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Abstract

Sepsis remains an important cause of death worldwide, and vigorous immune responses during sepsis could be beneficial
for bacterial clearance but at the price of collateral damage to self tissues. Mesenchymal stem cells (MSCs) have been found
to modulate the immune system and attenuate sepsis. In the present study, MSCs derived from bone marrow and umbilical
cord were used and compared. With a cecal ligation and puncture (CLP) model, the mechanisms of MSC-mediated
immunoregulation during sepsis were studied by determining the changes of circulating inflammation-associated cytokine
profiles and peripheral blood mononuclear cells 18 hours after CLP-induced sepsis. In vitro, bone marrow-derived MSCs
(BMMSCs) and umbilical cord-derived MSCs (UCMSCs) showed a similar morphology and surface marker expression.
UCMSCs had stronger potential for osteogenesis but lower for adipogenesis than BMMSCs. Compared with rats receiving
PBS only after CLP, the percentage of circulating CD3+CD4+CD25+ regulatory T (Treg) cells and the ratio of Treg cells/T cells
were elevated significantly in rats receiving MSCs. Further experiment regarding Treg cell function demonstrated that the
immunosuppressive capacity of Treg cells from rats with CLP-induced sepsis was decreased, but could be restored by
administration of MSCs. Compared with rats receiving PBS only after CLP, serum levels of interleukin-6 and tumor necrosis
factor-a were significantly lower in rats receiving MSCs after CLP. There were no differences between BMMSCs and UCMSCs.
In summary, this work provides the first in vivo evidence that administering BMMSCs or UCMSCs to rats with CLP-induced
sepsis could increase circulating CD3+CD4+CD25+ Treg cells and Treg cells/T cells ratio, enhance Treg cell suppressive
function, and decrease serum levels of interleukin-6 and tumor necrosis factor-a, suggesting the immunomodulatory
association of Treg cells and MSCs during sepsis.
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Introduction

Even with standard therapeutic approaches, sepsis remains an

important cause of mortality worldwide [1]. Under such condi-

tions, vigorous immune responses could be beneficial for bacterial

clearance. However, the hyperactive and out-of-balance network

of cytokines may lead to tissue damage, multiple organ dysfunction

and even death. Therefore, it is important to examine innovative

and efficacious strategies to bring the immune responses back into

balance to ultimately improve outcomes.

Mesenchymal stem cells (MSCs) have been a promising

platform for cell-based therapy over the last decade. Apart from

their capacity to differentiate into a variety of cell lineages and

their clinical interest in tissue repair [2], MSCs have emerged as

potent immune regulators [3–8]. Being receptive to excessive

inflammation, MSCs would orchestrate the pathogen clearance

through promotion of immune cell survival and function followed
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by suppression of the immune responses in the resolution of

inflammation. Several studies demonstrated the beneficial effects

of MSCs in septic animals [9–12], but the mechanisms of MSC-

mediated regulation during sepsis are not fully elucidated.

In the present study, the immunomodulatory properties of

MSCs were investigated using a well-established cecal ligation and

puncture (CLP) murine model of polymicrobial sepsis. The

mechanisms were studied by determining the changes of

circulating inflammation-associated cytokine profiles and periph-

eral blood mononuclear cells after MSC administration during

sepsis. Due to the limited data available regarding umbilical cord-

derived MSCs (UCMSCs) for sepsis, MSCs derived from bone

marrow and umbilical cord were used and compared.

Materials and Methods

Isolation of MSCs from bone marrow
The study was approved by the institutional review board of the

Chung Shan Medical University Hospital (CSMUH No:

CS13157). Bone marrow cells were obtained from iliac crest

aspirates of healthy donors with written informed consents. Bone

marrow-derived MSCs (BMMSCs) were isolated and cultured as

our previous reports [13,14]. In brief, mononuclear cells were

isolated by Ficoll-Paque density gradient centrifugation (1.077 g/

ml; Amersham Biosciences, Uppsala, Sweden), and then seeded in

low-glucose DMEM (Gibco, Gaithersburg, MD) supplemented

with 10% fetal bovine serum (FBS; Gibco, Gaithersburg, MD) and

1% antibiotic-antimycotic (Gibco, Gaithersburg, MD). Cells were

incubated at 37uC with 5% CO2 in a humidified atmosphere.

After 48 hours, non-adherent cells were washed out, and culture

medium was changed twice per week thereafter.

Isolation of MSCs from umbilical cords
UCMSCs were collected and isolated as our previous reports

[14–16]. Briefly, umbilical cord was obtained from full-term

infants immediately after birth with written informed consents

from the parents. The cord blood vessels were carefully removed

to retain Wharton’s jelly. Wharton’s jelly was digested in 1 mg/ml

collagenase (Sigma, St. Louis, MO), and then placed in a-MEM

(Gibco, Carlsbad, CA) supplemented with FBS and antibiotic-

antimycotic. After culture for 48 hours, medium with suspension

of non-adherent cells was discarded and medium was replaced

twice a week thereafter.

Identification of MSCs
When reaching 80–90% confluence, cultured cells were

detached with trypsin-EDTA (Gibco, Carlsbad, CA) and replated

at a density of 66103 cells/cm2 for subculture. MSCs, either

BMMSCs or UCMSCs, of passage 5 were used for further studies.

To evaluate the expression of surface markers, cultured MSCs

were detached, washed, and resuspended in phosphate-buffered

saline (PBS; Gibco, Gaithersburg, MD). After fixing and blocking,

the cells were immunolabeled with FITC or PE conjugated mouse

antihuman antibodies specific to CD34, CD45, CD14, CD29,

CD44, CD73, CD90, CD105, HLA-A, HLA-B, HLA-C or HLA-

DR. The nonspecific mouse IgG served as isotype control. All

reagents were purchased from BD Biosciences. Data were

analyzed by flow cytometry (FACSCalibur; BD Biosciences, San

Jose, CA) with CellQuest software.

To evaluate differentiation potential, cultured MSCs were

detached from culture dishes and replated in 60-mm dishes. For

induction of osteogenesis, MSCs were grown in DMEM with 10%

FBS, 10 mM b-glycerophosphate (Sigma, St Louis, MO), 0.1 mM

dexamethasone (Sigma, St Louis, MO), and 0.2 mM ascorbic acid

(Sigma, St Louis, MO). After 2 weeks, osteogenic differentiation

was demonstrated by mineralized deposits stainable with von

Kossa stain (Cedarlane, Ontario, Canada). To promote adipo-

genesis, MSCs were incubated in DMEM with 10% FBS, 1 mM

dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine (Sigma, St

Louis, MO), 0.1 mM indomethacin (Sigma, St Louis, MO), and

10 mg/ml insulin (Novo Nordisk A/S, Bagsværd, Denmark). After

2 weeks, adipogenic differentiation was demonstrated by intracel-

lular accumulation of lipid droplets stainable with oil red O

(Sigma, St Louis, MO).

CLP Model of polymicrobial sepsis in rats
The experimental protocol was approved by the Institutional

Animal Care and Use Committee of the Chung Shan Medical

University Experimental Animal Center (No: 1430). Male immune

competent Wistar rats weighing 250 to 300 g were provided by the

National Science Council. CLP, a well-established murine model

of polymicrobial sepsis, leads to a focal inflammation and

subsequently becomes systemic rapidly as a consequence of

continuous dissemination of endogenous intestinal bacteria. This

model closely resembles the septic process in humans [17,18], and

thus was employed in our study. Briefly, rats were anesthetized by

intramuscular injection of 75 mg/kg ketamine and 5 mg/kg

xylazine. After laparotomy, the distal one half of the cecum was

ligated with a 4–0 silk tie. A single through-and-through

perforation was made in the ligated segment with a 18-gauge

needle and a 1 mm column of fecal material was extruded through

the puncture site. Then the cecum was replaced into abdomen and

the abdominal incision was closed in two layers with 3–0 silk

Figure 1. Comparison of BMMSCs and UCMSCs. (A) In vitro
culture, BMMSCs and UCMSCs showed a similar spindle-shaped
morphology (1006). (B) UCMSCs had stronger potential for osteogen-
esis than BMMSCs after 2-week induction (von Kossa staining, 1006).
(C) UCMSCs had lower potential for adipogenesis than BMMSCs after 2-
week adipogenic induction (Oil red O staining, 2006).
doi:10.1371/journal.pone.0110338.g001
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sutures. Sham-operated rats underwent the same procedure,

including opening the peritoneum and exposing the bowel, but

without ligation and needle perforation of the cecum.

Administration of MSCs after CLP
To assess the effects of MSC administration after CLP-induced

polymicrobial sepsis, rats of BMMSC and UCMSC groups

received five millions BMMSCs and UCMSCs in 0.3 ml sterile

PBS via the tail vein 4 hours after CLP, respectively. In vitro

cultured BMMSCs and UCMSCs of passage 5 were used in this

study. In PBS group and sham control group, sterile PBS in a

volume of 0.3 ml with no cells was administered at the same time

point. Depending on the experiment, rats were either euthanized

at 18 hours after surgery to harvest blood and organs, or were

observed every 6 hours for 14 days to determine survival.

Determination of serum cytokine levels
After sacrificed at 18 hours after CLP or sham operation, blood

was collected and then serum was separated by centrifugation at

10,000 g for 10 min at 4uC, aliquoted, and stored at 280uC until

assayed. For determination of circulating cytokine levels, the

concentrations of granulocyte-macrophage colony-stimulating

factor (GM-CSF), monocyte chemotactic protein (MCP)-1, inter-

leukin (IL)-1, IL-6, tumor necrosis factor-a (TNF-a), and IL-10

were measured using bead-based multiplex immunoassays with

flow cytometry (eBioscience FlowCytomix; Bender MedSystems,

Vienna, Austria), according to the manufacturer’s instructions.

Analysis of peripheral blood mononuclear cells
After sacrificed, one part of blood collected in a EDTA-

containing tube was used for analysis of peripheral blood

mononuclear cells by their cell surface markers. Flow cytometry

was performed on FACSCalibur with CellQuest software follow-

ing the manufacturer’s instructions. FITC, PE, or APC conjugated

monoclonal antibodies specific to rat CD3, CD4, CD8a, CD11b,

CD11b/c, CD25, Gran, CD45RA, or CD161a were employed

with appropriate isotype matched controls. All reagents were

purchased from BD Biosciences.

Assessment of regulatory T (Treg) cell function
Spleens were harvested after sacrificed at 18 hours after CLP or

sham operation. They were cut into pieces, milled with tissue

grinder, and filtered. Red blood cells were removed, and

splenocytes were isolated by Ficoll-Paque gradient centrifugation

(GE Healthcare, Uppsala, Sweden). CD4+CD25+ and CD4+
CD25- cells were isolated using CD4+CD25+ Treg cell isolation

kits (Miltenyi Biotec, Bergisch Gladbach, Germany). The purity of

the CD4+CD25+ T cell population analyzed by flow cytometry

was greater than 95%. To evaluate the suppressive capacity of

Treg cells, carboxyfluorescein succinimidyl ester (CFSE; Invitro-

gen, Carlsbad, CA)-labeled CD4+CD25- cells were stimulated by

a IL-2 (1000 U/ml)/CD3 (3.75 mg/ml)/CD28 (3 mg/ml) mixture

(BD Pharmigen, San Diego, CA) at the density of 16106 cells/well

in 24-well plates for 3 days. Then isolated CD4+CD25+ Treg cells

(16105 cells/well) were added into the well and cocultured for 3

days. Proliferation of CFSE-labeled CD4+CD25- cells were rated

using flow cytometry (FC500, Beckman Coulter, Fullerton, CA), as

previous described [19].

Detection of the transferred human MSCs in recipient
rats

For detection of the transferred human MSCs in the peripheral

blood of the recipient rat, one part of blood was collected in a tube

containing EDTA immediately after sacrificed. Red blood cells

were lysed by RBC Lysis Solution (Qiagen, Foster, CA), and cells

were collected as a pellet after centrifugation. The cells were

washed and resuspended in PBS, and then immunolabeled with

purified mouse antihuman APC-conjugated CD44 or PE-conju-

gated CD105 monoclonal antibody (BD Pharmigen, San Diego,

CA). Data were analyzed by flow cytometry following the

manufacturer’s instruction.

Figure 2. The beneficial effects from MSC administration on survival in rats with CLP-induced sepsis. Survival was evaluated for 14 days.
Although no statistical significance, it appeared that rats receiving UCMSCs or BMMSCs after CLP had lower mortality rates than rats receiving PBS
only after CLP. n = 10 rats/group.
doi:10.1371/journal.pone.0110338.g002
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Figure 3. Changes of circulating inflammation-associated cytokine profiles in rats 18 hours after CLP. Compared with sham-operated
rats, serum levels of IL-6 and TNF-a were elevated in rats undergoing CLP (i.e. BMMSC, UCMSC and PBS groups). Compared with rats receiving PBS
only after CLP, the levels of IL-6 and TNF-a were significantly lower in rats receiving MSCs, either BMMSCs or UCMSCs. There were no significant
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For detection of the transferred MSCs in the lung of the

recipient rat, the lung tissue was fixed in 10% neutral buffered

formalin and then embedded in paraffin. Thin sections of 5 mm

thickness were obtained for immunohistochemical staining specific

to human CD44 and CD105 (GeneTex, Irvine, CA), according to

the manufacturer’s protocol.

Statistical analysis
Data analysis was performed using SPSS 16.0 for Windows.

Survival was analyzed with Kaplan-Meier survival curves. For

continuous variables, Kruskal-Wallis test was used to compare

groups and Games-Howell test was as post-hoc test. Statistical

value of p,0.05 was considered to be significant.

Results

Characteristics of MSCs
In vitro culture, BMMSCs and UCMSCs showed a similar

spindle-shaped morphology (Figure 1A). Both revealed a consis-

tent immunophenotypic profile which was negative for CD34,

CD45, CD14, and HLA-DR, and positive for CD29, CD44,

CD73, CD90, CD105, HLA-A, HLA-B, and HLA-C. There was

no significant difference in the expression level of any single

surface marker between BMMSCs and UCMSCs. Under respec-

tive induction conditions, both BMMSCs and UCMSCs can

achieve osteogenic and adipogenic differentiation. It is interesting

to note that UCMSCs had significantly stronger potential for

osteogenesis but lower for adipogenesis, as shown by more intense

von Kossa stain (Figure 1B) and less intense Oil red O stain

(Figure 1C).

Survival study
Figure 2 shows the beneficial effects from MSC administration

on survival after CLP-induced sepsis in rats. In the absence of

antibiotics therapy, the mortality rates in rats receiving UCMSCs

or BMMSCs after CLP were reduced compared with rats

receiving PBS only after CLP although no statistical significance.

Changes of cytokine profiles in rats with sepsis after MSC
administration

To assess the changes of inflammation-associated cytokine

profiles after MSC administration during sepsis, serum concen-

trations of GM-CSF, MCP-1, IL-1, IL-6, TNF-a, and IL-10 were

measured 18 hours after CLP or sham operation (Figure 3).

Compared with sham-operated rats, serum levels of IL-6 and

TNF-a were elevated significantly in rats undergoing CLP,

whether receiving MSCs or not. It is worth noting that serum

IL-6 and TNF-a levels were significantly lower in rats receiving

BMMSCs or UCMSCs than rats receiving PBS only after CLP.

These results may implicate that MSCs could rescue rats from the

exacerbated inflammatory status after CLP-induced sepsis. There

was no significant difference in the serum level of any measured

cytokine between rats receiving BMMSCs and UCMSCs after

CLP.

Changes of peripheral blood mononuclear cells in rats
with sepsis after MSC administration

To evaluate the activation of the immune system during the

inflammatory process induced by CLP, a panel of peripheral blood

mononuclear cells, which may participate in the innate or adaptive

immune network, were measured 18 hours after CLP or sham

differences in these two parameters between rats receiving BMMSCs and UCMSCs. There were no significant differences in serum levels of GM-CSF,
MCP-1, IL-1 and IL-10 among sham control, BMMSC, UCMSC and PBS groups. Data are presented as mean 6 SEM. n = 6–9 rats/group. *p,0.05 versus
sham control group. # p,0.05 versus PBS group.
doi:10.1371/journal.pone.0110338.g003

Figure 4. Analysis of peripheral blood mononulcear cells in rats 18 hours after CLP. Compared with sham-operated rats, the percentages
of circulating CD11b+CD3- monocytes and CD11b/c+CD3- dendritic cells were elevated in rats undergoing CLP (i.e. BMMSC, UCMSC and PBS groups).
Compared with rats receiving PBS only after CLP, the percentage of circulating CD3+CD4+CD25+ Treg cells was significantly higher in rats receiving
BMMSCs or UCMSCs after CLP, and so was the ratio of Treg cells/T cells. There were no significant differences in these two parameters between rats of
BMMSC and UCMSC groups. Data are presented as mean 6 SEM. n = 6–9 rats/group. *p,0.05 versus sham control group. #p,0.05 versus PBS group.
doi:10.1371/journal.pone.0110338.g004
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operation by their specific surface markers (Figure 4). Compared

with sham-operated rats, the percentages of circulating CD11b+
CD3- monocytes and CD11b/c+CD3- dendritic cells were

elevated significantly in rats undergoing CLP, indicating the

activation of the innate immune system after CLP-induced

inflammation. Of importance, the percentage of circulating

CD3+CD4+CD25+ Treg cells and the ratio of Treg cells/T

cells were significantly higher in rats receiving BMMSCs or

UCMSCs than rats receiving PBS only after CLP, suggesting that

the actions of MSCs may be associated with CD3+CD4+CD25+
Treg cells in this model. There was no significant difference in

any peripheral blood mononuclear cells between BMMSC and

UCMSC groups.

Restoration of Treg cell suppressive function in rats with
sepsis after MSC administration

In addition to an increase in the percentage of circulating CD3+
CD4+CD25+ Treg cells in the peripheral blood, we further

demonstrated the restoration of Treg cell suppressive function in

rats with sepsis after MSC administration. As shown in Figure 5,

proliferation of CFSE-labeled CD4+CD25- cells was suppressed

when cocultured with isolated CD4+CD25+ Treg cells from rats

receiving BMMSCs or UCMSCs after CLP. In contrast, the

suppressive capacity of CD4+CD25+ Treg cells from rats

receiving PBS only after CLP was significantly decreased. These

results implicated that immunosuppressive function of Treg cells

could be restored by administration of MSCs. Our study provides

the first evidence for the increase in Treg cell suppressive function

after MSC administration in a septic animal model.

Figure 5. Treg cell suppressive function in rats 18 hours after CLP. (A) Analysis of CFSE-labeled CD4+CD25- cell proliferation by flow
cytometry after pre-treatment with a IL-2/CD3/CD28 mixture was shown. (B) Proliferation of CFSE-labeled CD4+CD25- cells was decreased when
cocultured with CD4+CD25+ Treg cells from rats of Sham, BMMSC, and UCMSC groups. The suppressive capacity of CD4+CD25+ cells from rats
receiving PBS only after CLP nearly disappeared. Data are presented as mean 6 SEM. n = 6–9 rats/group. #p,0.05 versus PBS group.
doi:10.1371/journal.pone.0110338.g005

Figure 6. Evaluation of lung immunohistochemistry in rats 18 hours after CLP. Positive cells for CD44 or CD105 which represented the
transferred human MSCs can be found in the perivascular interstitial area 14 hours after administration of BMMSCs or UCMSCs (2006).
doi:10.1371/journal.pone.0110338.g006
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Detection of the transferred human MSCs in recipient
rats

Further, we tried to find where the transferred human MSCs

homed to. At 14 hours after administering BMMSCs or UCMSCs

to rats, no cells with CD44 or CD105 expression which

represented the transferred human MSCs can be detected by

flow cytometry in the peripheral blood. While positive cells for

CD44 or CD105 were found in the perivascular interstitial area of

the lung sections from rats 14 hours after MSC administration

(Figure 6).

Discussion and Conclusion

Dysregulation of a variety of immune cells in response to sepsis,

which is associated with increased rates of morbidity and mortality

in septic patients, has been demonstrated [20,21]. MSCs have

been found to modulate immune functions [3–8]. In our previous

study, we found that UCMSCs could effectively treat severe graft

versus host disease after hematopoietic stem cell transplantation,

which is a paradigm of immune-mediated host tissue damage [16].

Administering MSCs to mice after CLP was reported to improve

survival and organ function [9–12], implicating that MSCs may

bring immune responses back into balance and attenuate self-

tissue damage during sepsis. Regarding how MSCs exert their

immunoregulation during sepsis, most investigations focused on

the effects of MSCs on neutrophil or monocyte/macrophage

function [9–12]. Compared with rats receiving PBS only after

CLP, the present study showed that the percentage of circulating

Treg cells and the ratio of Treg cells/T cells were elevated

significantly in rats receiving MSCs after CLP. Further study

regarding Treg cell function demonstrated that the immunosup-

pressive capacity of Treg cells from rats with CLP-induced sepsis

was diminished, but could be restored by administration of MSCs.

Consistent with the previous reports that Treg cells can control the

production of pro-inflammatory cytokines during infection [9,22–

24], we found that levels of serum IL-6 and TNF-a decreased in

rats receiving MSCs compared with rats receiving PBS only after

CLP. This work provides support for the involvement of Treg cells

in the immunoregulatory effects of MSCs during sepsis.

Treg cells play an important role in the regulation of immune

responses. During infectious processes, Treg cells can suppress the

activation of naive autoreactive CD4 helper and CD8 cytotoxic T

cells which have the potential to attack the body’s health tissues,

and control the production of pro-inflammatory cytokines

[22,23,25]. And thus minimize the collateral tissue damage. In

CLP-induced septic mice, adoptive transfer of in vitro-stimulated

Treg cells had positive effects on bacterial clearance and survival

[26], and the suppressive capacity of Treg cells was prerequisite for

the recovery from severe sepsis [27]. The complex interactions

between MSCs and Treg cells, two important components of

peripheral tolerance in the immune system, have been investigat-

ed. MSCs were demonstrated to generate Treg cells and regulate

their function [28–34], but it has not been reported whether MSCs

also can exert their immunomodulatory capacity via Treg cells

during sepsis. In the present study, administration of BMMSCs or

UCMSCs to septic rats could increase the percentage of

circulating Treg cells, the ratio of Treg cells/T cells, and the

suppressive function of Treg cells. Thus, levels of serum IL-6 and

TNF-a, indices of acute inflammation, decreased. Here, we first

reported the alterations in number and function of Treg cells after

MSC administration during sepsis in an animal model. And this

work provides valuable evidence for the association of Treg cells

and MSC-mediated immunomodulation during sepsis.

A broad spectrum of factors produced by MSCs have been

reported to affect cell performance, including insulin-like growth

factor, hepatocyte growth factor, epidermal growth factor,

vascular endothelial growth factor, stromal cell-derived factor-1,

IL-10, IL-8, IL-6, prostaglandin E2, etc [35–37]. Although cross-

species effects have been demonstrated from administration of

xenogeneic MSCs, the mechanisms by which MSCs exert their

cross-species activity remain unclear. Additionally, there is

substantial evidence that infused MSCs have higher engraftment

efficiencies within sites of inflammation or injury [38]. In the

absence of tissue damage, a large number of systemically

administered MSCs was found to lodge in the pulmonary vascular

bed [39]. In the present study, the transferred MSCs cannot be

detected in the peripheral blood 14 hours after administration but

they were found in the pulmonary perivascular interstitium. MSC

homing soon to the lung in the recipient rat after systemic

administration may be important for amelioration of lung injury.

It remains difficult to determine how long the transferred MSCs

survive in the recipients. Although no evidence of donor MSCs in

the majority of patients 6 months after MSC administration, MSC

chimerism still can be demonstrated in several patients at such a

long time after administration [40,41].

For clinical use, a key factor is the origin of MSCs to be

expanded in vitro. Bone marrow is considered as the traditional

source, but MSCs can also be isolated from other tissues. In our

previous studies, we found that UCMSCs can promote hemato-

poietic engraftment after hematopoietic stem cell transplantation

[15,42] and treat refractory graft-versus-host disease effectively

[16]. While the properties of UCMSCs may be similar to their

bone marrow counterparts, their characteristics and functional

importance in sepsis also need to be investigated. In the present

study, BMMSCs and UCMSCs showed a similar in vitro-cultured

morphology and surface marker expression. It is of interest that

UCMSCs exhibited stronger potential for osteogenesis but lower

for adipogenesis than BMMSCs. In CLP-induced septic rats,

UCMSCs appeared to have similar effects as BMMSCs. As to be

easily harvested and efficiently cultured, umbilical cord might

represent a feasible source of MSCs for clinical application.

The ability of MSCs to fine-tune immune responses has led to

the idea that MSCs could be attractive candidates of cell-based

therapy for infection control and immune regulation. Much still

remains to be discovered and further works are warranted.
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