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Abstract

Background: Older patients are at an increased risk of developing adverse drug reactions (ADR). Of particular concern are
the oldest old, which constitute an increasingly growing population. Having a validated clinical tool to identify those older
patients at risk of developing an ADR during hospital stay would enable healthcare staff to put measures in place to reduce
the risk of such an event developing. The current study aimed to (1) develop and (2) validate an ADR risk prediction model.

Methods: We used a combination of univariate analysis and multivariate binary logistic regression to identify clinical risk
factors for developing an ADR in a population of older people from a UK teaching hospital. The final ADR risk model was
then validated in a European population (European dataset).

Results: Six-hundred-ninety patients (median age 85 years) were enrolled in the development stage of the study. Ninety-five
reports of ADR were confirmed by independent review in these patients. Five clinical variables were identified through
multivariate analysis and included in our final model; each variable was attributed a score of 1. Internal validation produced
an AUROC of 0.74, a sensitivity of 80%, and specificity of 55%. During the external validation stage the AUROC was 0.73, with
sensitivity and specificity values of 84% and 43% respectively.

Conclusions: We have developed and successfully validated a simple model to use ADR risk score in a population of
patients with a median age of 85, i.e. the oldest old. The model is based on 5 clinical variables ($8 drugs, hyperlipidaemia,
raised white cell count, use of anti-diabetic agents, length of stay $12 days), some of which have not been previously
reported.
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Introduction

Over the next 50 years, many societies throughout the world are

set to face an ‘ageing population’, with its associated burden of

disease and disability. In the US, the proportion of the population

aged 65 years or over in 1998 was 13% [1]. By 2012 that

proportion had risen to 15%, and is projected to rise to 22% by the

year 2060 [2]. The oldest old (those aged 85 or over) will also see a

considerable rise in the size of their population, which is set to

increase from 6 million in 2012 to 18 million in 2060 (an increase

of just under 200%). The picture in the UK is similar. Here, the

oldest old (.85 years) will see the largest relative rise in their

population of over 5 times between the years 1985 and 2035 [3].

Those aged over 65 are the largest consumers of healthcare, and

the recipients of the majority of prescribed medication. It is not

surprising therefore that older people suffer more adverse drug

reactions (ADR) than younger adults, and are 7 times more likely

to require hospitalisation due to an ADR [4]. They are also more

likely to suffer an ADR during inpatient stay. This obviously places

an extreme pressure on healthcare systems, with medical teams

having to treat the consequences of ADRs in addition to the

primary pathology.
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A considerable amount of work has been conducted in the past

30 years to develop risk prediction models for disease, so that

pharmacological, and lifestyle interventions can be targeted to

those in most need (for example the Framingham Heart Study)

[5]. In 1997, McElnay et al identified several risk factors but their

final model, predicting adverse drug events (defined as ADRs and

ineffective treatment), had low accuracy scores and so further

development was halted [6]. In recent years, risk prediction

models for ADRs have begun to emerge, offering healthcare

practitioners a potential tool to assist clinical and therapeutic

decision making, especially in high-risk patient groups such as the

over 65s. Trivalle et al used data from Parisian rehabilitation

hospitals to create a model which focus’ purely on medication as

risk variables [7]. In 2010, the GerontoNet ADR risk score was

published which used a range of clinical and drug-related risk

factors, drawn from an historical database of patients in Italy. This

model was then externally validated using data from across four

European countries [8]. In their validation study, patients had a

mean age of 80.3 years (67.6), and the Area Under the Curve was

0.71 (0.68–0.73). O’Connor et al recently applied the Gerontonet

tool prospectively to a separate cohort of acutely ill patients and

found that it correctly predicted ADR risk in 62% of patients. The

study also identified additional predictors (e.g. renal function, age,

potentially inappropriate medicines, number of medicines) which

they suggest should be included in future tools [9].

Although the majority of risk prediction models developed in

this area have been validated to some extent, the number of events

detected has been relatively small. They have also, in general,

included patients with a wide age-range, and the final models are

arguably impractical for everyday clinical use. The current study

therefore aimed to (1) develop, and (2) validate (using a 4-stage

process) an ADR risk prediction model. Our objectives were to

produce a model that is robust and generalizable across

populations, simple to use, and appropriate for predicting ADR

risk in the oldest old ($85 years). The model was developed from a

prospective and comprehensive assessment of ADR events in a

teaching hospital in Brighton, UK. It was then externally validated

using data collected from centres in Italy, Belgium, the UK, and

the Netherlands.

Methods

The Brighton Dataset
All patients aged $65 years that were admitted to one of 4

wards (2 elderly care and 2 stroke) at Brighton and Sussex

University Hospitals NHS Trust (BSUHT) over two 3-month

study periods (January to March in 2007 and 2008) September

2008 to February 2009) were systematically enrolled into the

study. However, the elderly care wards at BSUHT used in this

study only accept patients $80 years old, which ensured that the

majority of patients enrolled in our study were the oldest old. Most

patients were admitted through either the accident and emergency

department or the acute medical and surgical assessment unit.

Patients were subsequently excluded if they met one of the

following exclusion criteria: admitted following self-poisoning,

transferred to another ward during the weekend, admitted and

discharged during the weekend, died within 24 hours of admission,

or medical notes were not available for further investigation. All

remaining admissions (690) were followed until discharge, and

form the Brighton ADR RIsk Study Dataset (BADRI) [10].

Assessing the presence of an Adverse Drug Reaction
(ADR)
For the purpose of this study we adopted the Edwards and

Aronson definition of an ADR: an appreciably harmful or

unpleasant reaction, resulting from an intervention related to the

use of a medicinal product, which predicts hazard from future

administation and warrants prevention or specific treatment, or

alteration of the dosage regimen, or withdrawal of the product.’

[11]. Suspected ADRs were first identified by the primary

investigator (BT) using the trigger tool methodology which was

first developed by Classen [12], then later scrutinized and updated

by Rozich [13], Resar [14], and Handler [15]. This was

conducted through review of procedure notes, emergency

department notes, physician progress notes, laboratory reports,

physician medication orders on drug charts, nursing flow sheets,

hospital discharge records, and multidisciplinary progress notes.

Additionally, reports of ADRs from health care-providers and

those identified following a review of administrative incident

reports concerning ADRs were also included for further review.

Patients were however not directly consulted by the primary

investigator. All suspected events were then discussed with the

attending hospital physician or hospital pharmacist to confirm

interpretation. Each event was then reviewed by an independent

reviewer (physician) and the primary investigator (pharmacist) to

determine the causal relationship between drug intake and the

suspected ADR. This was conducted using the Hallas algorithm

[16], where each event was classified as either being a definite,

probable, possible or unlikely ADR according to the number of

predefined criteria that were met. The predefined criteria were: 1)

known ADR, 2) reasonable temporal relationship, 3) dechallenge,

4) rechallenge, and 5) no other explanation for the condition. To

further strengthen the methodology, confidence about the

causality assessment for each event was rated by the reviewers

on a 6-point Likert scale devised by Bates and colleagues [17]. The

six point Likert scale consists of: 1 little or no confidence; 2, slight-

to-moderate confidence; 3, less than 50 percent confidence but a

close call; 4, more than 50 percent confident but a close call; 5,

strong confidence; and 6, virtually certain. All events classified as

definite, probable, or possible, and which received .50%

confidence rating (a score of .4) were classified as drug-related

and included in the analysis.

Variables included in the risk prediction model
The following data were collected for each patient included in

the Brighton dataset: basic demographic data (age, gender, and

ethnic origin); admission diagnosis and details of the presenting

complaint; details of previous admissions; length of stay; informa-

tion on social settings (e.g. living alone, smoking and alcohol

history); assessment of cognition (Abbreviated Mental Test Score,

AMTS); assessment of disability (Barthel Index); biochemical and

haematological markers; drug history. We used the WHO

International Statistical Classification of Diseases and Related

Health Problems to classify comorbidities [18], and renal

impairment was taken to be an eGFR ,60 ml/min [19].

All data were obtained within 48 hours of admission to the study

ward from a combination of a review of the medical notes and

through discussion with nursing staff, pharmacists and the medical

team attending the patient.

Statistical analysis
The process of developing the risk prediction model consisted of

2 stages. The first stage involved application of univariate analysis

to generate a framework of variables, or predictors, for developing

BADRI Risk Prediction Model
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an ADR. Those variables which were found to be statistically

significant (p,0.05) were taken forward to the next stage of

multivariate analysis. In addition, variables that were identified in

other studies as being important predictors of ADR (Table 1), but
which had p values .0.05 but ,0.25 were also included in the

multivariate stage (see Hosmer DE, 1989 for further details on this

methodology) [20]. Variables which were present in less than 5%

of the study population were omitted from the analysis due to the

risk of including a statistically significant artefact in the model.

Multivariate analysis was undertaken using binary logistic

regression analysis. First variables were removed from the model

using the backward elimination process. The removal criteria was

set at p = 0.10 to allow variables to be retained in the model for as

long as possible. The process was then repeated with the forward

selection procedure before final confirmation of the model.

Selected candidate variables were later assessed for multicollinear-

ity and association to rule out any strong correlation between two

or more candidate variables in the final model. A p.0.05 from a

x2 test was taken to indicate an association. Following the iteration

process, the retained variables were taken forward into the final

risk model.

The overall fit of the BADRI risk prediction model to the

Brighton dataset was assessed using the Hosmer-Lemeshow test,

and effect size measured using the Nagelkerke R2. The cut-off

BADRI score was determined by first calculating sensitivity

(proportion of true positives) and specificity (proportion of true

negatives) of the model for the range of risk scores (0–5) and then

calculating Youden’s Index (J; Equation 1). Discrimination of the

model was further assessed by an analysis of the area under the

operator curve (AUROC), which assesses the ability of the risk

score to predict ADR. AUROC indicates how well the model

distinguishes patients who do not experience ADR from those with

ADR (Bewick et al., 2005). The AUROC value signifies the

probability that a patient with an ADR had a higher predicted

probability than a patient without ADR. An ideal model would

have an AUROC of 1, whereas a random guess would have an

AUROC of 0.5 [21].

J~(1{a)z(1{b){1 ð1Þ

Where (12a) is Sensitivity and (12b) is Specificity.

Validation
The ADR risk prediction model (BADRI risk score) was

validated in a separate cohort of in-hospital older adults admitted

to four Geriatric or Internal Medicine wards in participating study

centres across Europe. These centres, which contribute to the

European Dataset, were: Catholic University of Sacred Heart,

Rome, Italy; Gent University Hospital, Ghent, Belgium; Erasmus

University Medical Center, Rotterdam, The Netherlands and

BSUH (Brighton, UK). The aim of this part of the study was to

evaluate the reliability of BADRI score locally and also in other

populations.

Patients admitted to these centres between September 2008 and

December 2008 were enrolled and followed up until discharge or

death. Exclusion criteria were identical to the Brighton Dataset

with the addition of patients receiving current chemotherapy. In

accordance with the methods described above, data for all

variables included in the model (along with a selection of other

variables, e.g. Mini Mental State Examination MMSE) were

recorded for each patient, along with details of any suspected

ADR. In an attempt to standardise the information being collected

from the various European centres, the Naranjo algorithm was

used to assess causality of reported ADR in this instance as it has

evidence for inter-observer reliability [22]. Only events classified

as definite (score, 9–12 points) or probable (score, 5–8 points) were

considered to have been drug-related in the validation part of this

study. Pair assessment was not conducted for the validation

dataset.

As with assessment of the model in the Brighton dataset,
sensitivity and specificity, Youden’s Index, and AUROC were

calculated on the data gathered from the validation cohort.

Ethics
Ethical approval for conducting the validation component of

this research was obtained from Brighton West Research Ethics

Committee, UK (reference number: 08/H1111/43). Written

informed consent was given by participants (or next of kin/

caregiver) for the validation component of this study. For all stages

of this research, patient records/information were anonymized

and de-identified prior to analysis.

Results

Patients
The initial Brighton dataset study population comprised 946

patients. Two-hundred and fifty-six of these patients were

excluded in the final analysis because they were either younger

than 65 years old (111 {43%} patients), or were rapidly discharged

or died before the end of the study period (145 {57%} patients).

Patient recruitment was further hindered by an outbreak of

Norovirus and Clostridium difficile infection on two of the study

wards which restricted access to patients on the grounds of

Table 1. Predictor variables identified from the univariate
analysis stage, and from other studies, only 8 of which were
taken forward to the multivariate analysis stage (indicated
with *).

Variables identified in univariate analysis

Hyperlipidaemia*

Number of medication $8*

Length of stay $12 days*

Use of anti-diabetic agents*

High white blood cell count on admission*

Diabetes

Arthritis/osteoarthritis

Antihypertensives

Opioid analgesics

Angiotensin converting enzymes inhibitors

b-blockers

Cardiac glycosides

Anti-infective medicines

Variables identified in other studies

History of previous ADR* [8,28]

Number of co-morbidities $4* [29]

Drugs with a narrow therapeutic index* [27,30]

Congestive cardiac failure [31]

Liver failure [32,33]

All variables are binary, and not continuous.
doi:10.1371/journal.pone.0111254.t001
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infection control. Consequently, 690 patients formed the final

Brighton dataset (Figure 1).

The mean age of patients in the Brighton dataset was 84.3 years

(range 65–103; median 85; inter-quartile range 81–89), with a

larger proportion of the cohort being female (61%) than male. The

mean number of regular medications (taken daily, including

topical preparations) taken on admission by these patients was 5.9

(range 0–18; median 6; IQR: 3–8). The presence and burden of

co-morbidities was high, with the mean number of recorded co-

morbidities in this study sample being 8.03 (range 1–17; median 8;

IQR: 6–10). Table 2 provides details of the common co-

morbidities found in this patient group. Forty one percent of

patients were widowed, 35% married, 61% lived in a house or flat

and 10.6% were living in nursing homes. Almost 57% (n= 381) of

the total patients were living alone and half of them required a

degree of social support.

Following the initial assessment of patient histories, 95 cases of

ADR, in 86 patients were identified in the Brighton dataset
(12.5%). An assessment of causality was then conducted using the

Hallas algorithm, which rated 23 of these cases as definite (24.2%),

47 as probable (49.5%), and 25 cases as possible (26.3%). All 95

events also received confidence rating of .50% (score .3) and so

were retained for subsequent analysis of the Brighton dataset. The
drugs classes with highest frequency of reported ADRs were

cardiovascular, analgesic and anti-diabetic. A detailed analysis of

the types, severity, and preventability of the ADRs have been

published elsewhere [10].

Development of the BADRI risk model
Thirteen variables showing a significant difference in prevalence

between ADR and non-ADR patients were identified from the

univariate analysis and taken forward to the next stage of model

development (Table 1). A further 5 variables showing minimal

association in this dataset (p,0.25), but which had been identified

as important in predicting ADR risk by other studies, were also

included at this stage. This differs from the methodology used by

GerontoNet, but supplementing the model with additional

clinically plausible variables is nonetheless an accepted technique

[20]. For the continuous predictor variables, multicolinearity tests

found no significant associations, and so these variables were

retained in the model. Of the remaining binary variables, ten were

found to be correlated and were subsequently discarded. This

resulted in a total of 8 variables being taken forward to the

multivariate analysis stage (Table 1).

Application of both the backward and forward stepwise

elimination procedure during multivariate analysis identified 5/8

variables that contributed significantly to the risk of developing an

ADR (Wald test scores, p,0.1; Table 3). The Hosmer-Leme-

show test showed that the fit was satisfactory (x2 = 4.196, 7 degrees

of freedom, p= 0.757); however, the Nagelkerke R2 value was low

(0.16), indicating a small effect size. Although small, the model

provides more information about ADR risk compared to a model

with no predictors. All 5 variables were subsequently used to form

the final BADRI risk model.

The ability of the BADRI risk model to predict ADR in the
Brighton dataset
Following development of the BADRI risk model, we attributed

an ADR risk score to each patient in the Brighton dataset based of

the number of variables present. For simplicity, an equal weighting

of 1 was attributed to each variable. The range of the risk scores

for patients in the Brighton dataset was 0–5, with a mean of 1.5,

standard deviation of 1.05, and a median of 1. When grouped

according to BADRI risk model, there was a clear relationship

between risk score, and the proportion of ADRs (Figure 2A).

To maximise the accuracy of the model in predicting ADRs in

patients, we performed a further analysis to determine the most

appropriate cut-off risk score. This was done by calculating the

sensitivity (true positive) and specificity (true negative) of the model

using each risk score (0–5) as a cut-off value, and then calculating

Youden’s Index (Table 4); the greater the index the more

discriminatory the model at the specified cut-off value. Youden’s

Figure 1. Recruitment diagram for the Brighton and Validation datasets.
doi:10.1371/journal.pone.0111254.g001
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Table 2. Patient characteristics and co-morbidities in the Brighton and validation (European) data sets.

No (%) of patientsy

Median (interquartile range)

Demographics BADRI dataset (n = 690) Validation dataset (n = 483)

Age (yr)y 85 (81–89) 80 (75–86)

Gender (Female) 419 (61) 279 (57.8)

Ethnic Origin (White-British) 607 (88)

Clinical

Length of Stayy 12 (7–19) 10 (6–17)

Co-morbiditiesy 8 (6–10)

Barthel Activity of daily Livingy 19 (14–20)

Katz Activity of Daily Livingy 1 (0–4)

Glasgow Coma Scaley 15 (14–15)

Cognition (AMTS)y 6 (3–9)

Cognition (MMSE)y 26 (22–28)

Previous Hospital Admission 168 (25)

Social

Smoking 59 (8)

Alcohol 183 (41)

Living Alone 383 (57)

Drug Related

Number of regular
medications on admissiony

5 (3–7) 5 (4–8)

Number of regular
medications on the wardy

7 (5–10) 9 (6–14)

Previous drug allergies 149 (22)

Previous History of ADR 263 (38) 173 (35.8)

Co-morbidities

Hypertension 502 (72.8) 305 (63.1)

Infection (UTI/Chest infection) 303 (43.9) 125 (25.9)

Anaemia 283 (41) 135 (28)

Arthritis/Osteoarthritis 280 (40.6)

Renal impairment
(,60 mLs/min)

248 (35.9) 66 (13.7)

Fall 209 (30.3) 114 (23.8)

Depression 176 (25.5)

Confusion 176 (25.5)

Ischemic Heart Disease 159 (23)

Atrial Fibrillation 156 (22.6)

Asthma/COAD 135 (19.6)

Malignancy 133 (19.3)

Diabetics 115 (16.7) 131 (27.1)

Previous stroke 115 (16.7)

Previous TIA 110 (15.9)

Osteoporosis 86 (12.5)

Hyperlipidaemia 284 (12.2) 135 (28)

Congestive Heart Failure 70 (10.1) 67 (13.9)

Dementia
(other than Alzheimer)

74 (10.7)

Alzheimer 25 (3.6)

Liver diseases 7 (1) 30 (6.2)

Abbreviations: Mini-Mental State Examination, MMSE; Abbreviated Mental Test Score, AMTS; Unrinary Tract Infection, UTI; Chronic Obstructive Airways Disease, COAD;
Transient Ischaemic Attack, TIA; Adverse Drug Reaction, ADR.
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Index was found to be greatest when the cut-off score was .1

(J = 0.36; sensitivity and specificity were 80%, and 55% respec-

tively. Performance of the ADR risk model was also assessed from

a calculation of the area under the receiver operator curve

(AUROC). The model was found to have an AUROC of 0.74

(95% CI 0.68 to 0.79, Figure S1), suggesting that the ability of the
BADRI model to predict ADRs is better than chance alone (0.5).

Validation
Validation of the BADRI risk model was conducted on patient

data gathered from 4 European centres (the European dataset).
Four-hundred and eighty-three patients were recruited, with a

mean age of 80.3 years (range 65–99; median 80; inter-quartile

range 75–86), and mean number of drugs taken during hospital

stay of 1167.0. ADRs were observed in 56 patients (11.6%).

All variables that form the BADRI risk model, with the

exception of raised white cell count were associated with increased

rates of ADR in patients that comprise the European dataset.
When grouped according to ADR risk score, a similar relationship

between risk score and the proportion of ADRs, to that seen in the

Brighton dataset was observed (Figure 2B). As with the Brighton
dataset, a cut-off score of .1 provided the best discrimination

between individuals that progressed to suffer an ADR and those

that did not (J = 0.26, sensitivity and specificity values of 84% and

43% respectively, Table 5). The BADRI risk model also

demonstrated an acceptable capacity to discriminate in the

European dataset, with an AUROC of 0.73 (95% CI 0.66–0.80,

Figure S1), indicating that it is statistically useful in predicting

ADR not only when applied in the local area (Brighton), but also

in other populations.

Discussion

We have produced an ADR risk prediction model, based on 5

clinical variables, which is able to identify older patients that have

an increased likelihood of developing an ADR. The model was

developed using data gathered from a population of patients in the

UK with a median age of 85 years, which makes this the first study

to address ADR risk specifically in the oldest old, a proportion of

the US and UK population which is increasingly growing. The

BADRI risk prediction model has been successfully validated in

older patients (although not the oldest old) from hospitals across

continental Europe, showing that it is a reasonably robust model,

that may be applied to patients from other geographical locations,

and perhaps from different healthcare systems with a similar

demographic. The final BADRI risk prediction model contains

only a small number of variables, and each one is given the same

score (1 in each case), making it relatively simple to use. This may

make its adoption into routine clinical practice easier.

The BADRI score was found to have acceptable goodness of fit

and good discrimination performance when applied to both

Brighton and European datasets. An AUROC of greater than 0.7

for the model showed that it has acceptable discrimination

capacities for patient with ADRs as compared to patients who did

not experience an ADR. The sensitivity of 80% indicates that the

model, in its present form, is a satisfactory predictor of ADR.

However, the low specificity (46%) means that the model may

incorrectly label patients ‘at risk of an ADR’ who will not

ordinarily go on to experience such an event. A false positive in

this instance may have implications for the patient’s management.

For example, important treatments may unnecessarily be withheld

based on inaccurate risk stratification. In addition, inappropriately

labelling patients as risky when they are not may result in the

inefficient use of resources due to increased monitoring.

A direct comparison of the BADRI score with the recently

developed GerontoNet risk score [8] show that both perform

similarly on levels of discrimination (0.71, GerontoNet vs. 0.74,

BADRI). The sensitivity value for the BADRI model during

development was 80%, exceeding that of GerontoNet at 68%,

indicating that BADRI performs better at detecting patients that

go on to have an ADR. However, its specificity value (or true

negative) of 55%, was lower than GerontoNet’s at 65%. It must be

noted however, that GerontoNet only considered cases of definite

and probable ADRs for inclusion in their study, whereas possible

ADRs were included in the present study. Other studies which

have attempted to develop predictive models for adverse drug

events have not been externally validated which restricts their

applicability to other populations.

Much work has been conducted over recent years to identify

clinical risks associated with ADR. Interestingly, a number of these

risks were not found to be significant predictors of ADR in this

current study. For example, well known factors such as age [23],

previous history of ADR, gender [24], heart failure [8], prior

bleeding on admission [25], renal impairment [26], the use of

certain drug classes [27], and abnormalities in certain laboratory

parameters [6] were not retained in our final model. The omission

of these previously identified risk factors could possibly be

explained by the inclusion criteria, which recruited a broader

range of ages. Of the variables included in our final model, the

number of medications prescribed during inpatient stay was the

only variable that has been consistently identified as an ADR risk

in all other validated studies. One variable previously identified by

doi:10.1371/journal.pone.0111254.t002

Table 3. Results of multivariate analysis.

Final variables B S.E Wald Sig. OR 95% CI

Hyperlipidemia 1.199 0.309 15.093 ,0.001 3.316 1.811–6.072

Number of medication $8 1.194 0.274 18.922 ,0.001 3.300 1.927–5.651

Length of stay $12 days 0.819 0.267 9.441 0.002 2.269 1.345–3.826

Use of anti-diabetic agents 0.645 0.309 4.352 0.037 1.906 1.040–3.493

High WCC on admission 0.437 0.254 2.953 0.086 1.548 0.940–2.548

Constant -3.628 0.316 131.769 1 0.000 0.027

(WCC=White Cell Count).
doi:10.1371/journal.pone.0111254.t003

BADRI Risk Prediction Model

PLOS ONE | www.plosone.org 6 October 2014 | Volume 9 | Issue 10 | e111254



O’Connor et al to predict ADR risk is that of potentially

inappropriate medicines. These were not included in this study

as this variable was identified after our study had been conducted

[9].

This is the first study to include total length of stay,

hyperlipidaemia and white cell count as ADR risk factors. Length

of stay may be a proxy measure for the severity of the patients’

underlying illness, perhaps reflecting an increase in the number of

prescribed medicines (with associated risk of drug interactions).

However, the fact that the number of medications prescribed is

also included as a risk factor in the BADRI model, and that, when

tested, no association between the two variables was found,

suggests that they represent different mechanisms. Alternatively,

an increased length of stay may reflect a deterioration in the

patients clinical state, and a change in the pharmacokinetic (for

example, renal and hepatic function, nutritional status) or

pharmacodynamic (tissue sensitivity) profile of the medication,

leading to altered drug levels or response. It is also conceivable

that a prolonged hospitalisation could increase the likelihood of

experiencing, and detecting, an ADR, i.e. a posteriori observation,
which questions the value of this variable as a useful predictor.

We also found that a diagnosis of hyperlipidaemia significantly

increased the likelihood of developing an ADR. The reason for its

identification as a risk factor has yet to be determined, but may

simply reflect the fact that individuals with a history of an

abnormal lipid profile are at higher risk of cardiovascular disease,

and as a consequence, may be receiving multiple drug therapies.

An association between a high white blood cell count on admission

and ADR risk was another novel risk factor identified in the

current study. This may reflect that the patient is suffering from an

infection or inflammatory condition (for example, post myocardial

infarction or pulmonary embolism) which requires the subsequent

use of potential harmful antibiotics or cardiac medications.

Regardless of the cause of raised WCC, it is nonetheless a marker

for increased susceptibility to ADR, and will alert the clinician to

the patients increase risk of developing an adverse reaction to a

medicine.

Although there are several advantages of the BADRI score in

predicting ADR risk, there are of course some limitations that

need to be addressed. Causality assessment for ADR in the testing

dataset was conducted using Naranjo’s algorithm, however, during

the initial development of the model (Brighton dataset), the Hallas

criteria was utilised to determine causality. It is therefore plausible

that the use of different criteria might affect the outcome of the

study. However, in addition to the Hallas criteria, we asked

reviewers to rate causality as being a drug cause on a Likert scale,

Figure 2. ADR rate according to ADR risk score. The BADRI risk model was applied to all 690 patients from the Brighton dataset (A), and 483
patients from the European dataset (B). The ADR rate is calculated as the proportion of patients in each scoring category that suffered an ADR. For
both datasets there is a general increase in the ADR rate as the risk score increases.
doi:10.1371/journal.pone.0111254.g002

Table 4. Accuracy of the BADRI risk model as applied to the Brighton dataset using various cut-off values (risk scores).

Risk
Score

Patients
with ADR

Patients
without ADR Sensitivity Specificity

Youden’s
index (J) 1-specificity

.0 84 486 0.98 0.20 0.17 0.80

.1 69 269 0.80 0.55 0.36 0.45

.2 34 89 0.40 0.85 0.25 0.15

.3 9 14 0.10 0.98 0.08 0.02

.4 2 0 0.02 1.00 0.02 0.00

Note Youden’s Index is largest when the cut-off value is .1 (with sensitivity of 80% and specificity of 55%).
doi:10.1371/journal.pone.0111254.t004
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and also included all classifications of ADR (definite, probable and

possible) in our final model, so we can be reasonably confident that

ADR were classified appropriately. Another limitation of this study

is the generalizability of the findings. The current tool was

validated in four European countries and may not therefore be

applicable to countries outside Europe.

The results of this study may also be subject to a small extent of

information bias, especially in the validation study group.

Information bias occurs when data collected from patients is

pursued more aggressively in one group or recorded differently

than in another. In addition, there might also be a tendency to

recall bias (another form of information bias). Older patient

populations have a higher incidence of memory impairment which

could affect the quality of the data collected. However, careful

evaluation and extraction of information from the patient notes

reduces the chance of recall bias in this study.

Although this study has identified a number of variables which

predict ADR in some older patients, as a model, the BADRI risk

score needs further development before it can be adopted for use

in routine clinical practice. The reasons for this are (1) we have yet

to establish whether clinical judgement alone is more accurate

than the BADRI score at identifying those individuals who go on

to develop an ADR (2) despite BADRI being relatively simple to

use by our experienced researchers, we have yet to test the

usability of the model by clinicians (3) we have yet to determine

whether introducing this model into routine practice would

improve the safety profile of medication use in older patients,

and also whether there are any humanistic and cost implications.

Conclusion

The development of the BADRI score, which consists of five

variables for predicting ADR in older patients, was chosen using a

stepwise selection procedure. The predictors were chosen based on

the combination of statistically significant tests and also by

consideration of the biological plausibility and conceptual appro-

priateness of the variables. External validation conducted in

different locations retained the fitting and also the predictive

power of the model which ensure the generalisability of the score.

The BADRI score consists of different risk predictors compared to

the GerontoNet risk score besides the number of medication, yet it

offers a scoring system that is simple to apply with limited

computational involvement, whilst providing the same discrimi-

nation performance.
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