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Introduction

The problem of calculating the zeros of polynomials has been at

the core of various algorithmic problems in engineering, computer

science, mathematics, and mathematical chemistry [1–5]. One the

one hand, determining all zeros of a complex polynomial explicitly

has been crucial for practical problems [6–7]. One the other hand,

estimations (bounds) for the moduli of real and complex zeros have

been important for many reasons. For example, sharp zero bounds

can serve as starting values for numerical procedures to calculate

the zeros explicitly as already mentioned above. Also, zero bounds

have been proven useful when estimating eigenvalues of matrices [8,9].

We emphasize that numerous papers and books have been

contributed dealing with the problem of locating the zeros of

complex polynomials, see, e.g., [1–5,10,11]. Many papers thereof

discuss the problem of determining disks in the complex plane

where all zeros of a complex polynomial are situated. In view of

the vast amount of existing zero bounds, their optimality has only

been little investigated. In fact, many of the bounds which have

been used extensively in practice do not give the precise annulus

containing all zeros of a given polynomial. Also, sharpness results

do not exist for all bounds which are practically to use.

In this paper, we deal with the problem of evaluating the quality

of zero bounds numerically. A successor of this paper is [12]. In

[12], we have put the emphasis on evaluating the quality of known

bounds such as the ones due to Joyal, Mohammad, Kojima and

Kalantari, see [12–16]. Another paper dealing with evaluating the

quality of zero bounds numerically is due to McNamee and

Olhovsky [17] who also evaluated classical and Kalantari’s bounds

on a set of polynomials with random real or complex roots. More

precisely, they implemented 45 zero bounds for estimating the

zeros with maximal modulus. These bounds have been evaluated

on 1200 polynomials with random real or complex roots [17].

The main contribution of this paper is as follows: We focus on

evaluating zero bounds developed by Kalantari [16] and Dehmer

[1,18] solely. In [17], it was claimed that some of the Kalantari’s

bounds are optimal on the mentioned set of polynomials. We show

that some of the proposed bounds outperform Kalantari’s bounds on

special classes of polynomials. That proves it can be worthwhile to

consider special classes of polynomials and special bounds which have

been developed to operate on these classes. Examples for such bounds

can be found in [18]. Also, we derive some analytical conditions to

compare bounds due to Dehmer and Kalantari by means of

inequalities, see, section ‘Numerical Results and Interpretation’.

Methods

In the following, we state the zero bounds for locating the zeros

of complex polynomials as theorems we will explore in this paper.

The numerical results will be presented in the section ‘Results’.

Kalantari and Dehmer Bounds

Theorem 1 (Kalantari [16]). Let m§2 and let rm[½
1

2
,1) be

the positive root of the polynomial

q(t) : ~tm{1zt{1: ð1Þ

For m~2 and r2~
1

2
, all zeros of the complex polynomial

f (z)~anznzan{1zn{1z � � �za0, anan{1=0,

lie in the closed disk

K 0,2: max
1ƒkƒn

an{k

an

����
����

� �1
k

 !
: ð2Þ
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Theorem 2 (Kalantari [16]). Let m§2 and let rm[½
1

2
,1) be

the positive root of the polynomial

q(t) : ~tm{1zt{1:

For m~3 and r3~
2ffiffiffi

5
p

z1
, all zeros of the complex polynomial

f (z)~anznzan{1zn{1z � � �za0, anan{1=0,

lie in the closed disk

K 0,

ffiffiffi
5
p

z1

2
: max

2ƒkƒnz1

an{1an{kz1{anan{k

a2
n

����
����

� �1
k

 !
, ð3Þ

a{1 : ~0:

Theorem 3 (Dehmer [18]). Let

f (z)~anznzan{1zn{1z � � �za0, anan{1=0,

be a complex polynomial. All zeros of f (z) lie in the closed disk

K 0,
1zw2

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(w2{1)2z4M1

q
2

0
@

1
A, ð4Þ

where

w2 : ~
an{1

an

����
���� and M2 : ~ max

0ƒjƒn{2

aj

an

����
����: ð5Þ

The next theorem gives a bound for polynomials with

restrictions on the coefficients. Dehmer [1] has shown that such

bounds can be more precise and often lead to better results when

locating the zeros of polynomials. See also Table 3.

Theorem 4 (Dehmer [18]). Let

M3 : ~ max
2ƒjƒn

an{1an{j{anan{j{1

an
2

����
����,a{1 : ~0, ð6Þ

and

w1 : ~
ja2

n{1{anan{2j
janj2

: ð7Þ

In addition, let

f (z)~anznzan{1zn{1z � � �za0, anan{1=0,

be a complex polynomial. All zeros of f (z) lie in the closed disk
K(0,d) where dw1 is the largest positive root of the equation

z3{z2{(M3zw1)zzw1~0: ð8Þ

Moreover,

1vdv1z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M3zw1

p
: ð9Þ

Theorem 5 (Dehmer [18]). Let

f (z)~zn{a1zza0, a1a0=0, nw2,

be a complex polynomial. All zeros of f (z) lie in K(0,max(1,d)),
where d is the unique positive root of the equation

zn{Da1Dz{Da0D~0: ð10Þ

Theorem 6 (Dehmer [18]). Let M4 : ~max(Da1D,Da0D) and
let

f (z)~zn{a1zza0, a1a0=0, nw2,

be a polynomial with arbitrary coefficients. All zeros of f (z) lie in
K(0,max(1,d)), where d is the unique positive root of the equation

zn{M4z{M4~0: ð11Þ

In [18], the following upper bound for these lacunary

polynomials (see Theorem 6) has been stated without proof. Next,

we here prove this result by assuming that the coefficients are

positive and real-valued.

Theorem 7. If the polynomial f (z)~zn{a1zza0, a1,
a0w0,nw2, has two positive zeros, its largest positive zero d satisfies

dv

1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a1z1
p

2
: ð12Þ

Proof. Since a1,a0w0 we infer by using the Descartes’ rule of

signs [10] that f (z) has either 2 or no positive zeros. We see that

f (0)~a0w0,f (1)~1{a1za0 and limz?z? f (z)~z?. If

f (1)§0, it follows that f (z) must have two positive zeros. The

largest one is denoted as d and we obtain dw1. In order to get an

estimation for d, we consider

f (d)~dn{a1dza0~0: ð13Þ
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By using the finite geometric series, we obtain

dnz1{dn

d{1
{a1dza0~0, ð14Þ

and

dnz1{dn

d{1
{a1dv0: ð15Þ

This inequality leads to

d(dn{dn{1{a1dza1)v0, ð16Þ

and finally to

d(dn{1{dn{2{a1)v{a1: ð17Þ

However, this yields

dn{1{dn{2{a1v0: ð18Þ

In order to get an inequality for d, we set n~3. We get

d2{d{a1v0: ð19Þ

Determining the zeros of the latter function gives

d1,2~
1

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2
: ð20Þ

As

d1~d~
1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2
w1, ð21Þ

we only consider the largest positive zero of the two. Now we

define

f1(d) : ~dn{1{dn{2{a1, ð22Þ

f2(d) : ~d2{d{a1: ð23Þ

If we can prove that the positive zero of f1(d) does not fall

outside the interval ½0,
1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2
�, we obtain Inequality 12.

For this, we must prove that f1 is strictly monotonically increasing

in a certain interval.

Applying the Descartes’ rule of signs to f1(d) yields that

its positive zero is unique. Also, f1(0)~f1(1)~{a1 and

limd?z? f1(d)~z?. To prove the monotonicity, we consider

f ’1(d)~(n{1)dn{2{(n{2)dn{3
w0, ð24Þ

that leads to

dw

n{1

n{2
: ð25Þ

As we here assume dw1, we see f1(d) is strictly monotonically

increasing for dw1. Finally we now prove that

0~f2
1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2

� �
vf1

1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2

� �
, ð26Þ

hence,

f1
1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2

� �
w0: ð27Þ

Together with the monotonicity, that means that the positive zero

of f1(d) does not fall outside the ½0,
1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2
�. We start with

the inequality

1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2

� �n{1

{
1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2

� �n{2

{a1w0: ð28Þ

By performing elementary calculations, we get

1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2
w

a1

1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2

� �n{2
z1: ð29Þ

From this inequality, we also infer

nw

log a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2
{

1

2

0
BB@

1
CCA

log
1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2

� � z2: ð30Þ

We finally show that the right hand side of this inequality is less

than 4. That means claiming

log a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2
{

1

2

0
BB@

1
CCA

log
1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2

� � z2v4, ð31Þ
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Yields

1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2

� �3

{
1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4a1

p

2

� �2

{a1w0: ð32Þ

But by performing elementary calculations we find that this

inequality is valid for a1w0. %

Results

Data: Classes of Complex Polynomials
As in [12], we define the classes of polynomials used in this study

as follows. Note that the abbreviation ‘GD’ in the below stated

definitions stands for Gaussian Distribution.

Definition 1

C1 : ~ff (z)~anznzan{1zn{1z � � �za0Dai[C sampled from GD:gð33Þ

Definition 2

C2 : ~ff (z)~anznzan{1zn{1z � � �za0jai[C uniformly distributed

and jaijv1,i~0,1, . . . ,n:g
ð34Þ

Definition 3

C3 : ~ff (z)~anznzan{1zn{1z � � �za0jai[C sampled from GD

and
jaij
janj

v1,i~0,1, . . . ,n{1:g
ð35Þ

Definition 4

C4 : ~ff (z) : ~f1(z)f2(z)jf1(z) : ~an1
zn1 zan1{1zn1{1z � � �za1zza0,

f2(z) : ~bn2
zn2 zbn2{1zn2{1z � � �zb1zzb0,ai,bi[C sampled

from GD and jan1
jwjai j,i~0,1:::::n1{1,jbn2

jwjaij,i~0,1:::::n2{1:g

ð36Þ

Definition 5

C5 : ~ff (z) : ~f1(z)f2(z)jf1(z) : ~an1
zn1zan1{1zn1{1z � � �za1zza0,

f2(z) : ~bn2
zn2zbn2{1zn2{1z � � �zb1zzb0,

ai[C,i~0,1:::::n1,bi[C,i~0,1:::::n2, sampled from GD:g

ð37Þ

Definition 6

C6 : ~ff (z) : ~zn{a1zza0,a1,a0[C,a1a0=0 sampled from GD:g ð38Þ

These polynomials are called lacunary polynomials [4,5].

Statistical Analysis
In order to perform a statistical analysis, we have generated

1000 complex polynomials for each of the Definitions 1–6 and

n~2, . . . ,9. For each polynomial f (z), different bounds have been

computed according to the Theorems 1–6. The following entity

has been calculated:

rTh:i~BTh:i=rM , ð39Þ

where BTh:i - bound value due to Theorem i, rM~

maxfDri D,i~1, . . . ng - maximal modulus among the roots

frigi~1,...,n for the polynomial f (z). This entity reflects tightness

of the bound, and its properties are:

1. r§1.

2. If rTh: i1
vrTh: i2

, then the bound of Theorem i1 is tighter than

the bound of Theorem i2.

To compare different bounds averaged values of r were

calculated for a fixed n (Tables 1–6). The figures 1–3 illustrate the

averaged bounds with 95% confidence intervals (dashed lines).

The confidence intervals have been obtained by using two-sided t-
test for 999 degrees of freedom:

E½r�{t5,999 � sr=
ffiffiffi
n
p

ƒrƒE½r�zt5,999 � sr=
ffiffiffi
n
p

,

where E½r� and sr - are average and standard deviation for r;

t5,999 - t-distribution value for 95% two-sided critical regions with

999 degrees of freedom.

The pairwise comparison of the averaged values r has been

performed by using paired t-test. As a result we see that in the

majority of cases, the values of r for the Theorems 1–6 are

statistically different.

Numerical Results and Interpretation
We restrict our analysis to evaluate the performance of the

bounds due to Kalantari and Dehmer only, see, section ‘Methods’.

In order to do so, we employ the classes of polynomials

represented by Definitions 1–6.

General polynomials. We start by interpreting the Ta-

bles 1–5 and see that Kalantari’s bound given by Theorem 1 is

often worse than the zero bounds due to Dehmer, except the

bound given by Theorem 4. Lets consider the polynomials of

Definition 1 as this class is quite general. Except Theorem 4, the

mean ratios of the bounds due to Dehmer are smaller than the

ones by using Kalantari’s bound given by Theorem 1. In

particular this holds for Theorem 3 as well. Also, we observe that

Theorem 2 due to Kalantari is optimal for n.4 when using the

Definitions 1–3; by using the Definitions 4–5, we obtain the

optimality for n.3. We emphasize that the results for Definition 6

(lacunary polynomials) will be discussed separately. In summary,

this does not mean that no special polynomials exist whose

evaluation may give the opposite result.

The analytical comparison of the bounds has been intricate.

That means it might be difficult to compare bounds which rely on

different concepts (e.g., explicit vs. implicit bounds, see [18]). Zero

bounds are explicit if their values represent functions of the

polynomial coefficients [18]. In contrast, a zero bound is called

implicit if the value of the bound is a positive zero of a

concomitant polynomial [18]. For instance, Theorem 1 and

Theorem 3 are explicit but the Theorems 4–6 are implicit.

In case of using the explicit zero bounds Theorem 1 and

Theorem 3, it is straightforward to derive an analytical expression

(condition) to compare the bounds by means of inequalities. If we

start with the inequality (i.e., we assume that Theorem 1 is better

than Theorem 3),

Numerical Evaluation and Comparison of Zero Bounds
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2: max
1ƒkƒn

an{k

an

����
����

� �1
k
w

1zw2

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(w2{1)2z4M1

q
2

, ð40Þ

we derive

w2
: 4{8 max

1ƒkƒn

an{k

an

����
����

� �1
k

 !
w4M1z8: max

1ƒkƒn

an{k

an

����
����

� �1
k

{16 max
1ƒkƒn

an{k

an

����
����

� �1
k

 !2

:

ð41Þ

If 4{8 max1ƒkƒn
an{k

an

����
����

� �1
k
w0, then we finally get the

condition

w2~
an{1

an

����
����w

M1z2:max1ƒkƒn

an{k

an

����
����

� �1
k
{4: max1ƒkƒn

an{k

an

����
����

� �1
k

 !2

1{2:max1ƒkƒn

an{k

an

����
����

� �1
k

:ð42Þ

Otherwise, we yield

w2~
an{1

an

����
����v

M1z2:max1ƒkƒn
an{k

an

����
����

� �1
k
{4: max1ƒkƒn

an{k

an

����
����

� �1
k

 !2

1{2:max1ƒkƒn

an{k

an

����
����

� �1
k

,ð43Þ

with 4{8 max1ƒkƒn
an{k

an

��� ���� �1
k
v0. These inequalities can be

used to compare Theorem 1 and Theorem 3 by means of

inequalities assuming that Theorem 1 is worse than Theorem 3.

Such a condition seems to be useful as we see by Tables 1–5 that

the mean ratios of Theorem 3 are less than the ones by using

Theorem 1.

To get an inequality for the assumption that Kalantari’s bound

given by Theorem 2 is better than Dehmer’s bound given by

Theorem 3, we start with assuming

ffiffiffi
5
p

z1

2
: max

2ƒkƒnz1

an{1an{kz1{anan{k

a2
n

����
����

� �1
k
v

1zw2

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(w2{1)2z4M1

q
2

:ð44Þ

We yield

w2
: 4{2:(

ffiffiffi
5
p

z1): max
2ƒkƒnz1

an{1an{kz1{anan{k

a2
n

����
����

� �1
k

 !

v4M1z2:(
ffiffiffi
5
p

z1): max
2ƒkƒnz1

an{1an{kz1{anan{k

a2
n

����
����

� �1
k

{(
ffiffiffi
5
p

z1)2: max
2ƒkƒnz1

an{1an{kz1{anan{k

a2
n

����
����

� �1
k

 !2

:

ð45Þ

If 4{2:(
ffiffiffi
5
p

z1):max2ƒkƒnz1
an{1an{kz1{anan{k

a2
n

����
����

� �1
k

w0,

we obtain

w2~
an{1

an

����
����v 4M1z2:(

ffiffiffi
5
p

z1):Y{(
ffiffiffi
5
p

z1)2:Y 2

4{2:(
ffiffiffi
5
p

z1)Y
, ð46Þ

with

Y : ~ max
2ƒkƒnz1

an{1an{kz1{anan{k

a2
n

����
����

� �1
k
: ð47Þ

Otherwise, we infer

w2~
an{1

an

����
����w 4M1z2:(

ffiffiffi
5
p

z1):Y{(
ffiffiffi
5
p

z1)2:Y 2

4{2:(
ffiffiffi
5
p

z1)Y
, ð48Þ

with

4{2:(
ffiffiffi
5
p

z1):max2ƒkƒnz1
an{1an{kz1{anan{k

a2
n

����
����

� �1
k
v0: We

note that all these inequalities can be evaluated explicitly and,

hence, the corresponding conditions (inequalities) may be useful in

practice.
Lacunary polynomials. The results of the evaluation for

lacunary polynomials (see Definition 6) can be seen in Table 6.

Dehmer’s bounds given by Theorem 5 and Theorem 6 which

have been designed for lacunary polynomials outperform both

Kalantari bounds. For example, if we evaluate Theorem 1 and

Theorem 2 for the polynomials of Definition 6), we obtain

BTh:1 : ~2:max Da1D
1

n{1,Da0D
1
n

� �
, ð49Þ

and

BTh:2 : ~

ffiffiffi
5
p

z1

2
:max Da1D

1
n{1,Da0D

1
n

� �
: ð50Þ

Note that an~1, an{k~0, 1ƒkƒn{2. So, we see that these

bounds differ by a constant factor only. The bound of Theorem 5

becomes to

BTh:5 : ~max(1,d),dw1: ð51Þ

According to Theorem 7, an upper bound for d is

dv

1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a1z1
p

2
if a0,a1w0. Note that this bound does not

depend on a0. If a1v1, we infer dv1:618034. We observe that we

always obtain BTh:1w2 if Da1Dw1 or Da0Dw1. When considering

Theorem 2, we always get BTh:2w1:618034 if Da1Dw1 or Da0Dw1.

Even if Da0D,Da1Dv1, but the degree of the polynomials tends to be

very large, the bounds of Theorem 1 and Theorem 2 tend to 2 and

1.618034, respectively. In summary, we see that the bound for

lacunary polynomials due to Dehmer (see Theorem 6) gives often

tighter bounds; in particular when a1,1. Similar arguments can

be applied when considering Theorem 6.

(42)

(43)
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T
a

b
le

1
.

R
at

io
s

fo
r

th
e

p
o

ly
n

o
m

ia
ls

b
y

u
si

n
g

D
e

fi
n

it
io

n
1

;
2

#
n

#
9

.

2
3

4
5

6
7

8
9

K
al

an
ta

ri
,

T
h

.
(1

)
1

.7
4

0
6

1
8

1
.6

7
4

6
8

7
1

.6
4

0
9

8
6

1
.6

1
5

8
2

9
1

.6
2

2
2

7
5

1
.6

2
1

7
7

1
.6

1
5

8
9

9
1

.6
2

5
3

0
3

K
al

an
ta

ri
,

T
h

.
(2

)
1

.4
4
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Summary and Conclusion

In this paper, we explored the performance of zero bounds due

to Kalantari and Dehmer. In earlier contributions, it has been

claimed [17] that Kalantari’s bounds are often better than classical

zero bounds. A similar study has been performed by Dehmer and

Tsoy [12] who evaluated classical and more recent zero bounds for

complex and real polynomials as well.

The main result of this paper is that some of the bounds due to

Dehmer outperform the bounds due to Kalantari for special

classes of polynomials. In particular when using lacunary

polynomials (i.e., many coefficients equal zero) Dehmer’s bounds

showed excellent performance. We have underpinned our

discussion to interpret the numerical results by analytical results.

In particular, we have proved an upper bound for lacunary

polynomials (see Theorem 7) and obtained conditions for some

special cases to check whether one bound is better (or worse) than

another by means of inequalities.

Another interesting line of research is to study the zeros of graph

polynomials. Some recent related work dealing with applications

on graph polynomials are [19–21]. In these contributions, graph

polynomials have been used to encode special graphs, e.g.,

chemical graphs and also exhaustively generated networks.

Consequently their zeros could be studied in terms of investigating

structural properties of networks, see [22]. Zero bounds may play

an important role to estimate the moduli of the underlying

polynomials efficiently and to use these quantities for discriminat-

ing networks or to explore structural properties such as branching

[20,23,24].

Figure 1. Bound ratios vs. polynomial order for Definition 1.
doi:10.1371/journal.pone.0110540.g001

Figure 2. Bound ratios vs. polynomial order for Definition 5.
doi:10.1371/journal.pone.0110540.g002
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8. Cvetković DM, Doob M, Sachs H (1980) Spectra of Graphs. Theory and
Application. Deutscher Verlag der Wissenschaften. Berlin, Germany.

9. Sagan H (1989) Boundary and Eigenvalue Problems in Mathematical Physics.
Dover Publications.

10. Marden M (1966) Geometry of polynomials. Mathematical Surveys of the

American Mathematical Society, Vol. 3. Rhode Island, USA.
11. Mohammad QG (1965) On the zeros of polynomials. American Mathematical

Monthly 72: 35–38.
12. Dehmer M, Tsoy YR (2012) The quality of zero bounds for complex

polynomials. PLoS ONE 7: e39537.
13. Joyal A, Labelle G, Rahman QI (1967) On the location of polynomials.

Canadian Mathematical Bulletin 10: 53–63.

14. Kuniyeda M (1916) Note on the roots of algebraic equations. Tôhoku Math J 8:
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