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Abstract

Ecologists have developed an abundance of conceptions and mathematical expressions to define b-diversity, the link
between local (a) and regional-scale (c) richness, in order to characterize patterns of biodiversity along ecological (i.e.,
spatial and environmental) gradients. These patterns are often realized by regression of b-diversity indices against one or
more ecological gradients. This practice, however, is subject to two shortcomings that can undermine the validity of the
biodiversity patterns. First, many b-diversity indices are constrained to range between fixed lower and upper limits. As such,
regression analysis of b-diversity indices against ecological gradients can result in regression curves that extend beyond
these mathematical constraints, thus creating an interpretational dilemma. Second, despite being a function of the same
measured a- and c-diversity, the resultant biodiversity pattern depends on the choice of b-diversity index. We propose a
simple logistic transformation that rids beta-diversity indices of their mathematical constraints, thus eliminating the
possibility of an uninterpretable regression curve. Moreover, this transformation results in identical biodiversity patterns for
three commonly used classical beta-diversity indices. As a result, this transformation eliminates the difficulties of both
shortcomings, while allowing the researcher to use whichever beta-diversity index deemed most appropriate. We believe
this method can help unify the study of biodiversity patterns along ecological gradients.
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Introduction

Ecologists have long expressed interest in spatial and environ-

mental effects on biodiversity, specifically the effects with respect to

b-diversity, which quantifies the similarity of species assemblage

among sites and represents the link between local (a) diversity and

regional (c) diversity [1]. Consensus on a standard definition of b-

diversity, however, has been elusive and has been the subject of

considerable debate – both in terms of its fundamental essence [1–

5] and its mathematical relationship with a- and c-diversity

[2,4,6–8]. Much mathematical discussion revolves on whether b-

diversity is defined better by a multiplicative (i.e., abM~c) [9] or

an additive (i.e., azbA~c) [10,11] partition.

Over time, many different expressions for ‘‘b-diversity’’ have

been proposed, which, in addition to considerable ambiguous

terminology, has led to confusion within the ecological community

[2,4,12]. Although each expression addresses the compositional

similarity among sites, each is also a different measure of

compositional similarity and thus, describes a somewhat different

concept. The choice of beta-diversity index is, therefore, depen-

dent on the researcher’s ecological application [4]. One set of

beta-diversity indices, the ‘‘classical metrics’’ [1], defines a-

diversity in terms of the mean diversity in local sites and c-

diversity as the composite of these local sites.

One popular approach to quantify spatial or environmental

patterns of biodiversity is regression analysis of a classical

b-diversity index against one or more spatial or environmental

gradients [13–19]. This approach, however, is subject to two

shortcomings that can undermine the validity of the resultant

diversity patterns. First, classical b-diversity indices are mathe-

matically constrained, i.e., each index features a lower limit when

all local sites are compositionally the same and an upper limit

when all local sites are unique. Regression of such b-diversity

indices can result in a predicted estimation that crosses these limits,

thus violating their mathematical constraints. Such instances cast

doubt on the validity of the regression diagnostics, e.g., correlation,

residuals, t-tests etc. Second, the regression analysis is dependent

on the choice of b-diversity index, thus a biodiversity pattern

resultant from one b-diversity index may be radically different

from another b-diversity index.

We introduce a simple transformation that rids commonly used

classical b-diversity indices of their lower and upper constraints,

thereby eliminating the risk of regression analysis producing non-

interpretable regression curves. Moreover, regression of these

transformed indices against spatial or environmental gradients

yields identical relationships for these commonly used classical b-

diversity indices. As a result, this transformation eliminates the

difficulties of both shortcomings, while allowing the researcher to

use whichever b-diversity index deemed most appropriate.
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Methods: Mathematical Properties of Logistic-
Transformed b-Diversity Indices

Classical b-diversity indices are derived from the measured local

diversity (a) – usually expressed as the arithmetic mean of species

richness in N local sites – and regional diversity (c), the measured

species richness of all N local sites combined. b-diversity is often

expressed by one of three b-diversity indices, which are described

here using the terminology in Tuomisto [4]. True b-diversity, bMd,

expressed as c=a, quantifies the number of compositional units in

the collection. bMd is equivalent to bM, the basic multiplicative

diversity partition. bMd-1, expressed as c=a{1, provides the

number of complete turnovers among the compositional units in

the collection. Proportional species turnover, bPt, expressed as

c{að Þ=c, described the proportion of species found regionally that

are not found locally.

All three b-diversity indices, bMd, bMd-1, and bPt, assume a

minimum value when all local sites are compositionally identical

and a maximum when all local sites are compositionally unique.

The lower limit for bMd-1 and bPt is zero and for bMd unity. The

respective upper limits are a function of N (Table 1).

A logistic transformation (y~ln x= 1{xð Þ½ � is a standard

method by which to treat data that are constrained by upper

and lower limits [20]. An analogous transformation applied to

these b-diversity indices takes the generalized form, b�~ln
b{bMinð Þ= bMax{bð Þ½ �, where bMax and bMin are the respective

upper and lower limit of a b-diversity index, b. Index b can be

recovered from b* by b~exp b�ð Þ= 1zexp b�ð Þ½ � bMax{bMinð Þz

bMin. This retransformation allows the depiction of beta-diversity

in its more familiar constrained units, as a logistic variable may be

difficult to visualize. The beta-diversity relationship with a gradient

can be plotted simply as the retransformed b* as a function of the

gradient. Any value of b* will — upon retransformation into b —

adhere to the mathematical constraint, bMinvbvbMax. Given,

for example, a set of N~10 local sites with a~50 and c~100,

Table 1. Mathematical definitions and expressions of beta-
diversity indices.

b-index Function Low High

bMd c=a 1 N

bMd-1 c{að Þ=a 0 N{1

bPt c{að Þ=c 0 1{ 1=Nð Þ

Low and High represent the lower and upper limits of beta-diversity indices as a
function of the number of local sites (N).
doi:10.1371/journal.pone.0110485.t001

Table 2. Values of c- and a-diversity along a hypothetical
ecological gradient for three scenarios.

Gradient Scenario

c a(A) a(B) a(C)

1 10 9.5 2 9.5

2 20 18.6 6 10

3 40 34 6 38

4 30 18 10.5 9

5 50 37.5 17.5 31.2

6 80 24 12 46.5

7 70 21 8.4 14

8 100 12 12 40

9 80 9.6 12 24

10 90 13.5 9.9 35.8

Number of local sites (N) = 10.
doi:10.1371/journal.pone.0110485.t002

Figure 1. Scatterplots of beta-diversity indices against hypo-
thetical ecological gradient for Scenario A. (a) bMd (left axis) and
bMd-1 (right axis); linear regression trends, bMd y~0:87x{1:17, for bMd-1

y~0:87x{2:17 (r~0:88 for both). (b) bPt; linear regression trend,
y~0:11x{0:10 (r~0:95). (c) b*

Md, b*
Md-1 (circles) and b*

Pt (squares);
linear regression trends, for b*

Md b*
Md-1 y~0:78x{6:10, for b*

Pt

y~0:78x{3:80 (r~0:91 for all). Dashed trends in (a) and (b) depict
linear trends of b*

Md (and b*
Md-1) and b*

Pt retransformed to bMd (and
bMd-1) and bPt, respectively. See Table 1 for description of beta-diversity
indices and Table 2 for data for Scenario A.
doi:10.1371/journal.pone.0110485.g001
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bMd, bMd-1, and bPt are 2, 1, and 0.5, respectively. Corresponding

values of b*
Md, b*

Md-1, and b*
Pt are 22.08, 22.08, and 0.22,

respectively. Note that because bMd{bMd-1~1, b�Md~b�Md{1,

and that b�Pt~b�Mdzln Nð Þ~b�Md-1zln Nð Þ.

Results: Illustrative Example

Table 2 provides a set of illustrative data of a- and c-diversity

along a hypothetical environmental or spatial gradient to compare

the performance of these commonly used classical b-diversity

indices with their logistic-transformed equivalents. Ten points

along the gradient were assigned values of c and different values of

a for three scenarios. In all scenarios, N~10, thus the upper limits

for bMd, bMd-1, and bPt are 10, 9, and 0.9, respectively.

In Scenario A, bMd, bMd-1, and bPt all exhibit a statistically

significant positive relationship along the gradient. The linear

regression curves of bMd and bMd-1 cross below the lower limits, 1

and 0 respectively, at gradient values v~3 (Figure 1a). The linear

regression curve of bPt, derived from the same set of a and c,

crosses the upper limit at gradient values w~9 (Figure 1b). In

other words, Scenario A provides an example of two different b-

diversity indices violating their mathematical constraints at

opposite ends of the gradient. The logistic-transformed equiva-

lents, b*
Md, b*

Md-1, and b*
Pt, when regressed along the gradient

yield statistically significant linear relationships with identical

values for all regression parameters except for the intercept

(Figure 1c). The intercept of b*
Pt is 2.30 greater than that of b*

Md

and b*
Md-1, which is equivalent to exp(N), i.e., exp(10). Moreover,

the resultant regression curves when retransformed into their

original b-diversity indices adhere to their respective upper and

lower constraints (Figure 1a,b).

The linear regression curves of bMd, bMd-1, and bPt in Scenarios

B and C all lie within the upper and lower limits. However, the

relationship between bPt and the gradient in Scenario B is

statistically significant at 95% confidence (p = 0.026), whereas

those between bMd and bMd-1 are non-significant (p = 0.097)

(Figure 2a). This result is opposite in Scenario C: the relationship

between bPt and the gradient is statistically non-significant

(p = 0.121), whereas those between bMd and bMd-1 are significant

(p = 0.036) (Figure 2b). In addition, the magnitude of the residuals

in Scenarios B and C differ between bMd (or bMd-1) and bPt. By

contrast, linear regression of b*
Md, b*

Md-1, and b*
Pt against the

gradient results in identical models for both Scenario B and C with

the exception of their respective intercepts. The relationship is

significant for both Scenario B (p = 0.023) and Scenario C

(p = 0.039) and both relationships are independent of the choice

of beta-diversity index. In addition, this choice has no effect on the

resultant residual patterns (Figure 2c,d).

Discussion

Space structure is an often neglected consideration in statistical

analysis. All conventional multivariate statistical analysis assume

that the data occupy Euclidean space [21], yet this is rarely the

case. A constrained space structure can usually be readily

Figure 2. Scatterplots of beta-diversity indices against hypo-
thetical ecological gradient. (a) Scenario B: bMd (circles, left axis) and
bPt (squares, right axis); linear regression trends, for bMd y~0:54xz3:02
(p~0:026), for bPt y~0:02xz0:70 (p~0:097). (b) Scenario C: bMd

(circles, left axis) and bPt (squares, right axis); linear regression trends,
for bMd y~0:21xz1:25 (p~0:121), for bPt y~0:06xz1:64 (p~0:036).
(c) Scenario B: b*

Md (circles) and b*
Pt (squares); linear regression trends,

for b*
Md y~0:29x{1:32, for b*

Pt y~0:29xz0:98 (p~0:023 for both). (d)
Scenario C: b*

Md (circles) and b*
Pt (squares); linear regression trends, for

b*
Md y~0:36x{4:27, for b*

Pt y~0:36x{1:97 (p~0:039 for both). See
Table 1 for description of beta-diversity indices and Table 2 for data for
Scenario A.
doi:10.1371/journal.pone.0110485.g002
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transformed into Euclidean space; log-transformation of positive-

only data is a well-known example. Likewise, logistic transforma-

tion can be used to place data constrained by upper and lower

limits into an unbounded line in Real space. Logistic transforma-

tion is commonly used for data restricted to values between one

and unity (as in odds ratios) [20,22], but can also be performed on

constrained classical b-diversity indices. As our illustrative example

shows, regression analysis of ‘‘raw’’ classical b-diversity indices can

result in regression curves that violate their imposed mathematical

constraints, thereby undermining the validity of the regression

model and its interpretation. By contrast, regression of logistic-

transformed b-diversity indices excludes the possibility of violating

these mathematical constraints, thereby eliminating any ‘‘impos-

sible’’ results that would undermine the regression model.

Logistic transformation also eliminates the effects of the choice

of these classical b-diversity indices. Although regression of bMd

and bMd-1 results in identical diversity patterns (the intercept using

bMd-1 is one less than that using bMd), neither is equivalent to bPt,

which results in a different diversity pattern. This dilemma is

especially worrisome; it seems intuitive that a single measured set

of a- and c-diversity should lead to a unique diversity pattern even

if b-diversity is expressed by different indices. Our illustrative

example shows that a diversity pattern along an ecological

gradient can be statistically significant using one index and non-

significant using another. Even if the interpretational contrast is

not so dramatic, the difference among b-diversity indices can still

affect the residuals, which can influence outlier detection,

particularly when data points lie close to the limits. By contrast,

logistic transformation results in a unique diversity pattern for all

three logistic-transformed indices. The difference between b*
Md

(and b*
Md-1) and b*

Pt is simply a function of the number of local

sites. As a result, all regression parameters (except the intercept)

are identical for all b-diversity indices.

Although the illustrative examples shown reflect simple linear

regression relationships, the two advantages of the logistic

transformation are maintained regardless of the actual relation-

ship, i.e. even if the relationship between logistic-transformed beta-

diversity and ecological gradient is markedly non-linear. As a

result, the researcher is free to choose any appropriate regression

model, including many non-linear models, to describe the beta-

diversity pattern. For instance, a polynomial or piecewise (i.e.,

segmented) regression model could be used to characterize a

unimodal relationship. Positive-only regression models, such as

logarithmic and exponential models, are excluded, because logistic

beta-diversity indices can assume negative values. The lack of

equivalency among the ‘‘raw’’ classical beta-diversity indices can

lead to inconsistency in describing even the qualitative nature of

biodiversity patterns. For example, whereas the relationship of bPt

with the gradient in Figure 2b is linear, the relationship with bMd

and bMd-1 is arguably non-linear (Figure 2a). As a result, using bMd

or bMd-1 could lead to the conclusion that beta diversity increases

only along the upper part of the gradient, whereas using bPt

suggests that beta-diversity increases along the entire gradient.

The lack of equivalency notwithstanding, attempts to circum-

vent the constraints on classical b-diversity indices by other

methods are fraught with difficulty. For instance, the arc-sine

transformation, despite its long tradition of use to mitigate

constrained data such as percentage data, has been the subject

of criticism and is rapidly running out of favour [22–24].

Moreover, the results of regression on arc-sine transformed indices

remains dependent on the choice of index. Regression of logistic-

transformed indices typically presumes that the data contain no

regions in which all the local sites are either unique or identical;

logistic transformation is impossible for a data point located

exactly on an upper or lower limit. However, methods are

available to perform regression analysis based on a logistic-

transformed response variable that includes otherwise non-

transformable data [25,26].

Although we have demonstrated the use of logistic transforma-

tion on the regression of classical b-diversity indices, the

transformation can also be used to circumvent violation of the

constraints of pairwise ‘‘multivariate measures’’ [1], such as the

Jaccard and Sørensen indices, which are constrained to values

between 0 and 1. The Jaccard and Sørensen indices are equivalent

to bPt and bMd-1, respectively, for a pair of sites. As such, the

logistic transformation can also result in a unique diversity pattern

for the Jaccard and Sørensen indices. Logistic-transformation of b-

diversity indices is not limited to simple presence-absence estimates

with a-diversity calculated as the arithmetic mean. A similar

approach can be followed by expressing a-diversity as a geometric

mean, as the maximum richness in a set of local sites [27,28], or by

expressing diversity in terms of ‘‘effective numbers of species’’,

which incorporates species abundance [29–31]. ‘‘Effective num-

bers of species’’ can be calculated from, for instance, Shannon or

Simpson indices. Moreover, the method can also be applied to

phylogenetic and functional richness [32]. We suggest the logical

transformation of b-diversity indices as a means of improving and

simplifying the interpretation of diversity patterns along ecological

gradients.
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