61 134 104 81 31 90 26 122 124 77 119 97 80 84 21 102 102 102 149 56 67 85 25 100 123	160 270 280 160 298 192 298 180 248 252 166 166 52 234 200 208 78 110 172 70 190	113 92 30 51 28 50 46 119 95 64 88 80 50 65 82 108 140 159 57 66 34 72 118 101	306 222 80 134 58 156 108 298 192 130 194 212 116 136 250 288 256 200 118 98 134 260	1.7% 1.9% 1.3% 1.4% 0.8% 1.6% 2.1% 1.5% 1.5% 1.8% 1.5% 0.9% 1.9% 1.9% 1.2% 1.2% 1.3% 1.2%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.65 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.65 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.86 \left[1.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \\ 1.03 \left[0.71 , 1.50 \right] \\ 1.23 \left[0.76 , 1.98 \right] \\ 1.12 \left[0.71 , 1.76 \right] \\ 0.45 \left[0.23 , 0.86 \right] \\ 1.02 \left[0.77 , 1.46 \right] \\ 1.10 \left[0.77 , 1.58 \right] \\ 1.92 \left[1.02 , 3.61 \right] \\ 1.23 \left[0.72 , 2.08 \right] \\ 1.84 \left[1.10 , 3.07 \right] \\ 0.48 \left[0.26 , 0.87 \right] \\ 1.34 \left[0.92 , 1.95 \right] \end{array}$	1998 1999 2000 2000 2001 2002 2002 2003 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia(Kamerica) 2003 Serpia(Italy) 2003 Chalmers 2004 Camelo 2004 Feng 2004 Keikhaee 2006 Wang 2006 Liu 2007 Han 2008 Miners 2009 Lucatelli 2011 Nirmal 2011 Zhang 2014 Subtotal (95% CI) Total events	61 134 104 81 31 90 26 122 124 77 119 97 80 84 21 102 102 102 102 149 56 67 85 255 100 123 2093	160 270 280 160 222 298 192 160 248 252 166 52 234 200 208 78 110 172 70 190 192 4328	113 92 30 51 28 50 46 119 95 64 88 80 50 65 82 108 140 159 57 66 34 72 118 101	306 222 80 134 58 156 108 298 192 130 194 212 116 136 136 136 250 288 256 100 118 98 134 260 204 4266	1.7% 1.9% 1.3% 1.4% 0.8% 1.0% 2.1% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.9% 1.9% 1.9% 1.9% 1.2% 1.3% 1.3% 1.1% 37.1%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.65 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.85 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.06 \left[1.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \\ 1.03 \left[0.71 , 1.50 \right] \\ 1.23 \left[0.76 , 1.98 \right] \\ 1.12 \left[0.71 , 1.76 \right] \\ 1.02 \left[0.71 , 1.76 \right] \\ 1.02 \left[0.71 , 1.46 \right] \\ 1.10 \left[0.77 , 1.58 \right] \\ 1.54 \left[1.04 , 2.28 \right] \\ 1.23 \left[0.72 , 2.08 \right] \\ 1.84 \left[1.03 , 0.7 \right] \\ 1.84 \left[0.26 , 0.87 \right] \\ 1.84 \left[0.26 , 0.87 \right] \\ 1.82 \left[1.22 , 2.72 \right] \end{array}$	1998 1999 2000 2000 2001 2002 2002 2003 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001 Zuliani 2001 Monastero 2002 Avu 2002 Carbonell 2003 Serpia(America) 2003 Serpia(America) 2003 Chalmers 2004 Camelo 2004 Feng 2004 Keikhaee 2006 Avang 2006 Liu 2007 Han 2008 Miners 2009 Lucatelli 2011 Nirmal 2011 Zhang 2014 Subtotal (95% CI) Total events	61 134 104 81 30 26 122 124 77 119 97 80 84 21 102 102 149 56 67 85 25 100 123 2093 5; Chi ² = -	160 270 280 160 222 80 298 192 160 248 252 166 166 52 234 200 208 78 110 172 70 190 192 4328	113 92 30 51 28 50 46 119 95 64 88 80 50 65 82 108 140 159 57 66 34 72 118 101	306 222 80 134 58 156 108 298 192 130 194 212 116 136 136 136 250 288 256 100 118 98 134 260 204 4266	1.7% 1.9% 1.3% 1.4% 0.8% 1.0% 2.1% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.9% 1.9% 1.9% 1.9% 1.2% 1.3% 1.3% 1.1% 37.1%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.65 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.85 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.06 \left[1.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \\ 1.03 \left[0.71 , 1.50 \right] \\ 1.23 \left[0.76 , 1.98 \right] \\ 1.12 \left[0.71 , 1.76 \right] \\ 1.02 \left[0.71 , 1.76 \right] \\ 1.02 \left[0.71 , 1.46 \right] \\ 1.10 \left[0.77 , 1.58 \right] \\ 1.54 \left[1.04 , 2.28 \right] \\ 1.23 \left[0.72 , 2.08 \right] \\ 1.84 \left[1.03 , 0.7 \right] \\ 1.84 \left[0.26 , 0.87 \right] \\ 1.84 \left[0.26 , 0.87 \right] \\ 1.82 \left[1.22 , 2.72 \right] \end{array}$	1998 1999 2000 2000 2001 2002 2002 2003 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia(America) 2003 Serpia(America) 2003 Chalmers 2004 Camelo 2004 Feng 2004 Keikhaee 2006 Wang 2006 Liu 2007 Han 2008 Miners 2009 Lucatelli 2011 Nirmal 2011 Zhang 2014 Subtotal (95% CI)	61 134 104 81 30 26 122 124 77 119 97 80 84 21 102 102 149 56 67 85 25 100 123 2093 5; Chi ² = -	160 270 280 160 222 80 298 192 160 248 252 166 166 52 234 200 208 78 110 172 70 190 192 4328	113 92 30 51 28 50 46 119 95 64 88 80 50 65 82 108 140 159 57 66 34 72 118 101	306 222 80 134 58 156 108 298 192 130 194 212 116 136 136 250 288 256 100 118 98 134 260 204 4266 = 0.004)	1.7% 1.9% 1.3% 1.4% 0.8% 1.0% 2.1% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.9% 1.9% 1.9% 1.9% 1.2% 1.3% 1.3% 1.1% 37.1%	$\begin{array}{c} 1.05 \left[0.71 , 1.56 \right] \\ 1.39 \left[0.97 , 1.99 \right] \\ 0.98 \left[0.59 , 1.65 \right] \\ 1.67 \left[1.05 , 2.66 \right] \\ 0.85 \left[0.42 , 1.71 \right] \\ 1.45 \left[0.94 , 2.22 \right] \\ 0.65 \left[0.35 , 1.19 \right] \\ 1.04 \left[0.75 , 1.45 \right] \\ 1.06 \left[1.24 , 2.80 \right] \\ 0.96 \left[0.60 , 1.52 \right] \\ 1.11 \left[0.76 , 1.62 \right] \\ 1.03 \left[0.71 , 1.50 \right] \\ 1.23 \left[0.76 , 1.98 \right] \\ 1.12 \left[0.71 , 1.76 \right] \\ 1.02 \left[0.71 , 1.76 \right] \\ 1.02 \left[0.71 , 1.46 \right] \\ 1.10 \left[0.77 , 1.58 \right] \\ 1.54 \left[1.04 , 2.28 \right] \\ 1.23 \left[0.72 , 2.08 \right] \\ 1.84 \left[1.03 , 0.7 \right] \\ 1.84 \left[0.26 , 0.87 \right] \\ 1.84 \left[0.26 , 0.87 \right] \\ 1.82 \left[1.22 , 2.72 \right] \end{array}$	1998 1999 2000 2000 2001 2002 2002 2003 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia(America) 2003 Serpia(Italy) 2003 Chalmers 2004 Camelo 2004 Keikhaee 2006 Wang 2006 Liu 2007 Han 2008 Miners 2009 Lucatelli 2011 Nirmal 2011 Zhang 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Total (95% CI) Total events	61 134 104 81 31 90 26 122 124 77 119 97 80 84 21 102 102 102 149 56 67 85 25 100 123 2093 5; Chi [■] = - 2.45 (P =	160 270 280 160 222 80 298 192 160 248 252 166 166 52 234 200 208 78 110 172 700 190 192 4328 46.23, d 0.01) 16362	113 92 30 51 28 50 46 119 95 64 88 80 50 64 82 108 140 159 57 66 34 72 118 101 1935 f= 24 (P =	306 222 80 134 58 156 108 298 192 130 194 212 116 136 250 288 256 100 118 98 134 260 204 4266 = 0.004)	1.7% 1.9% 1.3% 1.4% 0.8% 1.0% 2.1% 1.5% 1.8% 1.5% 1.8% 1.4% 0.9% 1.9% 1.9% 1.9% 1.9% 1.9% 1.2% 1.1% 1.2% 37.1% 37.1%	1.05 [0.71, 1.56] 1.39 [0.97, 1.99] 0.98 [0.59, 1.65] 1.67 [1.05, 2.66] 0.85 [0.42, 1.71] 1.45 [0.94, 2.22] 0.65 [0.35, 1.19] 1.04 [0.75, 1.45] 1.86 [1.24, 2.80] 0.96 [0.60, 1.52] 1.11 [0.76, 1.62] 1.03 [0.71, 1.50] 1.23 [0.76, 1.98] 1.12 [0.71, 1.76] 1.04 [0.23, 0.86] 1.02 [0.71, 1.46] 1.00 [0.77, 1.58] 1.54 [1.04, 2.28] 1.92 [1.02, 3.61] 1.23 [0.72, 2.08] 1.84 [1.10, 3.07] 0.48 [0.26, 0.87] 1.34 [0.92, 1.95] 1.82 [1.22, 2.72] 1.17 [1.03, 1.32]	1998 1999 2000 2000 2001 2002 2002 2003 2003 2003	
Chapman 1998 Scacchi 1998 Kehoe(London) 1999 Palumbo 1999 Mattia 2000 Isbir 2000 Perry 2001 Zuliani 2001 Monastero 2002 Wu 2002 Carbonell 2003 Serpia(America) 2003 Serpia(America) 2003 Serpia(America) 2003 Serpia(Haly) 2003 Chalmers 2004 Camelo 2004 Feng 2004 Keikhaee 2006 Wang 2006 Liu 2007 Han 2008 Miners 2009 Lucatelli 2011 Nirmal 2011 Zhang 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	61 134 104 81 31 90 26 122 124 77 119 97 80 84 21 102 102 102 149 56 67 85 25 100 123 2093 5; Chi [■] = - 2.45 (P =	160 270 280 160 222 80 298 192 160 248 252 166 166 52 234 200 208 78 110 172 700 190 192 4328 46.23, d 0.01) 16362	113 92 30 51 28 50 46 119 95 64 88 80 50 64 82 108 140 159 57 66 34 72 118 101 1935 f= 24 (P =	306 222 80 134 58 156 108 298 192 130 194 212 116 136 250 288 256 100 118 98 134 260 204 4266 = 0.004)	1.7% 1.9% 1.3% 1.4% 0.8% 1.0% 2.1% 1.5% 1.8% 1.5% 1.8% 1.4% 0.9% 1.9% 1.9% 1.9% 1.9% 1.9% 1.2% 1.1% 1.2% 37.1% 37.1%	1.05 [0.71, 1.56] 1.39 [0.97, 1.99] 0.98 [0.59, 1.65] 1.67 [1.05, 2.66] 0.85 [0.42, 1.71] 1.45 [0.94, 2.22] 0.65 [0.35, 1.19] 1.04 [0.75, 1.45] 1.86 [1.24, 2.80] 0.96 [0.60, 1.52] 1.11 [0.76, 1.62] 1.03 [0.71, 1.50] 1.23 [0.76, 1.98] 1.12 [0.71, 1.76] 1.04 [0.23, 0.86] 1.02 [0.71, 1.46] 1.00 [0.77, 1.58] 1.54 [1.04, 2.28] 1.92 [1.02, 3.61] 1.23 [0.72, 2.08] 1.84 [1.10, 3.07] 0.48 [0.26, 0.87] 1.34 [0.92, 1.95] 1.82 [1.22, 2.72] 1.17 [1.03, 1.32]	1998 1999 2000 2001 2001 2002 2002 2003 2003 2003	

Figure 2. Meta-analysis for the association of SAD risk with ACE I/D polymorphism: subgroup analysis by sample size (allelic comparison: I vs D). doi:10.1371/journal.pone.0111406.g002

PLOS ONE | www.plosone.org

heterozygote comparison (OR = 1.29, 95%CI = 1.11-1.50) and the dominant model (OR = 1.24, 95%CI = 1.01-1.52), but not among the population-based control subgroup. However, FPRP values of two comparisons were 0.489, 0.975 respectively, indicating the associations were not reliable (Table 3).

The data were additionally stratified by publication time (Table 2). Significant increase associations were found before 2003 using allelic comparison (OR = 1.12, 95%CI = 1.01-1.24), additive model (for II vs DD, OR = 1.24, 95%CI = 1.01-1.53; for ID vs DD, OR = 1.30, 95%CI = 1.10-1.54) and the dominant model (OR = 1.28, 9%CI = 1.09-1.52). However, these associations were not observed between 2004–2014 in all genetic models. The cumulative meta-analysis also illustrated that the exaggerated effect was observed in the earliest study and the accumulated evidence hovered around the conventional 5% significance level until 2002 (Figure S1).

In the subgroup analysis by geographic location (Table 2), significantly increased risks were found among the North Europeans for allelic comparison (OR = 1.11, 95%CI = 1.01 - 1.21), homozygote comparison (OR = 1.24, 95%CI = 1.05 - 1.48) and the dominant model (OR = 1.22, 95%CI = 1.03 - 1.45). However, the associations did not pass the FPRP analyses (Table 3). Otherwise, no associations were detected in South Caucasians, Asians and mixed population groups in any genetic models.

Sensitivity analyses

Sensitivity analyses showed that no single study notably changed the pooled ORs, indicating that the results of this meta-analysis were stable. Furthermore, after exclusion of HWE-deviated studies, the corresponding pooled ORs did not change significantly (Table 2). However, when we restricted to the English-language studies, only the dominant model between I/D variant and SAD risk remained significant (Table 2), suggesting that a potential language bias was possible. This significant association did not pass the FPRP analysis either (Table 3).

Heterogeneity analyses

Moderate heterogeneity existed in the overall comparisons (Table 2). When we analyzed data by subgroups, heterogeneity was decreased only in several groups, including North European and South Caucasian populations, studies with other ethnicities, studies with non population-based controls. However, heterogeneity was remained in other subgroups (Table 2). Among all the covariates investigated by meta-regression analyses, sample size (P = 0.023) and publication time (P = 0.009) were factors that contributed to the observed heterogeneity across all studies under the heterozygote comparison (Table S2 in File S1). However, combining with these two factors could only explained 40.48% of the τ^2 value in heterozygote comparison, indicating that sample size and publication time could explain part of the heterogeneity, but notable heterogeneity still existed. Otherwise, HWE, language, geographic location, quality of studies, sample size, publication time, source of controls and genotyping methods did not contribute the heterogeneity across the overall studies under other genetic comparisons (P>0.05) (Table S2 in File S1). Galbraith plots spotted at least fourteen studies (studies were spotted as the outliers in at least two genetic models) [11,45,47,50,56,64,65, 71,72,77,80-82] as the outliers and the possible major sources of heterogeneity in the analyses of total studies (Figure S2a-e). It was noted that 9 [45,50,56,64,71,72,77,81,82] of these 14 studies belonged to Asian subgroup. However, we did not try to reduce the obvious heterogeneity by excluding these fourteen studies because it might be unacceptable and could cause some biases by excluding too many studies [84].

Publication bias

Funnel plots, Begg's and Egger's tests were performed to assess the publication bias. Funnel plots did not reveal obvious evidence of asymmetry (Figure 4), and all the p values of Begg's tests and Egger's tests were greater than 0.05 (Table S3 in File S1), providing statistical evidence of the funnel plot's symmetry. Ultimately, the results did not suggest any evidence of publication bias.

Discussion

Previous studies investigating the association between I/D polymorphism and SAD risk have provided controversial results, and most of these studies involved relatively small samples, which were difficult to assess any genetic effects reliably. Meta-analysis has been recognized as an important tool to more precisely define the effect of selected genetic polymorphism on the risk for complex disease [85]. A meta-analysis in 2005 showed that D homozygote was at reduced of AD risk [14]. However, the previous metaanalyses did not cover any studies published in Chinese, which could lead to selection bias and might bias the effect estimate of a meta-analysis. Furthermore, since 2005, sixteen new articles have been published. Hence, to provided the most comprehensive assessment of the association between I/D polymorphism and SAD risk, an updated meta-analysis of all available studies was performed. And our meta-analysis indicated that the ACE I/D polymorphism is unlikely to be a major determining factor in the development of SAD. We believed that our results have made much more powerful and detailed analyses to support our results. First, more studies were included in our meta-analysis. Second, more comprehensive subgroup analyses were conducted, and no significant associations were found when we restricted to the high quality subgroup, the large sample size subgroup and the population-based controls subgroup. Finally, to avoid false positive findings, the FPRP analyses were performed for all significant findings observed in our analyses. And none of these significant associations passed the FPRP analyses, indicating that these associations were weak.

Too many reports of associations between genetic variants and complex diseases were false positive [86]. Many false-positive results were likely to be published due to the widely used significance threshold of p<0.05. Therefore, this meta-analysis adopted FPRP analyses, which is based not only on the observed p value but also on both the statistical power and prior probability of the hypothesis, making our results more reliable [26].

Moderate heterogeneity between studies was identified for all genetic models in the overall comparisons. Common reasons of heterogeneity may include differences in the studied populations (e.g., geographic location), or in sample selection (e.g., source of controls, HWE), or in methods (e.g., genotyping methods), or it may be due to interaction with other risk factors (e.g., sample size, study quality and publication time). The meta-regression analyses indicated that the potential sources of heterogeneity for heterozygote comparison were sample size and publication time. However, the sources of heterogeneity for the other models were not found, suggesting that heterogeneity might also be explained by other confounding factors. Nevertheless, when studies were stratified by geographic location, the heterogeneity was higher in the Asian subgroup while it was decreased in other populations. It was the same with the results of Galbraith plot analyses, which spotted at least 14 studies as the outliers and 9 of these 14 studies

	Experime	ental	Contr	o		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
6.4.1 High quality								
Hu 1999	122	132	125	148	1.3%	2.24 [1.03, 4.91]	1999	
Alvarez 1999	231	350	310	517	3.2%	1.30 [0.98, 1.72]		
Kehoe(Belfast) 1999	177	209	149	198	2.2%	1.82 [1.11, 2.99]		
Kehoe(Cardiff) 1999	162	198	50	. 77	1.8%	2.43 [1.35, 4.39]		
Crawford 2000	118	171	101	175	2.4%	1.63 [1.05, 2.54]		
Farrer(Mixed) 2000	135	235	94	162	2.6%	0.98 [0.65, 1.46]		T
Farrer(Moscow) 2000	109	151	145	206	2.3%	1.09 [0.69, 1.74]		
Narain 2000 Richard(cohort1) 2001	171 313	239 433	263 331	342	2.7% 3.2%	0.76 [0.52, 1.10] 1.13 [0.85, 1.51]		- - -
Richard(cohort2) 2001	313	433 56	160	475 221	3.2% 1.8%	0.59 [0.32, 1.09]		
Buss 2002	180	261	217	306	2.8%	0.91 [0.64, 1.31]		+
Cheng 2002	164	173	103	116	1.1%	2.30 [0.95, 5.57]	2002	
Lendon 2002	158	214	76	99	2.0%	0.85 [0.49, 1.49]		—
Monastero 2002	95	149	93	149	2.3%	1.06 [0.66, 1.70]	2002	
Seripa(Italy) 2003	79	126	64	106	2.1%	1.10 [0.65, 1.88]		
Berpia(America) 2003	92	124	64	97	1.9%	1.48 [0.83, 2.65]	2003	+
<ehoe 2003<="" td=""><td>240</td><td>333</td><td>76</td><td>109</td><td>2.3%</td><td>1.12 [0.70, 1.80]</td><td></td><td></td></ehoe>	240	333	76	109	2.3%	1.12 [0.70, 1.80]		
Panza 2003	92	141	170	268	2.5%	1.08 [0.71, 1.66]	2003	+
Sleeger 2005	179	250	4624	6403	3.2%	0.97 [0.73, 1.28]	2005	+
_ehmann 2005	150	203	174	248	2.6%	1.20 [0.79, 1.82]	2005	+
Kolsch 2005	265	351	250	348	2.9%	1.21 [0.86, 1.69]		+
Nang HK 2006	124	151	152	161	1.3%	0.27 [0.12, 0.60]		——
Nacimas 2007	133	235	164	303	2.9%	1.11 [0.78, 1.56]		+
/ardy 2009	70	94	137	188	1.9%	1.09 [0.62, 1.91]		
Ning 2010	121	138	402	469	1.9%	1.19 [0.67, 2.10]		
Yang 2011	226	257	125	137	1.5%	0.70 [0.35, 1.41]		
Cousin 2011	282	421	321	460	3.2%	0.88 [0.66, 1.17]		
Nirmal 2011 Subtotal (05% CD	70	95 5900	91	130	1.8%	1.20 [0.66, 2.17]	2011	
Subtotal (95% CI)	4000	5890	0004	12618	63.7%	1.10 [0.98, 1.23]		ſ
Total events Heterogeneity: Tau² = 0.0	4292 M: Chiế – M	0.50 46	9031 - 37 (D -	0.0053	17 47.00			
Test for overall effect: Z =	and an and a second and		= 27 (P =	: 0.005),	17 = 45%			
Test for overall effect: Z =	and an and a second and		= 27 (P =	: 0.005),	r= 45%			
Test for overall effect: Z = 6.4.2 Low quality	1.61 (P =)	0.11)				1 10 (0 51 - 2 76)	1009	
Test for overall effect: Z = 6.4.2 Low quality Chapman 1998	1.61 (P =) 29	0.11) 49	22	40	1.2%	1.19 [0.51, 2.76] 1 20 10 68 - 2.10]		
Test for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998	1.61 (P =) 29 52	0.11) 49 80	22 93	40 153	1.2% 1.9%	1.20 [0.68, 2.10]	1998	
Test for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999	1.61 (P =) 29 52 76	0.11) 49 80 140	22 93 22	40 153 40	1.2% 1.9% 1.5%	1.20 [0.68, 2.10] 0.97 [0.48, 1.97]	1998 1999	
Fest for overall effect: Z = 3.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Kehoe(London) 1999	1.61 (P =) 29 52 76 111	0.11) 49 80 140 135	22 93 22 70	40 153 40 111	1.2% 1.9% 1.5% 1.8%	1.20 [0.68, 2.10] 0.97 [0.48, 1.97] 2.71 [1.51, 4.87]	1998 1999 1999	
Test for overall effect: Z = 5.4.2 Low quality Chapman 1998 Bcacchi 1998 Palumbo 1999 Kehoe(London) 1999 Yang 2000	1.61 (P =) 29 52 76	0.11) 49 80 140	22 93 22	40 153 40	1.2% 1.9% 1.5%	1.20 [0.68, 2.10] 0.97 [0.48, 1.97] 2.71 [1.51, 4.87] 2.09 [1.25, 3.48]	1998 1999 1999	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 ² alumbo 1999 Kehoe(London) 1999 Yang 2000 Mattia 2000	1.61 (P =) 29 52 76 111 162	0.11) 49 80 140 135 188	22 93 22 70 170	40 153 40 111 227	1.2% 1.9% 1.5% 1.8% 2.1% 1.4%	1.20 [0.68, 2.10] 0.97 [0.48, 1.97] 2.71 [1.51, 4.87] 2.09 [1.25, 3.48] 2.75 [1.30, 5.79]	1998 1999 1999 2000 2000	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Cehoe(London) 1999 Yang 2000 Mattia 2000 Myllykangas 2000	1.61 (P =) 29 52 76 111 162 65	0.11) 49 80 140 135 188 80	22 93 22 70 170 41	40 153 40 111 227 67	1.2% 1.9% 1.5% 1.8% 2.1%	1.20 [0.68, 2.10] 0.97 [0.48, 1.97] 2.71 [1.51, 4.87] 2.09 [1.25, 3.48]	1998 1999 1999 2000 2000 2000	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Kehoe (London) 1999 Kattia 2000 Mattia 2000 Myllykangas 2000 sbir 2000	1.61 (P =) 29 52 76 111 162 65 96	0.11) 49 80 140 135 188 80 121	22 93 22 70 170 41 63	40 153 40 111 227 67 75	1.2% 1.9% 1.5% 1.8% 2.1% 1.4% 1.3%	1.20 (0.68, 2.10) 0.97 (0.48, 1.97) 2.71 (1.51, 4.87) 2.09 (1.25, 3.48) 2.75 (1.30, 5.79) 0.73 (0.34, 1.56)	1998 1999 2000 2000 2000 2000 2000	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Kehoe (London) 1999 Kang 2000 Mattia 2000 Myllykangas 2000 sbir 2000 Zuliani 2001	1.61 (P =) 29 52 76 111 162 65 96 27	0.11) 49 80 140 135 188 80 121 35	22 93 22 70 170 41 63 20	40 153 40 111 227 67 75 29	1.2% 1.9% 1.5% 1.8% 2.1% 1.4% 1.3% 0.8%	1.20 [0.68, 2.10] 0.97 [0.48, 1.97] 2.71 [1.51, 4.87] 2.09 [1.25, 3.48] 2.75 [1.30, 5.79] 0.73 [0.34, 1.56] 1.52 [0.50, 4.63]	1998 1999 2000 2000 2000 2000 2000 2000	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scatchi 1998 Palumbo 1999 Kehoe (London) 1999 Kang 2000 Mattia 2000 Myllykangas 2000 sbir 2000 Zuliani 2001 Perry 2001	1.61 (P =) 29 52 76 111 162 65 96 27 22	0.11) 49 80 140 135 188 80 121 35 40	22 93 22 70 170 41 63 20 38	40 153 40 111 227 67 75 29 54	1.2% 1.9% 1.5% 1.8% 2.1% 1.4% 1.3% 0.8% 1.1%	1.20 [0.68, 2.10] 0.97 [0.48, 1.97] 2.71 [1.51, 4.87] 2.09 [1.25, 3.48] 2.75 [1.30, 5.79] 0.73 [0.34, 1.56] 1.52 [0.50, 4.63] 0.51 [0.22, 1.21]	1998 1999 2000 2000 2000 2000 2000 2001 2001	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Kehoe(London) 1999 Yang 2000 Myllykangas 2000 Spir 2000 Zuliani 2001 Perry 2001 Mu 2002	1.61 (P =) 29 52 76 111 162 65 96 27 22 69 84 62	0.11) 49 80 140 135 188 80 121 35 40 111	22 93 22 70 170 41 63 20 38 40 71 48	40 153 40 111 227 67 75 29 54 78	1.2% 1.9% 1.5% 1.8% 2.1% 1.4% 1.3% 0.8% 1.1%	1.20 [0.68, 2.10] 0.97 [0.48, 1.97] 2.71 [1.51, 4.87] 2.09 [1.25, 3.48] 2.75 [1.30, 5.79] 0.73 [0.34, 1.56] 1.52 [0.50, 4.63] 0.51 [0.22, 1.21] 1.56 [0.87, 2.81]	1998 1999 2000 2000 2000 2000 2000 2001 2001	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Kehoe(London) 1999 (Ang 2000 Mattia 2000 Myllykangas 2000 Sbir 2000 Zuliani 2001 Perry 2001 Au 2002 Carbonell 2003 Camelo 2004	1.61 (P = 1 29 52 76 111 162 96 27 22 69 84 62 63	0.11) 49 80 140 135 188 80 121 35 40 111 96 80 83	22 93 22 70 170 41 63 20 38 40 71 48 51	40 153 40 111 227 75 29 54 78 96 65 68	1.2% 1.9% 1.5% 1.8% 2.1% 1.4% 1.3% 1.3% 1.3% 1.3% 1.3%	1.20 [0.68, 2.10] 0.97 [0.48, 1.97] 2.71 [1.51, 4.87] 2.09 [1.25, 3.48] 2.75 [1.30, 5.79] 0.73 [0.34, 1.56] 1.52 [0.50, 4.63] 0.51 [0.22, 1.21] 1.56 [0.87, 2.81] 2.46 [1.16, 5.26] 1.22 [0.57, 2.61] 1.05 [0.50, 2.21]	1998 1999 2000 2000 2000 2000 2001 2001 2001	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Kehoe (London) 1999 Kang 2000 Mattia 2000 Mylykangas 2000 Sbir 2000 Sbir 2000 Zuliani 2001 Perry 2001 Nu 2002 Carbonell 2003 Camelo 2004 Chalmers 2004	1.61 (P =) 29 52 76 111 162 65 96 27 22 69 84 62 63 57	0.11) 49 80 140 135 188 80 121 35 40 111 96 80 83 83	22 93 22 70 170 41 63 20 38 40 71 48 51 39	40 153 40 111 227 67 75 29 54 78 96 65 68 58	1.2% 1.9% 1.5% 1.4% 1.3% 0.8% 1.3% 1.3% 1.3% 1.3% 1.3%	$\begin{array}{c} 1.20 \left[0.68 \right] 2.10 \right] \\ 0.97 \left[0.48 \right] 1.97 \right] \\ 2.71 \left[1.51 \right] 4.87 \right] \\ 2.09 \left[1.25 \right] 3.48 \right] \\ 2.75 \left[1.30 \right] 5.79 \right] \\ 0.73 \left[0.34 \right] 1.52 \left[0.50 \right] 4.63 \right] \\ 0.51 \left[0.22 \right] 1.21 \right] \\ 1.56 \left[0.87 \right] 2.81 \right] \\ 2.46 \left[1.16 \right] 5.26 \right] \\ 1.22 \left[0.57 \right] 2.61 \right] \\ 1.05 \left[0.50 \right] 2.21 \right] \\ 1.07 \left[0.52 \right] 2.19 \right] \end{array}$	1998 1999 2000 2000 2000 2000 2001 2001 2001	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Vang 2000 Mattia 2000 Mattia 2000 Myllykangas 2000 Sbir 2000 Zuliani 2001 Perry 2001 Wu 2002 Carbonell 2003 Carmelo 2004 Chalmers 2004	1.61 (P =) 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16	0.11) 49 80 135 188 80 121 35 40 111 96 80 83 83 83 26	22 93 22 70 170 41 63 20 38 40 71 48 51 39 50	40 153 40 111 227 67 75 29 54 78 96 65 68 58 68	1.2% 1.9% 1.5% 1.4% 1.3% 0.8% 1.3% 1.3% 1.3% 1.3% 1.4% 1.4%	$\begin{array}{c} 1.20 \left[0.68 \right] 2.10 \right] \\ 0.97 \left[0.48 \right] 1.97 \right] \\ 2.71 \left[1.51 \right] 4.87 \right] \\ 2.09 \left[1.25 \right] 3.48 \right] \\ 2.75 \left[1.30 \right] 5.79 \right] \\ 0.73 \left[0.34 \right] 1.56 \right] \\ 1.52 \left[0.50 \right] 4.63 \right] \\ 0.51 \left[0.22 \right] 1.21 \right] \\ 1.56 \left[0.87 \right] 2.81 \right] \\ 2.46 \left[1.16 \right] 5.26 \right] \\ 1.22 \left[0.57 \right] 2.61 \right] \\ 1.05 \left[0.50 \right] 2.21 \right] \\ 1.05 \left[0.52 \right] 2.19 \\ 0.58 \left[0.22 \right] 1.50 \right] \end{array}$	1998 1999 2000 2000 2000 2000 2001 2001 2002 2003 2004 2004 2004	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 (ang 2000 Mattia 2000 Mulykangas 2000 Sbir 2000 Zuliani 2001 Perry 2001 Avu 2002 Carbonell 2003 Camelo 2004 Chalmers 2004 Feng 2005	1.61 (P = 1 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151	0.11) 49 80 140 135 188 80 121 35 40 111 96 80 81 83 83 26 192	22 93 22 70 170 41 63 20 38 40 71 48 51 39 50 163	40 153 40 111 227 67 75 29 54 78 96 65 8 58 68 58 68 195	1.2% 1.9% 1.5% 1.4% 1.3% 0.8% 1.3% 1.3% 1.3% 1.4% 1.4% 1.4% 1.0% 2.1%	$\begin{array}{c} 1.20 \left[0.68 \right] 2.10 \right] \\ 0.97 \left[0.48 \right] 1.97 \right] \\ 2.71 \left[1.51 \right] 4.87 \right] \\ 2.09 \left[1.25 \right] 3.48 \right] \\ 2.75 \left[1.30 \right] 5.79 \right] \\ 0.73 \left[0.34 \right] 1.56 \right] \\ 1.52 \left[0.50 \right] 4.63 \right] \\ 0.51 \left[0.22 \right] 1.21 \right] \\ 1.56 \left[0.87 \right] 2.11 \\ 2.46 \left[1.16 \right] 5.26 \right] \\ 1.22 \left[0.57 \right] 2.61 \right] \\ 1.05 \left[0.52 \right] 2.21 \right] \\ 1.07 \left[0.52 \right] 2.19 \\ 0.58 \left[0.22 \right] 1.50 \\ 0.72 \left[0.43 \right] 1.21 \right] \end{array}$	1998 1999 2000 2000 2000 2000 2001 2001 2002 2003 2004 2004 2004 2004 2005	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Kehoe (London) 1999 Kehoe (London) 1999 Mattia 2000 Myllykangas 2000 sbir 2000 Zuliani 2001 Perry 2001 Avu 2002 Carbonell 2003 Camelo 2004 Chalmers 2004 Feng 2005 Wehr 2006	1.61 (P =) 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151 76	0.11) 49 80 140 135 188 80 121 35 40 111 96 80 81 83 83 26 192 100	22 93 22 70 170 41 63 20 38 40 71 48 51 39 50 163 106	40 153 40 111 227 75 29 54 78 96 65 8 58 68 8 88 88 195 144	1.2% 1.9% 1.5% 2.1% 1.4% 1.3% 0.8% 1.1% 1.3% 1.3% 1.4% 1.4% 1.0% 2.1%	$\begin{array}{c} 1.20 \left[0.68 \right] 2.10 \right] \\ 0.97 \left[0.48 \right] 1.97 \right] \\ 2.71 \left[1.51 \right] 4.87 \right] \\ 2.09 \left[1.25 \right] 3.48 \right] \\ 2.75 \left[1.30 \right] 5.79 \right] \\ 0.73 \left[0.34 \right] 1.56 \right] \\ 1.52 \left[0.50 \right] 4.63 \right] \\ 0.51 \left[0.22 \right] 1.21 \right] \\ 1.56 \left[0.87 \right] 2.46 \left[1.16 \right] 5.26 \right] \\ 1.22 \left[0.57 \right] 2.61 \right] \\ 1.05 \left[0.52 \right] 2.21 \right] \\ 1.05 \left[0.52 \right] 2.19 \\ 0.58 \left[0.22 \right] 1.50 \\ 0.72 \left[0.43 \right] 1.21 \right] \\ 1.14 \left[0.63 \right] 2.05 \right] \end{array}$	1998 1999 2000 2000 2000 2000 2001 2001 2002 2003 2004 2004 2004 2004 2005 2006	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Kehoe (London) 1999 Kang 2000 Mattia 2000 Myllykangas 2000 Sbir 2000 Zuliani 2001 Perty 2001 Vu 2002 Carbonell 2003 Camelo 2004 Chalmers 2004 Chang 2005 Wehr 2006 Wang 2006	1.61 (P = 1 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151 76 96	0.11) 49 80 140 135 80 121 35 40 111 96 80 83 83 26 192 100 104	22 93 22 70 170 41 63 20 38 40 71 48 51 39 50 163 106 103	40 153 40 111 227 75 29 54 78 96 65 85 68 58 68 195 144 128	1.2% 1.9% 1.5% 2.1% 1.4% 1.3% 0.8% 1.1% 1.3% 1.4% 1.0% 2.1% 1.8%	$\begin{array}{c} 1.20 \left[0.68 \right] 2.10 \right] \\ 0.97 \left[0.48 \right] 1.97 \right] \\ 2.71 \left[1.51 \right] 4.87 \right] \\ 2.09 \left[1.25 \right] 3.48 \right] \\ 2.75 \left[1.30 \right] 5.73 \left[0.34 \right] 1.56 \right] \\ 1.52 \left[0.50 \right] 4.63 \right] \\ 0.51 \left[0.22 \right] 1.21 \right] \\ 1.56 \left[0.87 \right] 2.81 \right] \\ 2.46 \left[1.16 \right] 5.26 \right] \\ 1.22 \left[0.57 \right] 2.61 \right] \\ 1.05 \left[0.52 \right] 2.19 \right] \\ 0.58 \left[0.22 \right] 1.9 \right] \\ 0.58 \left[0.22 \right] 1.50 \\ 0.77 \left[0.43 \right] 1.21 \right] \\ 1.14 \left[0.63 \right] 2.05 \right] \\ 2.91 \left[1.25 \right] 6.77 \right] \end{array}$	1998 1999 2000 2000 2000 2000 2001 2001 2002 2003 2004 2004 2004 2004 2005 2006 2006	
Test for overall effect: Z = 6.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Kehoe (London) 1999 Yang 2000 Mattia 2000 Attia 2000 Adatta 2000 Valykangas 2000 Scincold Perry 2001 Vu 2002 Carbonell 2003 Carbonell 2004 Chalmers 2004 Chang 2005 Vehr 2006 Wang 2006	1.61 (P = 1 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151 76 96 43	0.11) 49 80 140 135 188 80 121 35 40 111 96 80 83 83 26 192 100 104 92	22 93 22 70 170 41 63 20 38 40 71 48 51 39 50 163 106 103 87	40 153 40 111 227 75 29 54 78 96 65 68 68 68 68 195 144 128 166	1.2% 1.9% 1.5% 1.4% 1.3% 0.8% 1.1% 1.8% 1.3% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.8% 2.1%	$\begin{array}{c} 1.20 \left[0.68 \right] 2.10 \right] \\ 0.97 \left[0.48 \right] 1.97 \right] \\ 2.71 \left[1.51 \right] 4.87 \right] \\ 2.09 \left[1.25 \right] 3.48 \right] \\ 2.75 \left[1.30 \right] 5.73 \left[0.34 \right] 1.56 \right] \\ 1.52 \left[0.50 \right] 4.63 \right] \\ 0.51 \left[0.22 \right] 1.21 \right] \\ 1.56 \left[0.87 \right] 2.81 \right] \\ 2.46 \left[1.16 \right] 5.26 \right] \\ 1.22 \left[0.57 \right] 2.61 \right] \\ 1.05 \left[0.50 \right] 2.21 \right] \\ 1.07 \left[0.52 \right] 2.15 \right] \\ 0.58 \left[0.22 \right] 1.50 \\ 0.72 \left[0.43 \right] 1.21 \right] \\ 1.14 \left[0.63 \right] 2.05 \right] \\ 2.91 \left[1.25 \right] 6.77 \\ 0.80 \left[0.48 \right] 1.33 \right] \end{array}$	1998 1999 2000 2000 2000 2000 2001 2001 2002 2003 2004 2004 2004 2004 2005 2006 2006 2006	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Scacchi 1998 Palumbo 1999 Kehoe(London) 1999 Yang 2000 Mattia 2000 Myllykangas 2000 Sbir 2000 Zuliani 2001 Perry 2001 Wu 2002 Carbonell 2003 Carbonell 2003 Chalmers 2004 Feng 2004 Zhang 2005 Wehr 2006 Mang 2006 Kehoe 2006	1.61 (P = 1 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151 76 96 43 81	0.11) 49 80 140 135 188 80 121 35 40 111 96 80 83 83 26 192 100 104 92 117	22 93 22 70 170 41 63 20 38 40 71 48 51 39 50 163 106 103 87 84	40 153 40 111 227 75 29 54 78 96 65 68 68 68 68 58 195 144 128 166 125	1.2% 1.9% 1.5% 1.8% 1.3% 0.8% 1.1% 1.8% 1.3% 1.4% 1.4% 1.4% 1.4% 1.4% 2.1% 2.1% 2.0%	$\begin{array}{c} 1.20 \left[0.68 \right] 2.10 \right] \\ 0.97 \left[0.48 \right] 1.97 \right] \\ 2.71 \left[1.51 \right] 4.87 \right] \\ 2.09 \left[1.25 \right] 3.48 \right] \\ 2.75 \left[1.30 \right] 5.75 \left[1.30 \right] 5.75 \left[1.30 \right] 5.75 \left[1.30 \right] 5.75 \left[0.50 \right] 4.63 \right] \\ 0.51 \left[0.22 \right] 1.21 \right] \\ 1.56 \left[0.87 \right] 2.81 \right] \\ 2.46 \left[1.16 \right] 5.26 \right] \\ 1.22 \left[0.57 \right] 2.61 \right] \\ 1.05 \left[0.50 \right] 2.21 \right] \\ 1.07 \left[0.52 \right] 2.19 \right] \\ 0.58 \left[0.22 \right] 1.21 \right] \\ 1.14 \left[0.63 \right] 2.05 \right] \\ 2.91 \left[1.25 \right] 5.77 \right] \\ 0.80 \left[0.48 \right] 1.33 \right] \\ 1.10 \left[0.64 \right] 1.39 \right] \\ \end{array}$	1998 1999 2000 2000 2000 2001 2001 2001 2002 2003 2004 2004 2004 2004 2006 2006 2006 2006	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Kehoe(London) 1999 Kang 2000 Mattia 2000 Mylykangas 2000 Sbir 2000 Sbir 2000 Zuliani 2001 Perry 2001 Wu 2002 Carbonell 2003 Camelo 2004 Chalmers 2004 Chalmers 2004 Chalmers 2004 Chalmers 2004 Chalmers 2005 Wehr 2006 Meng 2006 Keikhaee 2006 Liu 2007	1.61 (P =) 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151 76 96 43 81 34	0.11) 49 80 140 135 188 80 121 35 40 111 96 80 83 83 26 192 100 104 92 117 39	22 93 22 70 170 41 63 20 38 40 71 48 51 39 50 163 106 103 87 84 39	40 153 40 111 227 67 75 29 54 78 65 68 65 68 58 68 195 144 125 125 50	1.2% 1.9% 1.5% 1.4% 1.3% 0.8% 1.3% 1.3% 1.3% 1.3% 1.4% 1.4% 1.4% 1.4% 1.2% 2.1% 2.0% 0.7%	$\begin{array}{c} 1.20 \left[0.68 \right] 2.10 \right] \\ 0.97 \left[0.48 \right] 1.97 \right] \\ 2.71 \left[1.51 \right] 4.87 \right] \\ 2.09 \left[1.25 \right] 3.48 \right] \\ 2.75 \left[1.30 \right] 5.79 \right] \\ 0.73 \left[0.34 \right] 1.52 \left[0.50 \right] 4.63 \right] \\ 0.51 \left[0.22 \right] 1.21 \right] \\ 1.56 \left[0.87 \right] 2.81 \right] \\ 2.46 \left[1.16 \right] 5.26 \right] \\ 1.22 \left[0.57 \right] 2.61 \right] \\ 1.05 \left[0.50 \right] 2.21 \right] \\ 1.07 \left[0.52 \right] 2.19 \right] \\ 0.58 \left[0.22 \right] 1.50 \right] \\ 0.58 \left[0.22 \right] 1.50 \right] \\ 0.72 \left[0.43 \right] 1.21 \right] \\ 1.14 \left[0.63 \right] 2.05 \right] \\ 2.91 \left[1.25 \big] 6.77 \right] \\ 0.80 \left[0.48 \right] 1.33 \right] \\ 1.10 \left[0.64 \right] 1.89 \right] \\ 1.92 \left[0.61 \right] 6.07 \right] \\ \end{array}$	1998 1999 2000 2000 2000 2000 2001 2001 2002 2003 2004 2004 2004 2004 2006 2006 2006 2006	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 (ang 2000 Mattia 2000 Mattia 2000 Myllykangas 2000 Sbir 2000 Zuliani 2001 Perry 2001 Vu 2002 Carbonell 2003 Camelo 2004 Chalmers 2004 Pang 2005 Nehr 2006 Mang 2006 Meng 2006 Keikhaee 2006 Liu 2007 Han 2008	1.61 (P = 1 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151 76 96 43 81 34 43	0.11) 49 80 140 135 188 80 121 35 40 111 96 83 83 26 192 100 104 92 117 39 55	22 93 22 70 170 41 63 20 38 40 71 48 51 39 50 163 106 103 84 39 49	40 153 40 111 227 67 75 29 54 78 65 68 68 68 68 68 195 144 128 166 125 50 59	1.2% 1.9% 1.5% 1.4% 1.3% 0.8% 1.3% 1.3% 1.3% 1.4% 1.4% 1.4% 1.0% 2.1% 2.1% 2.1% 2.0% 0.7% 1.0%	$\begin{array}{c} 1.20 \left[0.68 \right] 2.10 \right] \\ 0.97 \left[0.48 \right] 1.97 \right] \\ 2.71 \left[1.51 \right] 4.87 \right] \\ 2.09 \left[1.25 \right] 3.48 \right] \\ 2.75 \left[1.30 \right] 5.79 \right] \\ 0.73 \left[0.34 \right] 1.52 \left[0.50 \right] 4.63 \right] \\ 0.51 \left[0.22 \right] 1.21 \right] \\ 1.56 \left[0.87 \right] 2.81 \right] \\ 2.46 \left[1.16 \right] 5.26 \right] \\ 1.22 \left[0.57 \right] 2.61 \right] \\ 1.05 \left[0.50 \right] 2.21 \right] \\ 1.07 \left[0.52 \right] 2.19 \right] \\ 0.58 \left[0.22 \right] 1.50 \left[0.22 \right] \\ 1.71 \left[0.58 \right] 2.22 \left[0.57 \right] 2.19 \right] \\ 0.58 \left[0.22 \right] 1.50 \left[0.22 \right] \\ 1.14 \left[0.63 \right] 2.21 \right] \\ 1.10 \left[0.64 \right] 1.33 \\ 1.10 \left[0.64 \right] 1.39 \\ 1.92 \left[0.61 \right] 6.07 \right] \\ 0.73 \left[0.29 \right] 1.86 \right] \end{array}$	1998 1999 2000 2000 2000 2001 2001 2001 2002 2003 2004 2004 2004 2004 2006 2006 2006 2006	
5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Chapman 1998 Scacchi 1998 Palumbo 1999 Kang 2000 Mattia 2000 Mattia 2000 Myllykangas 2000 Sbir 2000 Zuliani 2001 Perry 2001 Vu 2002 Carbonell 2003 Camelo 2004 Chalmers 2004 Pang 2005 Wehr 2006 Keing 2006 Jeng 2006 Jeng 2006 Jeng 2006 Jeng 2008 Jeng 2008	1.61 (P = 1 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151 76 96 43 81 34 43 62	0.11) 49 80 140 135 188 80 121 35 40 111 96 80 83 26 192 100 104 92 117 39 55 86	22 93 22 70 170 41 63 20 38 40 71 48 51 39 50 163 106 103 87 84 39 27	40 153 40 111 227 67 75 29 54 78 96 68 58 68 195 144 128 166 125 50 59 49	1.2% 1.9% 1.8% 2.1% 1.3% 0.8% 1.3% 1.3% 1.3% 1.4% 1.4% 1.0% 2.1% 2.1% 2.1% 2.0% 0.7% 1.0%	$\begin{array}{c} 1.20 \left[0.68 \right] 2.10 \right] \\ 0.97 \left[0.48 \right] 1.97 \right] \\ 2.71 \left[1.51 \right] 4.87 \right] \\ 2.09 \left[1.25 \right] 3.48 \right] \\ 2.75 \left[1.30 \right] 5.79 \right] \\ 0.73 \left[0.34 \right] 1.52 \left[0.50 \right] 4.63 \right] \\ 0.51 \left[0.22 \right] 1.21 \right] \\ 1.56 \left[0.87 \right] 2.81 \right] \\ 2.46 \left[1.16 \right] 5.26 \right] \\ 1.22 \left[0.57 \right] 2.61 \right] \\ 1.05 \left[0.50 \right] 2.21 \right] \\ 1.07 \left[0.52 \right] 2.19 \right] \\ 0.58 \left[0.22 \right] 1.50 \\ 0.72 \left[0.43 \right] 1.21 \right] \\ 1.14 \left[0.63 \right] 2.91 \\ 1.25 \left[0.64 \right] 1.33 \\ 1.10 \left[0.64 \right] 1.89 \right] \\ 1.92 \left[0.61 \right] 6.07 \\ 0.73 \left[0.29 \right] 1.86 \right] \\ 2.10 \left[1.01 \right] 4.39 \right] \end{array}$	1998 1999 2000 2000 2000 2001 2001 2001 2002 2003 2004 2004 2004 2004 2005 2006 2006 2006 2006 2006 2007 2008 2009	
5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Vang 2000 Mattia 2000 Mattia 2000 Mattia 2000 Mattia 2000 Mattia 2000 Myllykangas 2000 Sbir 2000 Zuliani 2001 Perry 2001 Wu 2002 Carbonell 2003 Carbonell 2004 Chalmers 2004 Teng 2005 Wehr 2006 Vehr 2006 Vang 2005 Vehr 2006 Juang 2005 Vehr 2006 Juang 2005 Vehr 2006 Juang 2007 Han 2008 Juiners 2009 Lucatelli 2011	1.61 (P = 1 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151 76 96 43 81 34 43 62 18	0.11) 49 80 140 135 188 80 121 35 40 111 96 80 121 35 40 111 96 83 26 192 100 104 92 107 39 55 86 35	22 93 22 70 170 41 63 20 38 40 71 48 50 163 106 103 87 84 9 9 27 49	40 153 40 111 227 67 75 29 54 78 96 68 58 68 195 144 128 166 125 50 59 49 67	1.2% 1.9% 1.8% 2.1% 1.3% 0.8% 1.3% 1.3% 1.3% 1.4% 1.3% 1.4% 1.0% 2.1% 1.8% 2.1% 2.0% 0.7% 1.0% 1.4%	$\begin{array}{c} 1.20 \left[0.68 \right] 2.10 \right] \\ 0.97 \left[0.48 \right] 1.97 \right] \\ 2.71 \left[1.51 \right] 4.87 \right] \\ 2.09 \left[1.25 \right] 3.48 \right] \\ 2.75 \left[1.30 \right] 5.79 \right] \\ 0.73 \left[0.34 \right] 1.52 \left[0.50 \right] 4.63 \right] \\ 0.51 \left[0.22 \right] 1.21 \right] \\ 1.56 \left[0.87 \right] 2.48 \left[1.16 \right] 5.26 \right] \\ 1.22 \left[0.57 \right] 2.61 \right] \\ 1.05 \left[0.50 \right] 2.21 \right] \\ 1.05 \left[0.50 \right] 2.21 \right] \\ 1.07 \left[0.52 \right] 2.19 \right] \\ 0.58 \left[0.22 \right] 1.50 \right] \\ 0.72 \left[0.43 \right] 1.21 \right] \\ 1.14 \left[0.63 \right] 2.95 \left[2.91 \right] \\ 1.29 \left[0.56 \right] 2.91 \left[1.25 \right] 6.77 \right] \\ 0.80 \left[0.48 \right] 1.33 \right] \\ 1.10 \left[0.64 \right] 1.89 \right] \\ 1.92 \left[0.61 \right] 6.07 \right] \\ 0.73 \left[0.29 \right] 1.86 \right] \\ 2.10 \left[1.01 \right] 4.39 \right] \\ 0.39 \left[0.17 \right] 0.39 \left[0.17 \right] 0.91 \right] \end{array}$	1998 1999 2000 2000 2000 2001 2001 2001 2002 2003 2004 2004 2004 2004 2005 2006 2006 2006 2006 2006 2006 2007 2008 2009 2011	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Kehoe(London) 1999 Kang 2000 Mattia 2000 Mattia 2000 Myllykangas 2000 Sbir 2000 Zuliani 2001 Perry 2001 Mu 2002 Carbonell 2003 Carbonell 2004 Chalmers 2004 Teng 2005 Wehr 2006 Keikhaee 2006 Liu 2007 Han 2008 Winers 2009 Lucatelli 2011 Zhang 2014	1.61 (P = 1 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151 76 96 43 81 34 43 62	0.11) 49 80 140 135 188 80 121 35 40 111 96 80 83 83 26 192 100 104 92 117 39 55 86 35 96	22 93 22 70 170 41 63 20 38 40 71 48 51 39 50 163 106 103 87 84 39 27	40 153 40 111 227 75 29 54 78 96 65 68 68 195 144 128 166 125 50 9 49 67 102	1.2% 1.9% 1.5% 2.1% 1.4% 1.3% 0.8% 1.3% 1.3% 1.4% 1.3% 1.4% 1.0% 2.1% 1.8% 1.2% 2.1% 1.2% 2.1% 1.2% 1.4% 1.2%	$\begin{array}{c} 1.20 \left[0.68 \right] 2.10 \right] \\ 0.97 \left[0.48 \right] 1.97 \right] \\ 2.71 \left[1.51 \right] 4.87 \right] \\ 2.09 \left[1.25 \right] 3.48 \right] \\ 2.75 \left[1.30 \right] 5.73 \left[0.34 \right] 1.56 \right] \\ 1.52 \left[0.50 \right] 4.63 \right] \\ 0.51 \left[0.22 \right] 1.21 \right] \\ 1.56 \left[0.87 \right] 2.81 \right] \\ 2.46 \left[1.16 \right] 5.26 \right] \\ 1.22 \left[0.57 \right] 2.61 \right] \\ 1.05 \left[0.52 \right] 2.19 \right] \\ 0.58 \left[0.22 \right] 1.50 \\ 0.72 \left[0.43 \right] 1.21 \right] \\ 1.14 \left[0.63 \right] 2.05 \right] \\ 2.91 \left[1.25 \right] 6.77 \\ 0.80 \left[0.48 \right] 1.33 \\ 1.10 \left[0.64 \right] 1.89 \\ 1.92 \left[0.61 \right] 6.07 \\ 0.73 \left[0.29 \right] 1.86 \\ 2.10 \left[1.01 \right] 4.39 \\ 0.39 \left[0.17 \right] 0.91 \\ 2.64 \left[1.22 \right] 5.71 \end{array}$	1998 1999 2000 2000 2000 2001 2001 2001 2002 2003 2004 2004 2004 2004 2005 2006 2006 2006 2006 2006 2006 2007 2008 2009 2011	
Test for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Kehoe(London) 1999 Yang 2000 Mattia 2000 Myllykangas 2000 Sbir 2000 Zuliani 2001 Perry 2001 Mu 2002 Carbonell 2003 Camelo 2004 Chalmers 2004 Chalmers 2004 Chalmers 2004 Keikhaee 2006 Keikhaee 2006 Liu 2007 Han 2008 Miners 2009 Lucatelli 2011 Zhang 2014 Subtotal (95% CI)	1.61 (P = 1 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151 76 96 43 81 34 43 62 18 85	0.11) 49 80 140 135 188 80 121 35 40 111 96 80 121 35 40 111 96 83 26 192 100 104 92 107 39 55 86 35	22 93 22 70 170 41 63 20 38 40 71 48 50 163 106 103 87 84 39 49 27 49 76	40 153 40 111 227 67 75 29 54 78 96 68 58 68 195 144 128 166 125 50 59 49 67	1.2% 1.9% 1.8% 2.1% 1.3% 0.8% 1.3% 1.3% 1.3% 1.4% 1.3% 1.4% 1.0% 2.1% 1.8% 2.1% 2.0% 0.7% 1.0% 1.4%	$\begin{array}{c} 1.20 \left[0.68 \right] 2.10 \right] \\ 0.97 \left[0.48 \right] 1.97 \right] \\ 2.71 \left[1.51 \right] 4.87 \right] \\ 2.09 \left[1.25 \right] 3.48 \right] \\ 2.75 \left[1.30 \right] 5.79 \right] \\ 0.73 \left[0.34 \right] 1.52 \left[0.50 \right] 4.63 \right] \\ 0.51 \left[0.22 \right] 1.21 \right] \\ 1.56 \left[0.87 \right] 2.48 \left[1.16 \right] 5.26 \right] \\ 1.22 \left[0.57 \right] 2.61 \right] \\ 1.05 \left[0.50 \right] 2.21 \right] \\ 1.05 \left[0.50 \right] 2.21 \right] \\ 1.07 \left[0.52 \right] 2.19 \right] \\ 0.58 \left[0.22 \right] 1.50 \right] \\ 0.72 \left[0.43 \right] 1.21 \right] \\ 1.14 \left[0.63 \right] 2.95 \left[2.91 \right] \\ 1.29 \left[0.56 \right] 2.91 \left[1.25 \right] 6.77 \right] \\ 0.80 \left[0.48 \right] 1.33 \right] \\ 1.10 \left[0.64 \right] 1.89 \right] \\ 1.92 \left[0.61 \right] 6.07 \right] \\ 0.73 \left[0.29 \right] 1.86 \right] \\ 2.10 \left[1.01 \right] 4.39 \right] \\ 0.39 \left[0.17 \right] 0.39 \left[0.17 \right] 0.91 \right] \end{array}$	1998 1999 2000 2000 2000 2001 2001 2001 2002 2003 2004 2004 2004 2004 2005 2006 2006 2006 2006 2006 2006 2007 2008 2009 2011	
Test for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Kehoe (London) 1999 Yang 2000 Mattia 2000 Mattia 2000 Myllykangas 2000 Sbir 2000 Zuliani 2001 Perry 2001 Wu 2002 Carbonell 2003 Camelo 2004 Chalmers 2004 Feng 2005 Wehr 2006 Keikhaee 2006 Liu 2007 Han 2008 Winers 2009 Lucatelli 2011 Zhang 2014 Subtotal (95% CI) Total events	1.61 (P = 1 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151 76 96 43 81 34 43 81 34 43 81 34 43 62 18 85	0.11) 49 80 140 135 188 121 35 40 111 96 80 83 26 192 100 104 92 117 39 55 86 35 96 2263	22 93 22 70 170 41 63 20 38 40 71 48 51 50 163 106 103 87 84 39 49 27 84 39 76 1621	40 153 40 111 227 67 75 29 54 78 96 65 68 58 68 68 195 144 128 166 125 50 59 9 67 102 2314	1.2% 1.9% 1.5% 2.1% 1.4% 1.3% 0.8% 1.1% 1.3% 1.4% 1.0% 2.1% 1.2% 2.1% 1.2% 2.1% 1.2% 2.1% 1.2% 3.1% 3.3%	$\begin{array}{l} 1.20 \left[0.68 \right] 2.10 \right] \\ 0.97 \left[0.48 \right] 1.97 \right] \\ 2.71 \left[1.51 \right] 4.87 \right] \\ 2.09 \left[1.25 \right] 3.48 \right] \\ 2.75 \left[1.30 \right] 5.73 \left[0.34 \right] 1.52 \\ 0.51 \left[0.22 \right] 1.51 \\ 1.52 \left[0.50 \right] 4.63 \right] \\ 0.51 \left[0.22 \right] 1.21 \\ 1.56 \left[0.87 \right] 2.81 \right] \\ 2.46 \left[1.16 \right] 5.26 \right] \\ 1.22 \left[0.57 \right] 2.61 \right] \\ 1.05 \left[0.50 \right] 2.21 \\ 1.07 \left[0.52 \right] 2.15 \right] \\ 0.58 \left[0.22 \right] 1.50 \\ 0.72 \left[0.43 \right] 1.21 \\ 1.14 \left[0.63 \right] 2.05 \\ 2.91 \left[1.25 \right] 6.77 \\ 0.80 \left[0.48 \right] 1.33 \\ 1.10 \left[0.64 \right] 1.89 \\ 1.92 \left[0.61 \right] 6.07 \\ 0.73 \left[0.29 \right] 1.86 \\ 2.10 \left[1.01 \right] 4.39 \\ 0.39 \left[0.17 \right] 0.91 \\ 2.64 \left[1.22 \right] 5.71 \\ 1.25 \left[1.01 \right] 1.55 \\ \end{array}$	1998 1999 2000 2000 2000 2001 2001 2001 2002 2003 2004 2004 2004 2004 2005 2006 2006 2006 2006 2006 2006 2007 2008 2009 2011	
Test for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Yang 2000 Mattia 2000 Myllykangas 2000 Sbir 2000 Zuliani 2001 Perry 2001 Wu 2002 Carbonell 2003 Camelo 2004 Chalmers 2004 Chalmers 2004 Chalmers 2004 Chalmers 2005 Wehr 2006 Weng 2006 Keikhaee 2006 Liu 2007 Han 2008 Miners 2009 Lucatelli 2011 Zhang 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1	1.61 ($P = 1$ 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151 76 96 43 81 34 43 62 18 85 1680 6; Chi ² = 5	0.11) 49 80 140 135 188 80 121 35 40 111 96 80 83 83 26 192 100 104 92 117 39 55 86 2263 44.0 26 26 27 39 55 86 26 27 39 55 86 26 27 39 55 86 26 27 39 55 86 26 26 26 27 39 55 86 26 27 39 55 86 26 27 39 55 86 26 27 39 55 86 26 27 39 55 86 26 26 27 20 26 26 26 26 26 26 26 26 26 26	22 93 22 70 170 41 63 20 38 40 71 48 51 50 163 106 103 87 84 39 49 27 84 39 76 1621	40 153 40 111 227 67 75 29 54 78 96 65 68 58 68 68 195 144 128 166 125 50 59 9 67 102 2314	1.2% 1.9% 1.5% 2.1% 1.4% 1.3% 0.8% 1.1% 1.3% 1.4% 1.0% 2.1% 1.2% 2.1% 1.2% 2.1% 1.2% 2.1% 1.2% 3.1% 3.3%	$\begin{array}{l} 1.20 \left[0.68 \right] 2.10 \right] \\ 0.97 \left[0.48 \right] 1.97 \right] \\ 2.71 \left[1.51 \right] 4.87 \right] \\ 2.09 \left[1.25 \right] 3.48 \right] \\ 2.75 \left[1.30 \right] 5.73 \left[0.34 \right] 1.52 \\ 0.51 \left[0.22 \right] 1.51 \\ 1.52 \left[0.50 \right] 4.63 \right] \\ 0.51 \left[0.22 \right] 1.21 \\ 1.56 \left[0.87 \right] 2.81 \right] \\ 2.46 \left[1.16 \right] 5.26 \right] \\ 1.22 \left[0.57 \right] 2.61 \right] \\ 1.05 \left[0.50 \right] 2.21 \\ 1.07 \left[0.52 \right] 2.15 \right] \\ 0.58 \left[0.22 \right] 1.50 \\ 0.72 \left[0.43 \right] 1.21 \\ 1.14 \left[0.63 \right] 2.05 \\ 2.91 \left[1.25 \right] 6.77 \\ 0.80 \left[0.48 \right] 1.33 \\ 1.10 \left[0.64 \right] 1.89 \\ 1.92 \left[0.61 \right] 6.07 \\ 0.73 \left[0.29 \right] 1.86 \\ 2.10 \left[1.01 \right] 4.39 \\ 0.39 \left[0.17 \right] 0.91 \\ 2.64 \left[1.22 \right] 5.71 \\ 1.25 \left[1.01 \right] 1.55 \\ \end{array}$	1998 1999 2000 2000 2000 2001 2001 2001 2002 2003 2004 2004 2004 2004 2005 2006 2006 2006 2006 2006 2006 2007 2008 2009 2011	
Test for overall effect: Z = 6.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Kehoe (London) 1999 Yang 2000 Mattia 2000 Myllykangas 2000 Isbir 2000 Zuliani 2001 Perry 2001 Wu 2002 Carbonell 2003 Camelo 2004 Chalmers 2004 Chalmers 2004 Chalmers 2004 Keikhaee 2006 Liu 2007 Han 2008 Miners 2009 Lucatelli 2011 Zhang 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z =	1.61 ($P = 1$ 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151 76 96 43 81 34 43 62 18 85 1680 6; Chi ² = 5	0.11) 49 80 140 135 188 80 121 35 40 111 96 80 83 26 192 100 104 92 117 39 55 86 35 86 35 96 96 96 96 96 96 96 96 96 96	22 93 22 70 170 41 63 20 38 40 71 48 51 50 163 106 103 87 84 39 49 27 84 39 76 1621	40 153 40 111 227 67 75 29 54 78 965 68 68 68 68 68 68 195 144 128 165 128 125 50 59 49 67 102 2314	1.2% 1.9% 1.8% 2.1% 1.4% 1.3% 0.8% 1.3% 1.3% 1.4% 1.3% 1.4% 1.0% 2.1% 2.1% 2.1% 2.0% 0.7% 1.0% 1.4% 1.3% 36.3%	1.20 [0.68, 2.10] 0.97 [0.48, 1.97] 2.71 [1.51, 4.87] 2.09 [1.25, 3.48] 2.75 [1.30, 5.79] 0.73 [0.34, 1.56] 1.52 [0.50, 4.63] 0.51 [0.22, 1.21] 1.56 [0.87, 2.81] 2.46 [1.16, 5.26] 1.22 [0.57, 2.61] 1.05 [0.50, 2.21] 1.07 [0.52, 2.19] 0.58 [0.22, 1.50] 0.72 [0.43, 1.21] 1.14 [0.64, 1.89] 1.92 [0.61, 6.07] 0.73 [0.29, 1.86] 2.10 [1.01, 4.39] 0.39 [0.17, 0.91] 2.64 [1.22, 5.71] 1.25 [1.01, 1.55]	1998 1999 2000 2000 2000 2001 2001 2001 2002 2003 2004 2004 2004 2004 2005 2006 2006 2006 2006 2006 2006 2007 2008 2009 2011	
Test for overall effect: Z = 6.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Yang 2000 Mattia 2000 Myllykangas 2000 Isbir 2000 Zuliani 2001 Perry 2001 Wu 2002 Carbonell 2003 Camelo 2004 Chalmers 2004 Chalmers 2004 Chalmers 2004 Keikhaee 2006 Keikhaee 2006 Keikhaee 2006 Liu 2007 Han 2008 Miners 2009 Lucatelli 2011 Zhang 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z =	1.61 (P = 1) 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151 76 96 43 81 34 43 62 18 85 1680 6; Chi ² = 5 2.08 (P = 1)	0.11) 49 80 140 135 188 80 121 35 40 111 96 80 83 83 26 192 100 104 92 117 39 55 86 2263 44.0 26 26 27 39 55 86 26 27 39 55 86 26 27 39 55 86 26 27 39 55 86 26 26 26 27 39 55 86 26 27 39 55 86 26 27 39 55 86 26 27 39 55 86 26 27 39 55 86 26 26 27 20 26 26 26 26 26 26 26 26 26 26	22 93 22 70 70 170 41 63 20 38 40 71 84 50 163 106 103 87 50 163 106 103 87 49 27 49 76 1621 = 24 (P =	40 153 40 111 227 67 75 29 54 78 965 68 68 68 68 68 68 195 144 128 165 128 126 50 59 49 67 102 2314	1.2% 1.9% 1.5% 2.1% 1.4% 1.3% 0.8% 1.1% 1.3% 1.4% 1.0% 2.1% 1.2% 2.1% 1.2% 2.1% 1.2% 2.1% 1.2% 3.1% 3.3%	$\begin{array}{l} 1.20 \left[0.68 \right] 2.10 \right] \\ 0.97 \left[0.48 \right] 1.97 \right] \\ 2.71 \left[1.51 \right] 4.87 \right] \\ 2.09 \left[1.25 \right] 3.48 \right] \\ 2.75 \left[1.30 \right] 5.73 \left[0.34 \right] 1.52 \\ 0.51 \left[0.22 \right] 1.51 \\ 1.52 \left[0.50 \right] 4.63 \right] \\ 0.51 \left[0.22 \right] 1.21 \\ 1.56 \left[0.87 \right] 2.81 \right] \\ 2.46 \left[1.16 \right] 5.26 \right] \\ 1.22 \left[0.57 \right] 2.61 \right] \\ 1.05 \left[0.50 \right] 2.21 \\ 1.07 \left[0.52 \right] 2.15 \right] \\ 0.58 \left[0.22 \right] 1.50 \\ 0.72 \left[0.43 \right] 1.21 \\ 1.14 \left[0.63 \right] 2.05 \\ 2.91 \left[1.25 \right] 6.77 \\ 0.80 \left[0.48 \right] 1.33 \\ 1.10 \left[0.64 \right] 1.89 \\ 1.92 \left[0.61 \right] 6.07 \\ 0.73 \left[0.29 \right] 1.86 \\ 2.10 \left[1.01 \right] 4.39 \\ 0.39 \left[0.17 \right] 0.91 \\ 2.64 \left[1.22 \right] 5.71 \\ 1.25 \left[1.01 \right] 1.55 \\ \end{array}$	1998 1999 2000 2000 2000 2001 2001 2001 2002 2003 2004 2004 2004 2004 2005 2006 2006 2006 2006 2006 2006 2007 2008 2009 2011	
Test for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Kehoe(London) 1999 Yang 2000 Mattia 2000 Mattia 2000 Myllykangas 2000 Sbir 2000 Zuliani 2001 Pery 2001 Wu 2002 Carbonell 2003 Camelo 2004 Chalmers 2004 Chalmers 2004 Zhang 2005 Wehr 2006 Keikhaee 2006 Liu 2007 Han 2008 Miners 2009 Lucatelli 2011 Zhang 2014 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = Total events	1.61 (P = 1 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151 76 96 43 81 34 43 62 18 85 1680 6; Chi² = 5 2.08 (P = 1 5972	0.11) 49 80 140 135 188 80 121 35 40 111 96 80 83 83 26 192 100 104 92 107 39 55 86 35 96 2263 4.21, df 0.04) 8153	22 93 22 70 170 41 63 20 38 40 71 45 50 163 106 103 87 84 39 50 163 106 103 87 84 9 27 49 76 1621 = 24 (P =	40 153 40 111 227 67 75 29 54 78 96 68 58 68 195 144 128 166 125 50 59 49 67 102 2314 0.0004 2 14932	1.2% 1.9% 1.5% 2.1% 1.4% 1.3% 0.8% 1.3% 1.4% 1.3% 1.4% 1.0% 2.1% 1.8% 1.2% 2.1% 1.2% 2.1% 1.2% 2.1% 1.2% 2.1% 1.4% 1.3% 0.7% 1.3% 0.7% 1.1% 1.3% 0.7% 1.1% 1.3% 0.7% 1.1% 1.2% 0.7% 1.2% 0.7% 1.2% 0.7% 1.2% 0.7% 1.3% 0.7% 1.3% 0.7% 1.3% 0.7% 1.3% 0.7% 1.4% 1.3% 0.8% 1.4% 1.4% 1.3% 1.4% 1.3% 1.4% 1.3% 1.4% 1.3% 1.4% 1.3% 1.4% 1.3% 1.4% 1.3% 1.4% 1.3% 1.4% 1.3% 1.4% 1.3% 1.4% 1.4% 1.3% 1.4% 1.3% 1.4% 1.4% 1.2% 2.1% 1.4% 1.2% 2.1% 1.2% 2.1% 1.2% 1.2% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.3% 1.4% 1.2% 1.4% 1.3% 1.4% 1.2% 1.4% 1.2% 1.4% 1.3% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.2% 1.4% 1.2%	1.20 [0.68, 2.10] 0.97 [0.48, 1.97] 2.71 [1.51, 4.87] 2.09 [1.25, 3.48] 2.75 [1.30, 5.79] 0.73 [0.34, 1.56] 1.52 [0.50, 4.63] 0.51 [0.22, 1.21] 1.56 [0.87, 2.81] 2.46 [1.16, 5.26] 1.22 [0.57, 2.61] 1.05 [0.52, 2.19] 0.58 [0.22, 1.50] 0.72 [0.43, 1.21] 1.14 [0.63, 2.05] 2.91 [1.25, 6.77] 0.80 [0.48, 1.33] 1.10 [0.64, 1.89] 1.92 [0.61, 6.07] 0.73 [0.29, 1.86] 2.10 [1.01, 4.39] 0.39 [0.17, 0.91] 2.64 [1.22, 5.71] 1.25 [1.01, 1.55]	1998 1999 2000 2000 2000 2001 2001 2001 2002 2003 2004 2004 2004 2004 2005 2006 2006 2006 2006 2006 2006 2007 2008 2009 2011	
Fest for overall effect: Z = 5.4.2 Low quality Chapman 1998 Scacchi 1998 Palumbo 1999 Kehoe (London) 1999 Yang 2000 Mattia 2000 Mattia 2000 Myllykangas 2000 Sbir 2000 Zuliani 2001 Perry 2001 Wu 2002 Carbonell 2003 Camelo 2004 Chalmers 2004 Chang 2005 Wehr 2006 Keing 2005 Weng 2006 Weng 2006 Viners 2009 Lucatelli 2011 Zhang 2014 Subtotal (95% CI) Fotal (95% CI)	1.61 (P = 1 29 52 76 111 162 65 96 27 22 69 84 62 63 57 16 151 76 96 43 81 34 43 62 18 85 1680 6; Chi ² = 5 2.08 (P = 1 5972 17; Chi ² = 1	0.11) 49 80 140 135 188 80 121 35 40 111 96 80 83 83 26 192 100 104 92 100 104 92 107 39 55 86 35 96 2263 4.21, df 0.04) 8153 06.72, d	22 93 22 70 170 41 63 20 38 40 71 45 50 163 106 103 87 84 39 50 163 106 103 87 84 9 27 49 76 1621 = 24 (P =	40 153 40 111 227 67 75 29 54 78 96 68 58 68 195 144 128 166 125 50 59 49 67 102 2314 0.0004 2 14932	1.2% 1.9% 1.5% 2.1% 1.4% 1.3% 0.8% 1.3% 1.4% 1.3% 1.4% 1.0% 2.1% 1.8% 1.2% 2.1% 1.2% 2.1% 1.2% 2.1% 1.2% 2.1% 1.4% 1.3% 0.7% 1.3% 0.7% 1.1% 1.3% 0.7% 1.1% 1.3% 0.7% 1.1% 1.2% 0.7% 1.2% 0.7% 1.2% 0.7% 1.2% 0.7% 1.3% 0.7% 1.3% 0.7% 1.3% 0.7% 1.3% 0.7% 1.4% 1.3% 0.8% 1.4% 1.4% 1.3% 1.4% 1.3% 1.4% 1.3% 1.4% 1.3% 1.4% 1.3% 1.4% 1.3% 1.4% 1.3% 1.4% 1.3% 1.4% 1.3% 1.4% 1.3% 1.4% 1.4% 1.3% 1.4% 1.3% 1.4% 1.4% 1.2% 2.1% 1.4% 1.2% 2.1% 1.2% 2.1% 1.2% 1.2% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.3% 1.4% 1.2% 1.4% 1.3% 1.4% 1.2% 1.4% 1.2% 1.4% 1.3% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.4% 1.2% 1.2% 1.4% 1.2%	1.20 [0.68, 2.10] 0.97 [0.48, 1.97] 2.71 [1.51, 4.87] 2.09 [1.25, 3.48] 2.75 [1.30, 5.79] 0.73 [0.34, 1.56] 1.52 [0.50, 4.63] 0.51 [0.22, 1.21] 1.56 [0.87, 2.81] 2.46 [1.16, 5.26] 1.22 [0.57, 2.61] 1.05 [0.52, 2.19] 0.58 [0.22, 1.50] 0.72 [0.43, 1.21] 1.14 [0.63, 2.05] 2.91 [1.25, 6.77] 0.80 [0.48, 1.33] 1.10 [0.64, 1.89] 1.92 [0.61, 6.07] 0.73 [0.29, 1.86] 2.10 [1.01, 4.39] 0.39 [0.17, 0.91] 2.64 [1.22, 5.71] 1.25 [1.01, 1.55]	1998 1999 2000 2000 2000 2001 2001 2002 2003 2004 2004 2004 2004 2006 2006 2006 2006	

Figure 3. Meta-analysis for the association of SAD risk with ACE I/D polymorphism: subgroup analysis by quality appraisal score (dominant model: II+ID vs DD). doi:10.1371/journal.pone.0111406.g003

/D polymorphism.
risk and I
ween SAI
es for associations bet
values for
ort probability
alse-positive rep
е Э.Т

Significant association	OR (95%CI)	وط	Statistical power ^b	Prior probability	ility			
				0.25	0.1	0.01	0.001	0.0001
Overall analyses								
Allelic comparison (I vs D)	1.09 (1.01, 1.17)	0.030	1	0.049	0.133	0.628	0.945	0.994
Additive model (II vs DD)	1.17 (1.01, 1.34)	0.030	-	0.065	0.173	0.698	0.959	0.996
Dominant model (II+ID vs DD)	1.16 (1.04, 1.29)	0.008	1	0.018	0.053	0.379	0.860	0.984
All in HWE								
Allelic comparison (I vs D)	1.11 (1.03, 1.20)	0.009	1	0.025	0.073	0.463	0.897	0.989
Additive model (II vs DD)	1.19 (1.02, 1.38)	0.027	0.999	0.060	0.161	0.679	0.955	0.995
Dominant model (II+ID vs DD)	1.17 (1.05, 1.31)	0.005	L	0.019	0.055	0.391	0.866	0.985
English language article								
Dominant model (II+ID vs DD)	1.14 (1.02, 1.27)	0.018	-	0.050	0.135	0.633	0.946	0.994
North European subgroup								
Allelic comparison (I vs D)	1.11 (1.01, 1.21)	0.033	1	0.050	0.138	0.637	0.947	0.994
Additive model (II vs DD)	1.24 (1.05, 1.48)	0.012	0.983	0.050	0.136	0.634	0.946	0.994
Dominant model (II+ID vs DD)	1.22 (1.03, 1.45)	0.022	0.990	0.068	0.179	0.706	0.960	0.996
Low study quality subgroup								
Additive model (ID vs DD)	1.25 (1.02, 1.54)	0.034	0.957	0.102	0.253	0.789	0.974	0.997
Dominant model (II+ID vs DD)	1.25 (1.01, 1.55)	0.038	0.952	0.117	0.284	0.814	0.978	0.998
Small sample size subgroup								
Allelic comparison (I vs D)	1.17 (1.03, 1.32)	0.018	-	0.031	0.088	0.515	0.915	0.991
Additive model (II vs DD)	1.32 (1.04, 1.66)	0.021	0.863	0.058	0.155	0.669	0.953	0.995
Additive model (ID vs DD)	1.28 (1.06, 1.55)	0.011	0.948	0.035	0.098	0.545	0.924	0.992
Dominant model (II+ID vs DD)	1.29 (1.06, 1.56)	0.010	0.940	0.027	0.076	0.476	0.902	0.989
Non PB subgroup								
Additive model (ID vs DD)	1.29 (1.11, 1.50)	0.001	0.975	0.003	0.009	0.087	0.489	0.906
Dominant model (II+ID vs DD)	1.24 (1.01, 1.52)	0.037	0.967	0.106	0.263	0.797	0.975	0.997
Before 2003 subgroup								
Allelic comparison (I vs D)	1.12 (1.01, 1.24)	0.035	-	0.080	0.207	0.742	0.967	0.997
Additive model (II vs DD)	1.24 (1.01, 1.53)	0.037	0.962	0.123	0.295	0.822	0.979	0.998
Additive model (ID vs DD)	1.30 (1.10, 1.54)	0.002	0.951	0.008	0.022	0.200	0.716	0.962
Dominant model (II+ID vs DD)	1.28 (1.09, 1.52)	0.003	0.965	0.015	0.043	0.333	0.835	0.981
PCR (insertion-specific) subgroup								
Dominant model (II+ID vs DD)	1.17 (1.01, 1.35)	0.035	-	0.086	0.221	0.757	0.969	0.997

Figure 4. Funnel plot for the association of SAD risk with ACE I/D polymorphism (allelic comparison: I vs D). doi:10.1371/journal.pone.0111406.g004

belonged to the Asian subgroup. These two analyses provided evidence that a combination of heterogeneous studies from the Asian subgroup contributed to the moderate heterogeneity of overall analyses. However, in the Asian subgroup, meta-regression did not find any sources of heterogeneity (data not shown), suggesting that the heterogeneity in the Asian subgroup might be explained by other confounding factors. In general, more rigorous and uniform studies were required.

In the present study, results from populations with different genetic backgrounds were not the same. The combinations of the South Caucasians studies and the Asian studies showed no significant results. However, results from the North European subgroup were distinct and the pooled ACE I allele frequency of the controls showed a modest difference across ethnicities (North European studies: 46.9%; South Caucasian studies: 39.7%; Asian studies: 59.3%). These inconsistent data may be explained by the different genetic background across ethnicities. Nevertheless, owing to the greater FPRP values of significant associations in the North European subgroup, the observed ethnic difference in this meta-analysis was also likely to be caused by chance because continued reliance on the standard p value criterion of 0.05 to define statistical significance without consideration of power or prior probability may generated a fluctuated risk estimate [26]. Thus, large and carefully designed studies on ethnicity difference were also needed to provide the best evidence for these possible associations.

When studies were stratified by sample size, significant elevated SAD risks were associated with the I/D polymorphism in the small sample size subgroup. However, small sample with limited participants was often accompanied with selection biases, and lacked sufficient power to support or deny an association [87]. It was therefore speculated that the small sample size subgroup might overestimate the magnitude of association between I/D variant and SAD risk. Moreover, these significant associations in the small sample size subgroup were weak as they did not pass the FPRP analyses. Finally, when we restricted to the large sample size

subgroup, no statistically significant finding was observed in any genetic models.

In the stratification analysis by source of controls, significant associations were observed using heterozygote comparison and the dominant model in the non populations-based subgroup. However, the genotype distributions in the non population-based studies may not be representative of the general population. Given the fact that these associations were not noteworthy (did not pass the FPRP analyses) and no significant association was found in the population-based studies, we thought that this significant association for the I/D variant might be a spurious finding. More and larger population-based studies were required to further clarify the association between I/D variant and SAD risk.

Despite our efforts in performing a deeper analysis, some limitations also exist in our meta-analysis. First, in most overall and subgroup analyses, moderate heterogeneity was detected and might have potential impact in the pooled results. Due to the limited information, subgroup analyses and meta regression according to other confounding factors were not performed. Second, sensitivity analysis limited to English-language studies suggested that a potential language bias was possible. However, we only included studies published in Chinese and English, more studies published in other languages should be concerned. Finally, lack of individual participants' data has restricted further adjustments by other covariables, such as *APOE e4* status, gender, etc.

In conclusion, given that all significant associations could not pass the FPRP analyses and no significant association was detected in the high quality studies, the large sample size studies and the population-based studies, we suggest that the *ACE* I/D polymorphism is unlikely to be a major determining factor in the development of SAD.

Supporting Information

Figure S1 Cumulative meta-analysis of the relation between ACE I/D polymorphism and risk of SAD (I vs **D).** Each study was used as an information step. The vertical dotted line is the summary odds ratio. Bars represent 95% confidence interval (CIs) (TIF)

Figure S2 Galbraith plots of association between I/D polymorphism and SAD risk. Each number represents a separate study for the indicated association and the number is the number of the respective study included into the meta-analysis (shown in Table 1). (a) allelic comparison, I vs D; (b) additive model, II vs DD; (c) additive model, ID vs DD; (d) recessive model, II vs ID+DD; (e) dominant model, II+ID vs DD. (DOC)

File S1 (1) Table S1 Scale used for quality assessment of studies of the association between *ACE* I/D polymorphism and SAD risk. (2) Table S2 The univariate meta-regression results of the

References

- 1. Mucke L (2009) Neuroscience: Alzheimer's disease. Nature 461: 895-897.
- Shinohara M, Fujioka S, Murray ME, Wojtas A, Baker M, et al. (2014) Regional distribution of synaptic markers and APP correlate with distinct clinicopathological features in sporadic and familial Alzheimer's disease. Brain 137: 1533– 1549.
- Thies W, Bleiler L (2013) 2013 Alzheimer's disease facts and figures. Alzheimers Dement 9: 208–245.
- Drzezga A, Grimmer T, Henriksen G, Muhlau M, Perneczky R, et al. (2009) Effect of APOE genotype on amyloid plaque load and gray matter volume in Alzheimer disease. Neurology 72: 1487–1494.
- Colton CA, Vitek MP, Wink DA, Xu Q, Cantillana V, et al. (2006) NO synthase 2 (NOS2) deletion promotes multiple pathologies in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 103: 12867–12872.
- Paula-Lima AC, Brito-Moreira J, Ferreira ST (2013) Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer's disease. J Neurochem 126: 191–202.
- Kehoe PG, Miners S, Love S (2009) Angiotensins in Alzheimer's disease friend or foe? Trends Neurosci 32: 619–628.
- Biller H, Zissel G, Ruprecht B, Nauck M, Busse Grawitz A, et al. (2006) Genotype-corrected reference values for serum angiotensin-converting enzyme. Eur Respir J 28: 1085–1090.
- van Esch JH, van Gool JM, de Bruin RJ, Payne JR, Montgomery HE, et al. (2008) Different contributions of the angiotensin-converting enzyme C-domain and N-domain in subjects with the angiotensin-converting enzyme II and DD genotype. J Hypertens 26: 706–713.
- Wu SJ, Hsieh TJ, Kuo MC, Tsai ML, Tsai KL, et al. (2013) Functional regulation of Alu element of human angiotensin-converting enzyme gene in neuron cells. Neurobiol Aging 34: 1921.e1921–1927.
- Kehoe PG, Russ C, McIlory S, Williams H, Holmans P, et al. (1999) Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nat Genet 21: 71–72.
- Kehoe PG, Katzov H, Feuk L, Bennet AM, Johansson B, et al. (2003) Haplotypes extending across ACE are associated with Alzheimer's disease. Hum Mol Genet 12: 859–867.
- Elkins JS, Douglas VC, Johnston SC (2004) Alzheimer disease risk and genetic variation in ACE: a meta-analysis. Neurology 62: 363–368.
- Lehmann DJ, Cortina-Borja M, Warden DR, Smith AD, Sleegers K, et al. (2005) Large meta-analysis establishes the ACE insertion-deletion polymorphism as a marker of Alzheimer's disease. Am J Epidemiol 162: 305–317.
- Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6: e1000097.
- Thakkinstian A, McEvoy M, Minelli C, Gibson P, Hancox B, et al. (2005) Systematic review and meta-analysis of the association between {beta}2adrenoceptor polymorphisms and asthma: a HuGE review. Am J Epidemiol 162: 201–211.
- Wu J, Liu J, Zhou Y, Ying J, Zou H, et al. (2012) Predictive value of XRCC1 gene polymorphisms on platinum-based chemotherapy in advanced non-small cell lung cancer patients: a systematic review and meta-analysis. Clin Cancer Res 18: 3972–3981.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. Bmj 327: 557–560.
- DerSimonian R, Kacker R (2007) Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials 28: 105–114.
- Lau J, Ioannidis JP, Schmid CH (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127: 820–826.
- Zintzaras E, Lau J (2008) Synthesis of genetic association studies for pertinent gene-disease associations requires appropriate methodological and statistical approaches. J Clin Epidemiol 61: 634–645.

association of the I/D polymorphism and risk of SAD. (3) Table S3 Results of Begg's tests and Egger's tests for overall analyses. (DOC)

Checklist S1 PRISMA Checklist for systematic review and meta-analysis.

(DOC)

Checklist S2 Genetic association studies checklist. (DOCX)

Author Contributions

Conceived and designed the experiments: XW NC. Performed the experiments: XW NC JY. Analyzed the data: XW XQ JG NY. Contributed reagents/materials/analysis tools: NC JY XQ. Contributed to the writing of the manuscript: XW FZ.

- Huy NT, Thao NT, Diep DT, Kikuchi M, Zamora J, et al. (2010) Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic meningitis: a systemic review and meta-analysis. Crit Care 14: R240.
- Langan D, Higgins JP, Gregory W, Sutton AJ (2012) Graphical augmentations to the funnel plot assess the impact of additional evidence on a meta-analysis. J Clin Epidemiol 65: 511–519.
- Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. Bmj 315: 629–634.
- 25. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50: 1088–1101.
- Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96: 434–442.
- Thomas DC, Clayton DG (2004) Betting odds and genetic associations. J Natl Cancer Inst 96: 421–423.
- Schjeide BM, McQueen MB, Mullin K, DiVito J, Hogan MF, et al. (2009) Assessment of Alzheimer's disease case-control associations using family-based methods. Neurogenetics 10: 19–25.
- Zhang Z, Deng L, Yu H, Shi Y, Bai F, et al. (2012) Association of angiotensinconverting enzyme functional gene I/D polymorphism with amnestic mild cognitive impairment. Neurosci Lett 514: 131–135.
- Arlt S, Demiralay C, Tharun B, Geisel O, Storm N, et al. (2013) Genetic risk factors for depression in Alzheimer's disease patients. Curr Alzheimer Res 10: 72–81.
- Yang YH, Liu CK (2008) Angiotensin-converting enzyme gene in Alzheimer's disease. Tohoku J Exp Med 215: 295–298.
- Sayed-Tabatabaei FA, Oostra BA, Isaacs A, van Duijn CM, Witteman JC (2006) ACE polymorphisms. Circ Res 98: 1123–1133.
- Amouyel P, Richard F, Berr C, David-Fromentin I, Helbecque N (2000) The renin angiotensin system and Alzheimer's disease. Ann N Y Acad Sci 903: 437– 441.
- Isbir T, Agachan B, Yilmaz H, Aydin M (2000) Angiotensin converting enzyme gene polymorphism in Alzheimer's disease. Cell Biochem Funct 18: 141–142.
- Panza F, Solfrizzi V, D'Introno A, Capurso C, Colaiccco AM, et al. (2002) Lack of association between ace polymorphism and Alzheimer's disease in southern Italy. Arch Gerontol Geriatr Suppl 8: 239–245.
- Shcherbatykh TV, Kiryanov SA, Korovaitseva GI, Selezneva ND, Voskresenskaya NI, et al. (2001) The angiotensin-converting enzyme gene as a possible risk or protective factor in Alzheimer's disease. Neurosci Behav Physiol 31: 179–181.
- Wakutani Y, Kowa H, Kusumi M, Yamagata K, Wada-Isoe K, et al. (2002) Genetic analysis of vascular factors in Alzheimer's disease. Ann N Y Acad Sci 977: 232–238.
- Vardy ER, Rice PJ, Bowie PC, Holmes JD, Catto AJ, et al. (2009) Plasma angiotensin-converting enzyme in Alzheimer's disease. J Alzheimers Dis 16: 609–618.
- Farrer LA, Sherbatich T, Keryanov SA, Korovaitseva GI, Rogaeva EA, et al. (2000) Association between angiotensin-converting enzyme and Alzheimer disease. Arch Neurol 57: 210–214.
- Richard F, Fromentin-David I, Ricolfi F, Ducimetiere P, Di Menza C, et al. (2001) The angiotensin I converting enzyme gene as a susceptibility factor for dementia. Neurology 56: 1593–1595.
- Seripa D, Forno GD, Matera MG, Gravina C, Margaglione M, et al. (2003) Methylenetetrahydrofolate reductase and angiotensin converting enzyme gene polymorphisms in two genetically and diagnostically distinct cohort of Alzheimer patients. Neurobiol Aging 24: 933–939.
- 42. Scacchi R, De Bernardini L, Mantuano E, Vilardo T, Donini LM, et al. (1998) DNA polymorphisms of apolipoprotein B and angiotensin I-converting enzyme genes and relationships with lipid levels in Italian patients with vascular dementia or Alzheimer's disease. Dement Geriatr Cogn Disord 9: 186–190.

- Chapman J, Wang N, Treves TA, Korczyn AD, Bornstein NM (1998) ACE, MTHFR, factor V Leiden, and APOE polymorphisms in patients with vascular and Alzheimer's dementia. Stroke 29: 1401–1404.
- Palumbo B, Cadini D, Nocentini G, Filipponi E, Fravolini ML, et al. (1999) Angiotensin converting enzyme deletion allele in different kinds of dementia disorders. Neurosci Lett 267: 97–100.
- Hu J, Miyatake F, Aizu Y, Nakagawa H, Nakamura S, et al. (1999) Angiotensinconverting enzyme genotype is associated with Alzheimer disease in the Japanese population. Neurosci Lett 277: 65–67.
- Alvarez R, Alvarez V, Lahoz CH, Martinez C, Pena J, et al. (1999) Angiotensin converting enzyme and endothelial nitric oxide synthase DNA polymorphisms and late onset Alzheimer's disease. J Neurol Neurosurg Psychiatry 67: 733–736.
- 47. Mattila KM, Rinne JO, Roytta M, Laippala P, Pietila T, et al. (2000) Dipeptidyl carboxypeptidase 1 (DCP1) and butyrylcholinesterase (BCHE) gene interactions with the apolipoprotein E epsilon4 allele as risk factors in Alzheimer's disease and in Parkinson's disease with coexisting Alzheimer pathology. J Med Genet 37: 766–770.
- Crawford F, Abdullah L, Schinka J, Suo Z, Gold M, et al. (2000) Gender-specific association of the angiotensin converting enzyme gene with Alzheimer's disease. Neurosci Lett 280: 215–219.
- Myllykangas L, Polvikoski T, Sulkava R, Verkkoniemi A, Tienari P, et al. (2000) Cardiovascular risk factors and Alzheimer's disease: a genetic association study in a population aged 85 or over. Neurosci Lett 292: 195–198.
- Yang JD, Feng G, Zhang J, Lin ZX, Shen T, et al. (2000) Association between angiotensin-converting enzyme gene and late onset Alzheimer's disease in Han chinese. Neurosci Lett 295: 41–44.
- Isbir T, Agachan B, Yilmaz H, Aydin M, Kara I, et al. (2001) Interaction between apolipoprotein-E and angiotensin-converting enzyme genotype in Alzheimer's disease. Am J Alzheimers Dis Other Demen 16: 205–210.
- Narain Y, Yip A, Murphy T, Brayne C, Easton D, et al. (2000) The ACE gene and Alzheimer's disease susceptibility. J Med Genet 37: 695–697.
- Zuliani G, Ble A, Zanca R, Munari MR, Zurlo A, et al. (2001) Genetic polymorphisms in older subjects with vascular or Alzheimer's dementia. Acta Neurol Scand 103: 304–308.
- 54. Perry RT, Collins JS, Harrell LE, Acton RT, Go RC (2001) Investigation of association of 13 polymorphisms in eight genes in southeastern African American Alzheimer disease patients as compared to age-matched controls. Am J Med Genet 105: 332–342.
- Buss S, Muller-Thomsen T, Hock C, Alberici A, Binetti G, et al. (2002) No association between DCP1 genotype and late-onset Alzheimer disease. Am J Med Genet 114: 440–445.
- Wu C, Zhou D, Guan Z, Fan J, Qiao Y (2002) The association between angiotensin I converting enzyme gene polymorphism and Chinese late onset Alzheimer disease. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 19: 401–404.
- Lendon CL, Thaker U, Harris JM, McDonagh AM, Lambert JC, et al. (2002) The angiotensin 1-converting enzyme insertion (I)/deletion (D) polymorphism does not influence the extent of amyloid or tau pathology in patients with sporadic Alzheimer's disease. Neurosci Lett 328: 314–318.
- Monastero R, Caldarella R, Mannino M, Cefalu AB, Lopez G, et al. (2002) Lack of association between angiotensin converting enzyme polymorphism and sporadic Alzheimer's disease. Neurosci Lett 335: 147–149.
- Cheng CY, Hong CJ, Liu HC, Liu TY, Tsai SJ (2002) Study of the association between Alzheimer's disease and angiotensin-converting enzyme gene polymorphism using DNA from lymphocytes. Eur Neurol 47: 26–29.
- Panza F, Solfrizzi V, D'Introno A, Colacicco AM, Capurso C, et al. (2003) Shifts in angiotensin I converting enzyme insertion allele frequency across Europe: implications for Alzheimer's disease risk. J Neurol Neurosurg Psychiatry 74: 1159–1161.
- Carbonell J, Allen R, Kalsi G, McQuillin A, Livingston G, et al. (2003) Variation in the DCP1 gene, encoding the angiotensin converting enzyme ACE, is not associated with increased susceptibility to Alzheimer's disease. Psychiatr Genet 13: 47–50.
- Camelo D, Arboleda G, Yunis JJ, Pardo R, Arango G, et al. (2004) Angiotensinconverting enzyme and alpha-2-macroglobulin gene polymorphisms are not associated with Alzheimer's disease in Colombian patients. J Neurol Sci 218: 47–51.
- Chalmers KA, Culpan D, Kehoe PG, Wilcock GK, Hughes A, et al. (2004) APOE promoter, ACE1 and CYP46 polymorphisms and beta-amyloid in Alzheimer's disease. Neuroreport 15: 95–98.
- 64. Feng YQ, Wang JH, Guo X, Zhao DW, Gao JS, et al. (2004) Analysis of the polymorphism of apoE gene and ACE gene in Alzheimer's disease and vascular dementia.. Chin J Geriatr Heart Brain Vessel Dis 6: 181–183.

- Kolsch H, Jessen F, Freymann N, Kreis M, Hentschel F, et al. (2005) ACE I/D polymorphism is a risk factor of Alzheimer's disease but not of vascular dementia. Neurosci Lett 377: 37–39.
- Zhang JW, Li XQ, Zhang ZX, Chen D, Zhao HL, et al. (2005) Association between angiotensin-converting enzyme gene polymorphism and Alzheimer's disease in a Chinese population. Dement Geriatr Cogn Disord 20: 52–56.
- Sleegers K, den Heijer T, van Dijk EJ, Hofman A, Bertoli-Avella AM, et al. (2005) ACE gene is associated with Alzheimer's disease and atrophy of hippocampus and amygdala. Neurobiol Aging 26: 1153–1159.
- Keikhaee MR, Hashemi SB, Najmabadi H, Noroozian M (2006) C677T methylentetrahydrofulate reductase and angiotensin converting enzyme gene polymorphisms in patients with Alzheimer's disease in Iranian population. Neurochem Res 31: 1079–1083.
- Meng Y, Baldwin CT, Bowirrat A, Waraska K, Inzelberg R, et al. (2006) Association of polymorphisms in the Angiotensin-converting enzyme gene with Alzheimer disease in an Israeli Arab community. Am J Hum Genet 78: 871– 877.
- Wehr H, Bednarska-Makaruk M, Lojkowska W, Graban A, Hoffman-Zacharska D, et al. (2006) Differences in risk factors for dementia with neurodegenerative traits and for vascular dementia. Dement Geriatr Cogn Disord 22: 1–7.
- Wang B, Jin F, Yang Z, Lu Z, Kan R, et al. (2006) The insertion polymorphism in angiotensin-converting enzyme gene associated with the APOE epsilon 4 allele increases the risk of late-onset Alzheimer disease. J Mol Neurosci 30: 267– 271.
- Wang HK, Fung HC, Hsu WC, Wu YR, Lin JC, et al. (2006) Apolipoprotein E, angiotensin-converting enzyme and kallikrein gene polymorphisms and the risk of Alzheimer's disease and vascular dementia. J Neural Transm 113: 1499– 1509.
- Nacmias B, Bagnoli S, Tedde A, Cellini E, Bessi V, et al. (2007) Angiotensin converting enzyme insertion/deletion polymorphism in sporadic and familial Alzheimer's disease and longevity. Arch Gerontol Geriatr 45: 201–206.
- Liu M, Zhang YD, Zhao KR, Liu Y (2007) Association of angiotensin converting enzyme activity and agiotensin converting enzyme gene polymorphism with vascular dementia and Alzheimer's disease. Chinese journal of practical internal medicine 13: 1028–1030.
- Han B, Zhang SL (2008) Association of apoE gene, A2M gene and ACE gene polymorphism with Alzheimer's disease. J Shanxi Med Univ 39: 692–696.
 Miners S, Ashby E, Baig S, Harrison R, Tayler H, et al. (2009) Angiotensin-
- Miners S, Ashby E, Baig S, Harrison R, Tayler H, et al. (2009) Angiotensinconverting enzyme levels and activity in Alzheimer's disease: differences in brain and CSF ACE and association with ACE1 genotypes. Am J Transl Res 1: 163– 177.
- Ning M, Yang Y, Zhang Z, Chen Z, Zhao T, et al. (2010) Amyloid-beta-Related Genes SORL1 and ACE are Genetically Associated With Risk for Late-onset Alzheimer Disease in the Chinese Population. Alzheimer Dis Assoc Disord 24: 390–396.
- Nirmal S, Tripathi M, Shastri SS, Sagar R, S V (2011) Association of Angiotensin-converting enzyme insertion(I)/deletion (D) genotype in Alzheimer's disease patients of north Indian population. Int J Neurosci 121: 557–561.
- Cousin E, Mace S, Rocher C, Dib C, Muzard G, et al. (2011) No replication of genetic association between candidate polymorphisms and Alzheimer's disease. Neurobiol Aging 32: 1443–1451.
- Lucatelli JF, Barros AC, Silva VK, Machado Fda S, Constantin PC, et al. (2011) Genetic influences on Alzheimer's disease: evidence of interactions between the genes APOE, APOC1 and ACE in a sample population from the South of Brazil. Neurochem Res 36: 1533–1539.
- Yang YH, Lai CL, Tyan YC, Chou MC, Wang LC, et al. (2011) Angiotensinconverting enzyme gene and plasma protein level in Alzheimer's disease in Taiwanese. Age Ageing 40: 238–242.
- Zhang SP, Xuan ZB, Huang ZY, Liu YQ, Liu Q, et al. (2014) The association between angiotensin converting enzyme gene polymorphism and Alzheimer's disease in Jiamusi region. Chinese journal of tissue engineering research 18: 259–264.
- Fogarty DG, Maxwell AP, Doherty CC, Hughes AE, Nevin NC (1994) ACE gene typing. Lancet 343: 851.
- Wang B, Huang G, Wang D, Li A, Xu Z, et al. (2010) Null genotypes of GSTM1 and GSTT1 contribute to hepatocellular carcinoma risk: evidence from an updated meta-analysis. J Hepatol 53: 508–518.
- Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, et al. (2008) Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. Jama 299: 2423–2436.
- Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG (2001) Replication validity of genetic association studies. Nat Genet 29: 306–309.
- Dechartres A, Trinquart L, Boutron I, Ravaud P (2013) Influence of trial sample size on treatment effect estimates: meta-epidemiological study. Bmj 346: f2304.