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Abstract

n-3 long-chain polyunsaturated fatty acids improve cardiovascular risk markers in adults. These effects may differ between
eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), but we lack evidence in children. Using
baseline data from the OPUS School Meal Study we 1) investigated associations between EPA and DHA in whole blood and
early cardiometabolic risk markers in 713 children aged 8–11 years and 2) explored potential mediation through waist
circumference and physical activity and potential dietary confounding. We collected data on parental education, pubertal
stage, 7-day dietary records, physical activity by accelerometry and measured anthropometry, blood pressure, and heart
rate. Blood samples were analyzed for whole blood fatty acid composition, cholesterols, triacylglycerol, insulin resistance by
the homeostatic model of assessment (HOMA-IR), and inflammatory markers. Whole blood EPA was associated with a
2.7 mmHg (95% CI 0.4; 5.1) higher diastolic blood pressure per weight% EPA, but only in boys. Heart rate was negatively
associated with both EPA and DHA status (P = 0.02 and P = 0.002, respectively). Whole blood EPA was negatively associated
with triacylglycerol (P = 0.003) and positively with total cholesterol, low density and high density lipoprotein (HDL)
cholesterol and HDL:triacylglycerol (all P,0.01) whereas DHA was negatively associated with insulin and HOMA-IR
(P = 0.003) and tended to be negatively associated with a metabolic syndrome-score (P = 0.05). Adjustment for waist
circumference and physical activity did not change the associations. The association between DHA and HOMA-IR was
attenuated but remained after adjustment for fiber intake and none of the other associations were confounded by dietary
fat, protein, fiber or energy intake. This study showed that EPA status was negatively associated with triacylglycerol and
positively with cholesterols whereas DHA was negatively associated with insulin resistance, and both were inversely
associated with heart rate in children. The sex-specific associations with blood pressure confirm our previous findings and
warrant further investigation.
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Introduction

Intake of n-3 long-chain polyunsaturated fatty acids (LCPUFA)

from fish and fish oils have been shown to improve cardiovascular

risk markers in adults, most pronouncedly plasma triacylglycerol

and blood pressure, and may also reduce coronary heart disease

mortality [1], although not all meta analyses agree [2]. The

metabolic syndrome (MetS) is defined as a cluster of cardiovas-

cular risk factors including abdominal obesity, dyslipidemia,

glucose intolerance, and hypertension [3]. In parallel with the

obesity epidemic, increasing numbers of adolescents in the

Western world now show features of the MetS [4] and metabolic

dysregulations during childhood increase the risk of MetS and type

II diabetes in adulthood [5]. However, little is known about the

effects of n-3 LCPUFA on cardiometabolic risk markers in school

children.

Previous trials conducted by our group showed that fish oil

supplementation reduced blood pressure in infants and adolescent

boys [6,7], as has been demonstrated in adults [8]. However, in a
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cross-sectional pilot study in 73 school children we recently found

that docosahexaenoic acid (DHA, 22:6n-3) in whole-blood was

associated with increased blood pressure, but in boys only [9].

Comparable results were seen among the boys of our cross-

sectional study of Danish 17-year-olds [10] and in 7-year-old boys

of mothers who were supplemented with n-3 LCPUFA during

lactation [8]. Overall, this indicates that effects related to n-3

LCPUFA in children may be sex-specific, and that the two major

dietary n-3 LCPUFA, eicosapentaenoic acid (EPA, 20:5n-3) and

DHA, may differentially affect the individual components of the

MetS cluster in children. In adults, effects on blood pressure seem

to be specific to DHA and effects on cholesterols may differ

between EPA and DHA [11]. Our previous cross-sectional study

among school children showed positive associations with high

density lipoprotein (HDL) cholesterol for EPA, not DHA in whole

blood [9]. In that study whole blood DHA was negatively

associated with physical activity [9]. In the boys of the fish oil-

supplemented lactating mothers we also observed lower physical

activity and higher energy intake compared to the control group

[8], and therefore the increases in blood pressure may have been

mediated through reduced physical activity or increased energy

intake. On the other hand, consumption of n-3 LCPUFA has also

been shown to reduce waist circumference and fat mass [12],

which may therefore be potential mediators of any beneficial

effects of n-3 LCPUFA on cardiometabolic markers. Finally, n-3

LCPUFA status is positively associated with protein intake [13]

and may be linked to total fat intake and to key components in a

healthy diet such as fiber [14]. These components have also been

associated with cardiometabolic risk markers in children [15,16],

and should therefore be considered as potential confounders when

investigating associations between n-3 LCPUFA and early

cardiometabolic markers.

The aim of this study was to 1) investigate associations between

n-3 LCPUFA status, measured as EPA and DHA in whole blood,

and early cardiometabolic risk markers in 8–11-year-old Danish

children and 2) explore the potential mediating effects of waist

circumference and physical activity and potential dietary con-

founding.

Methods

Study design and participants
The study was based on cross-sectional baseline data from the

Optimal well-being, development and health for Danish children

through a healthy New Nordic Diet (OPUS) School Meal Study

that aimed to investigate the effects of school meals based on the

New Nordic Diet on health, well-being, and cognitive perfor-

mance [17]. The study was conducted according to the guidelines

in the Declaration of Helsinki, approved by the Danish National

Committee on Biomedical Research Ethics (no. H-1-2010-124),

and the baseline study was registered at www.clinicaltrials.gov as

NCT01577277. Children from third and fourth grade at nine

schools in the Eastern part of Denmark were invited to participate

in the study, and the baseline assessments were performed from

August to December 2011. Children were excluded only if they

had severe food-related allergies, food intolerances, or malabsorp-

tion, severe mental handicaps or were participating in other

research projects that involved blood sampling or radiation. A

total of 1021 children were invited for the school meal study.

Hereof, the parents of 834 children (82%) gave written consent for

participation, after the study had been explained to the families

both orally and in writing [17]. The current paper is based on

baseline data from the 713 children from whom information on

parental education and pubertal status as well as anthropometric

measurements and blood samples were collected.

Socioeconomic status, diet, and physical activity
The participating families underwent a 2-hour in-depth

interview, either at school or in their home, about socioeconomic

status and demographics, during which instructions on diet and

physical activity recording were given. We defined parental

educational level as the level of education of the parent with the

highest level in the household, categorized as described by

Statistics Denmark [18]. With parental assistance pubertal status

was self-evaluated by the child in five categories (Tanner stages)

based on breast development in girls and pubic hair in boys [19].

With help from their parents, the children recorded their daily

intake of food and beverages every night for 7 consecutive days

using a web-based dietary assessment software developed for and

validated in 8–11 year-old Danish children [20,21]. Energy and

nutrient intake was calculated using the software system GIES

(Version 1.000 d-2010-02-26) developed at the National Food

Institute, Technical University of Denmark. Based on reported

energy intake and estimated basal metabolic rate (BMR) [22],

under reporters (energy intake:BMR#1.05) (n = 55), and over

reporters (energy intake:BMR$2.29) (n = 12) [23] were excluded

from the dietary analyses.

Physical activity was measured for the same 7 days as the

dietary recordings using a tri-axis accelerometer (GT3X or

GT3X+, ActiGraph, Pensacola, FL) worn in an elastic belt tightly

at the right hip. The children were asked only to remove the

accelerometer during water activities, i.e. showering and swim-

ming. Data was reintegrated to 1-min epochs using ActiLife

(version 6.0.0, ActiGraph, Pensacola, FL) as previously described

[24]. In short, all data obtained between 6 am and midnight was

used as wear-time with exclusion of periods of .15 min of

consecutive zeros plus wear-time periods ,60 min. The child was

included only if physical activity was registered for $10 hours on

$3 weekdays and $1 weekend day. Total physical activity

expressed as counts/min was calculated as the total number of

vertical counts divided by wear-time. Time spent on sedentary

activity was defined as all minutes showing #100 counts/min.

Light and moderate-vigorous intensity activity were defined as the

numbers of minutes spend with activity in the range of 101–2295

and $2296 counts/min, respectively [25]. Median (range) days of

valid recording was 5 (3–6) weekdays and 2 (1–2) weekend days

with a mean6SD monitor wear time (excluding sleep time) of

901634 min/day.

Clinical measurements and blood sampling
Clinical measurements and blood sampling were performed by

standard procedures in the morning in an air-conditioned double-

decker truck equipped as a mobile laboratory and visiting the

schools sequentially. All children, except 22 (8 of whom had only

had chewing gum or single bites of food), reported to have fasted

overnight except for 1–2 glasses of water. Local anaesthetic

patches (EMLA; Astra Zeneca) were provided and venous blood

(35–40 mL) was drawn from the antecubital vein. Blood pressure

and heart rate were measured by an automated device (UA-787

Plus, A&D Medical) after a 10 min rest using two different cuff

sizes (18–22 cm or 22–32 cm). A second device (ProBP 3400 Sure

BP; Welch Allyn Inc.) was used for children with arm circumfer-

ences ,18 cm (n = 75). Measurements were performed three

times, and the mean of the last two measurements was used. Mean

arterial pressure was calculated as (1/36systolic blood pressure)+
(2/36diastolic blood pressure). Ambient temperature inside the

truck was measured by an electronic thermometer. Height was
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measured three times to the nearest 0.1 cm using a portable

stadiometer (CMS Weighing Equipment), with the children

holding their heads in the Frankfurt horizontal plane. The mean

of all three measurements was used. Body weight was measured to

the nearest 0.1 kg on a digital scale (Tanita 800S; Tanita).

Children wore light clothing and were asked to empty their

bladder prior to measurement. Sex- and age-adjusted z-scores for

body mass index (BMI) were calculated using WHO AnthroPlus

software [26]. The prevalence of underweight, overweight, and

obesity was based on age- and sex-specific cut-offs as described by

Cole et al. [27,28]. Children’s whole-body composition was

measured by DXA scan (Lunar Prodigy; GE Medical) using

Encore software version 13.5. Most of the children had a

standardized breakfast prior to the scanning. Only body fat

percentage was used in the present study calculated as fat mass

divided by estimated body weight from the scanning (sum of fat

mass, lean mass, and bone mass). A continuous MetS score was

calculated as the sum of individual continuous Z-scores of the five

variables logaritmized: waist circumference, homeostatic model

assessment-insulin resistance (HOMA-IR), triacylglycerol, mean

arterial pressure, and – HDL cholesterol, as suggested for pediatric

populations by Eisenmann [29]. The choice of markers to be

included was based on the International Diabetes Federation’s

definition of the MetS for children $10 years [30], although we

included HOMA-IR rather than blood glucose because the latter

is highly stable in non-diabetic children, even among obese

adolescents with MetS features [31].

Blood analyses
Whole blood haemoglobin was analysed immediately after

sampling on a Hemocue Hb 201 analyzer (Hemocue Denmark).

Plasma glucose concentrations were also assessed on fresh blood

by a Hemocue Glucose 201 (Hemocue Denmark) calibrated to

calculate plasma concentrations from whole blood. Blood collected

in serum separation tubes with gel was left to coagulate for 30 min

at room temperature and centrifuged at 25006g for 10 min and

the serum stored at 280uC for analysis of insulin. Plasma for

measurement of cholesterols and triacylglycerol was obtained from

heparinized blood and plasma for measurement of inflammatory

markers was obtained from blood with ethylenediaminetetraacetic

acid, all by centrifugation at 25006g for 10 min, and stored at 2

80uC. Heparinized whole blood was mixed with 0.1% butylated

hydroxytoluene (BHT; Sigma-Aldrich) in ethanol (0.1 mL per mL

blood) and stored at 280uC for analysis of fatty acid composition.

Serum insulin was measured by an automated chemiluminescent

immunoassay on an ADVIA Centaur XP (Siemens Healthcare).

Insulin concentrations were converted from pmol/L to mIU/L by

dividing by 6.945 and HOMA-IR was calculated as plasma

glucose (mmol/L) 6 serum insulin (mIU/L)/22.5 [32]. Plasma

total and HDL cholesterol and triacylglycerol were measured on a

Vitros 5.1 FS (Ortho-Clinical Diagnostics). Low density lipopro-

tein (LDL) cholesterol concentrations were calculated by Friede-

wald’s equation [33]. Plasma interleukin-6 (high sensitive) and

adiponectin were measured in duplicate by enzyme-linked

immunosorbent assay (R&D Systems). The inter- and intra-assay

CV were: 1.4% and 1.2% (total cholesterol); 2.0% and 1.2%

(HDL cholesterol); 1.5% and 0.8% (triacylglycerol); 2.5% and

3.1% (insulin); 6.7% and 2.9% (interleukin-6); and 11% and 3.8%

(adiponectin). The inter-assay CV was 4.0% for glucose.

Whole blood fatty acid composition was measured by high-

throughput gas chromatography within 3 months after blood

sampling. Fatty acid methylesters were prepared from whole blood

by direct trans-esterification with convectional heat as previously

described [34]. Briefly, blood was added to an internal standard

(22:3n-3 ethyl ester; Nu-Check Prep), mixed with 14% BF3 in

methanol (Pierce Chemicals) and hexane containing 50 mg/mL

BHT and convectionally heated for 60 min at 90uC. Fatty acid

methylesters were then extracted by addition of water and hexane

and the top hexane layer was collected and separated on a Varian

3900 gas chromatograph equipped with a DB-FFAP capillary

column (15 m 6 0.10 mm i.d. 6 0.10 mm film thickness, J&W

Scientific; Agilent Technologies) [35]. A total of 9761% of the

chromatogram peaks with retention times between 12:0 and

22:6n-3 were identified and the mean total whole blood fatty acids

amounted to 225637 mg/100 mL (range 56–365 mg/100 mL).

The amount of individual fatty acids and fatty acid classes are

given in weight% of the total whole blood fatty acids. The intra-

and inter-assay CV were 1.3% and 4.5% for EPA and 2.4 and

6.4% for DHA, respectively.

Statistical analysis
Descriptive data are presented as mean 6 SD separately for

girls and boys and were compared using unpaired t test or Mann-

Whitney U test (for non-normally distributed variables). Descrip-

tive associations between whole blood n-3 LCPUFA and fish

intake were tested by Pearson’s correlations. Included and

excluded children were compared using unpaired t test and chi-

square test.

Potential associations between whole blood EPA and DHA

status and the cardiometabolic markers were investigated in a

mixed linear model including school and class as random effects,

parental education, sex and puberty (yes/no) as categorical fixed

effects, and age and total concentration of fatty acids in whole

blood as covariates. Models of blood pressure and heart rate

further included height, ambient temperature in the truck and

blood pressure device (small or large) and models of waist

circumference, plasma glucose, insulin, and HOMA-IR included

height. Models of the MetS score included all of these covariates. If

the n-3 LCPUFA-sex interaction term was significant the analysis

was performed separately in girls and boys. A sex-pubertal stage

interaction term (taking into account that puberty was measured

on different scales in boys and girls) were tested in all models.

Secondary analyses were performed to investigate whether

associations between n-3 LCPUFA and the cardiometabolic

markers were mediated through variations in waist circumference,

total physical activity, or energy intake (expressed as energy

intake:BMR) or confounded by intakes of protein (expressed as

energy%), total fat (expressed energy%) or fiber (expressed as g/10

MJ). In order for a variable to be considered a potential mediator,

it had to be associated with EPA or DHA in whole blood and the

cardiometabolic outcome in question [36]; this was tested by

Pearson’s correlations. The potential mediators were introduced

one by one into the basic models described above, based on the

difference of coefficients approach procedure for testing mediation

in linear regression models [36]. If this weakened the regression

coefficient for the association between the n-3 LCPUFA and the

cardiometabolic marker .10%, it was interpreted as some degree

of mediation. Potential confounders were tested in the mixed

models to see if they rendered the association between the n-3

LCPUFA and the cardiometabolic marker non-significant.

Model checking was based on visual inspection of residual and

normal probability plots. Insulin, HOMA, triacylglycerol, and

adiponectin were logarithmically transformed; interleukin-6 was

double-log transformed before analysis and estimates were back-

transformed [37]. One girl who had an extreme whole blood EPA

value of 4.61 weight%, compared to a median (range) of 0.57

(0.17–1.98) weight% in the rest of the population, was removed

from analyses that included EPA. Data were analyzed with SPSS
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version 20 (IBM Corporation) and R (R Development Core Team)

and statistical significance was established at P,0.05.

Results

Children’s characteristics
Included children were from households with slightly higher

education level than excluded children (P = 0.049, chi-square test)

but did not differ with regard to age, sex distribution or degree of

overweight (data not shown). Among the included children boys

were slightly older, more physically active, and had lower body fat

percentage than girls and as expected, more girls than boys had

entered puberty (Table 1). Among the girls 37% and 9% were in

Tanner stage 2 and 3, respectively, whereas these numbers were

21% and 4% among the boys. A total of 632 children (89%) had

valid dietary records and 689 children (97%) had valid physical

activity recordings. The 81 children with missing or invalid dietary

recordings were more likely to be overweight, from a household

with low education and had higher HOMA-IR and plasma insulin

(data not shown, all P,0.001) than the rest of the study

population, but did not differ with regard to age, sex distribution,

plasma lipid profile, or whole blood n-3 LCPUFA status.

As shown in Table 1 boys had higher intakes of energy and

protein than girls. Among the children 6% reported consumption

of dietary supplements containing n-3 LCPUFA during the

registration week. Boys had higher relative content of whole

blood polyunsaturated fatty acids, due to higher contents of 20:3n-

6, 22:5n-6, and 22:5n-3 than girls, whereas no sex differences were

seen in the n-6/n-3 ratio (Table 2). Whole blood EPA and DHA

were associated with each other (r = 0.72, P,0.001). The n-3

LCPUFA were also associated with reported fish intake (r = 0.37

for EPA and r = 0.40 for DHA, both P,0.001).

Boys had lower diastolic blood pressure, heart rate, serum

insulin, HOMA-IR, plasma triacylglycerol, adiponectin, and

interleukin-6 and higher plasma glucose, HDL cholesterol, and

HDL: triacylglycerol than girls (Table 3). Accordingly, the MetS

score was more than 1 z-score lower in the boys compared to the

girls.

Table 1. Sociodemographic, anthropometric, and lifestyle characteristics of the children.

Girls (n = 343) Boys (n = 370)

Parental education, n (%)

# Lower secondary education 20 (6) 16 (4)

Upper secondary education 13 (4) 7 (2)

Vocational education 113 (33) 116 (31)

Short higher education 33 (10) 37 (10)

Bachelor’s degree or equivalent 96 (28) 110 (30)

$ Master’s degree 68 (20) 84 (23)

Age, years 9.960.7 10.160.6**

Pubertal status,% entered puberty1 46 25***

Weight, kg2 34.866.9 35.467.2

Height, m 1.4260.07 1.4360.07

BMI-for-age z-score2 0.0761.04 0.2161.11

Weight status, % UW/NW/OW/OB2,3 11.7/74.6/12.0/1.8 8.9/77.8/11.1/2.2

Waist circumference, cm 62.6 (58.9–68.4) 62.4 (59.3–68.2)

Body fat percentage4 25.567.9 20.668.2***

Total physical activity, counts/min5 4516117 5186138***

Dietary intake6

Energy, kJ/day 723561210 830661384***

Protein, energy % 15.162.1 15.562.0*

Fat, energy % 31.963.9 32.364.2

Fiber, g/10 MJ 2465 2466

Fish and fish products, g/week 80 (0–192) 84 (0–213)

n-3 LCPUFA supplement consumers, n (%) 21 (7) 15 (5)

Values are mean6SD or median (25th–75th percentile) unless stated otherwise. BMI, body mass index; LCPUFA, long-chain polyunsaturated fatty acids; NW, normal
weight; OB, obese; OW, overweight; UW, underweight.
Different from girls, *P,0.05, **P,0.01, ***P,0.001.
1Corresponding to self-reported Tanner stage 2 or higher [19].
2n = 342 girls and n = 370 boys.
3Based on age- and sex-specific cut-offs defined by Cole et al. [27,28].
4n = 342 girls and n = 368 boys.
5n = 334 girls and n = 356 boys.
6n = 301 girls and n = 331 boys.
doi:10.1371/journal.pone.0109368.t001
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Associations between whole blood n-3 LCPUFA and
cardiometabolic risk markers

Diastolic blood pressure was positively associated with EPA

status in boys, whereas no association was seen in girls (Table 4

and Figure 1A and 1B). Heart rate was negatively associated

with whole blood EPA and DHA in the sexes combined (Table 4).

EPA was positively associated with all plasma cholesterols, but

negatively with plasma triacylglycerol and therefore positively

associated with the HDL: triacylglycerol ratio whereas DHA was

Table 2. Fatty acid composition of children’s whole blood samples.

Girls (n = 343) Boys (n = 370)

weight%

Saturated fatty acids 41.7261.88 41.9161.98

Monounsaturated fatty acids 21.1961.60 20.9161.68

Polyunsaturated fatty acids 33.7562.84 34.0362.82*

n-6 polyunsaturated fatty acids 28.6462.50 28.8962.48

18:2n-6 16.0361.98 15.9861.95

20:3n-6 1.5260.30 1.6160.30***

20:4n-6 9.1361.22 9.2761.19

22:4n-6 1.2460.23 1.2660.23

22:5n-6 0.2860.08 0.3060.08*

n-3 polyunsaturated fatty acids 5.1161.09 5.1461.07

18:3n-3 0.29 (0.25–0.35) 0.28 (0.24–0.34)

20:5n-3 eicosapentaenoic acid 0.56 (0.42–0.71)1 0.57 (0.45–0.77)

22:5n-3 1.1760.18 1.2360.18***

22:6n-3 docosahexaenoid acid 3.0060.76 2.9660.74

n-6/n-3 polyunsaturated fatty acids 5.961.3 5.961.3

Values are mean6SD or median (25th–75th percentile). Different from girls, *P,0.05, ***P,0.001.
1n = 342 girls for EPA, due to one extreme outlier.
doi:10.1371/journal.pone.0109368.t002

Table 3. Cardiometabolic risk markers in the children.

Girls (n = 343) Boys (n = 370)

Systolic blood pressure, mmHg 10769 10868

Diastolic blood pressure, mmHg 6967 6766**

Mean arterial pressure, mmHg 8267 8166

Heart rate, beats/min 81611 76611***

Glucose, mmol/L 5.160.5 5.360.4***

Insulin, pmol/L 45 (34–63) 39 (30–54)***

HOMA-IR 1.52 (1.09–2.10) 1.34 (0.98–1.89)**

Total cholesterol, mmol/L 4.0860.63 4.0760.62

LDL cholesterol, mmol/L 2.3560.55 2.3060.55

HDL cholesterol, mmol/L 1.3960.28 1.4960.3***

Triacylglycerol, mmol/L 0.66 (0.54–0.84) 0.57 (0.48–0.70)***

HDL : triacylglycerol 2.1460.90 2.6160.98***

Metabolic syndrome score 0.5463.30 20.5362.82***

Adiponectin, mg/L1 11,289 (8,371–14,946) 10,531 (7,743–14,062)*

Interleukin-6, ng/L2 0.97 (0.69–1.62) 0.79 (0.57–1.09)

Values are mean6SD or median (25th–75th percentile). HDL, high density lipoprotein; HOMA-IR, homeostatic model assessment-insulin resistance; LDL, low density
lipoprotein.
*Different from girls, *P,0.05, **P.0.01, ***P,0.001.
1n = 338 girls and n = 367 boys.
2n = 342 girls and n = 368 boys.
doi:10.1371/journal.pone.0109368.t003
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negatively associated with plasma insulin and HOMA-IR (Table 4

and Figure 1C). DHA status was also negatively associated with

plasma triacylglycerol, but in girls only. The MetS score tended to

be negatively associated with whole blood DHA (P = 0.052)

(Table 4). A borderline significant sex-EPA interaction was seen

in the MetS score (P = 0.056) and when the analysis was conducted

sex-specifically it showed a negative association between EPA and

the MetS score in girls [b= 21.42 (95% CI 22.65; 20.19)]

(P = 0.024, n = 340) and no association in boys [b= 0.01 (95% CI

20.97; 0.99)] (P = 0.99, n = 366).

Potential mediation or confounding of the associations
between n-3 LCPUFA and cardiometabolic risk markers

Neither waist circumference (P.0.57), total physical activity

(P.0.72) nor energy intake:BMR (P.0.11) were associated with

whole blood EPA or DHA in pairwise correlations, and were

therefore judged not to be mediators of the demonstrated

associations between the n-3 LCPUFA and the cardiometabolic

markers. Moreover, waist circumference, BMI z-score, and body

fat% were not associated with either EPA or DHA in mixed

models (Table 4) and neither of the n-3 LCPUFA were correlated

with time spent on sedentary, light, or moderate-vigorous activity

(data not shown). Total physical activity was beneficially correlated

with all investigated cardiometabolic outcomes except plasma total

and LDL cholesterol and adiponectin (data not shown). Also, waist

circumference was negatively associated with all cardiometabolic

outcomes except for heart rate and total cholesterol (data not

shown). Adjustment for protein intake (Table S1 and Table S2)

or energy% from total fat (data not shown) as potential

confounders did not weaken the associations between EPA or

DHA status and the cardiometabolic risk markers. Adjustment for

fiber intake as a potential confounder weakened but did not

remove the beneficial association between DHA and HOMA-IR

(Table S2). In the mixed models where the potential confounders

were significant, fiber intake was negatively associated with total

and HDL cholesterol (Table S1) and HOMA-IR (Table S2),

whereas protein intake was negatively associated with triacylgly-

cerol but positively associated with HOMA-IR (Table S2).

Discussion

This study confirmed our previous pilot study findings [38] of

negative associations between whole blood EPA and triacylgly-

cerol, positive associations between EPA and cholesterols as well as

sex-specific associations between the n-3 LCPUFA status and

blood pressure in 8–11-year-old Danish children. However, in

contrast with our previous findings [38] the present study showed

that EPA was the strongest predictor of blood pressure and that

both n-3 LCPUFA were negatively associated with heart rate and

Table 4. Associations between whole blood n-3 long-chain polyunsaturated fatty acids and cardiometabolic risk markers in the
children.

Eicosapentaenoic acid, weight% Docosahexaenoic acid, weight%

n b (95% CI) P value n b (95% CI) P value

Waist circumference 712 1.7 (20.14; 3.5) 0.07 713 0.09 (20.54; 0.73) 0.78

BMI-for-age z-score 711 0.16 (20.14; 0.45) 0.30 712 20.02 (20.11; 0.09) 0.79

Body fat% 709 1.6 (20.6; 3.8) 0.17 710 0.04 (20.74; 0.82) 0.92

Systolic blood pressure, mmHg 706 21.2 (23.4; 1.1) 0.31 707 20.6 (21.4; 0.1) 0.11

Diastolic blood pressure, mmHg 340 (F)
366 (M)

21.6 (24.4; 1.2) (F)*
2.7 (0.4; 5.1) (M)

0.27 (F)
0.02 (M)

707 0.0 (20.6; 0.7) 0.95

Mean arterial pressure, mmHg 706 0.16 (21.6; 1.9) 0.86 707 20.2 (20.8; 0.4) 0.51

Heart rate, beats/min 706 23.8 (26.9; 20.6) 0.02 707 21.8 (22.9; 20.7) 0.002

Glucose, mmol/L 712 20.03 (20.15; 0.10) 0.69 713 20.04 (20.08; 0.01 0.10

Insulin, mmol/L 712 24.45 (29.88; 0.97) 0.11 713 22.85 (24.75; 20.95) 0.003

HOMA-IR 712 20.16 (20.35; 0.04) 0.12 713 20.10 (20.17; 20.03 0.003

Total cholesterol, mmol/L 712 0.26 (0.09; 0.43) 0.003 713 0.02 (20.04; 0.08) 0.46

LDL cholesterol, mmol/L 712 0.23 (0.07; 0.38) 0.004 713 0.04 (20.01; 0.10) 0.11

HDL cholesterol, mmol/L 712 0.11 (0.03; 0.20) 0.009 713 0.01 (20.03; 0.03) 0.76

Triacylglycerol, mmol/L 712 20.09 (20.15; 20.03) 0.003 343 (F)
370 (M)

20.04 (20.08; 20.01) (F)*
20.01 (20.03; 0.02) (M)

0.02 (F)
0.59 (M)

HDL : triacylglycerol 712 0.39 (0.13; 0.66) 0.003 713 0.04 (20.05; 0.13) 0.39

Metabolic syndrome score 706 20.68 (21.45; 0.10) 0.09 707 20.27 (20.55; 0.00) 0.05

Adiponectin, mg/L 704 504 (2974; 1983) 0.49 705 235 (2285; 755) 0.37

Interleukin-6, ng/L 709 0.12 (20.04; 0.29) 0.15 710 0.011 (20.02; 0.04) 0.55

Values are slope coefficients (95% CI) for the association between the fatty acids and the cardiometabolic markers linear mixed models adjusted for school, class,
parental education, sex, puberty, age, and total concentration of fatty acids in whole blood. Blood pressure and heart rate were further adjusted for height, ambient
temperature and blood pressure device. Waist circumference, plasma glucose, insulin, and HOMA-IR were further adjusted for height, and the metabolic syndrome
score were adjusted for all of the above. If there was significant n-3 LCPUFA-sex interaction the analysis was performed in the sexes separately. BMI, body mass index; F,
female; HDL, high density lipoprotein; HOMA-IR, homeostatic model assessment-insulin resistance; LCPUFA; long-chain polyunsaturated fatty acids; LDL, low density
lipoprotein; M, male.
*Interaction between sex and the n-3 LCPUFA, P-interaction,0.05.
doi:10.1371/journal.pone.0109368.t004
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DHA with insulin resistance. None of the demonstrated associa-

tions were statistically mediated by waist circumference or physical

activity, and although fiber intake weakened the association

between whole blood DHA and insulin regulation, the associations

did not seem to be confounded by key dietary components.

In randomized trials n-3 LCPUFA, particularly EPA, consis-

tently lower triacylglycerol in adults [39] but to our knowledge

such effects have not been clearly demonstrated in children. The

negative association between EPA, not DHA status, and

triacylglycerol seem to support the findings in adults although

our data are cross-sectional. In contrast to a recent review by

Mozaffarian and Wu examining the evidence of differential effects

of EPA and DHA on cardiovascular end-points and risk markers

in adults [11] both EPA and DHA were negatively associated with

heart rate in the present study.

The effect of n-3 LCPUFA on insulin regulation is controversial.

Most studies in adults show no effect [40], but this has not been

thoroughly investigated in children. A Norwegian case-control

study showed lower risk of type 1 diabetes in the offspring of

mothers taking cod liver oil during pregnancy, also after

adjustment for education and other potential confounders [41].

Also, consistent with the findings of the present study an Australian

study showed that insulin and HOMA-IR were negatively

associated with EPA+DHA in erythrocytes of obese 5–12-year-

old children [42]. In that study the degree of obesity was negatively

associated with n-3 LCPUFA status, which we did not find.

In hypertensive adults n-3 LCPUFA supplementation in the

form of fish oil consistently lowers blood pressure [43], and we

have previously demonstrated this effect in infants and slightly

overweight adolescent boys [6,7]. However, the effects of habitual

n-3 LCPUFA intake and status may differ from those of

supplementary high-dose fish oil. In the present study n-3

LCPUFA status was positively associated with blood pressure in

boys only. This is consistent with our previous findings in a cross-

sectional pilot study of Danish 8–11-year-olds [38] and in 7-year-

old offspring of mothers who received fish oil versus olive oil

supplements during lactation [8]. This could be hypothesized to be

related to behavioral effects potentially acting through the central

nervous system in a sex-specific manner. In support of this

hypothesis, n-3 LCPUFA has been shown to lower locomotor

activity in mice [44] and there is some evidence that n-3 LCPUFA

can ameliorate symptoms in children with attention-hyperactivity

deficit disorders [45] and reduce aggressive behavior in stressed

students [46]. However, in contrast with our pilot study

observations [38], the present study showed no associations

between n-3 LCPUFA status and physical activity. The measure-

ment of blood pressure at only one occasion and shortly before

blood sampling is a limitation of the present study and makes it

questionable whether the measurements reflect resting or rather

stressed conditions. Therefore, whether the observed sex-specific

associations reflect a cardiovascular or rather a psychosomatic sex

difference in the associations with EPA remains unclear.

Figure 1. Whole blood eicosapentaenoic acid is sex-specifically
associated with diastolic blood pressure whereas docosahex-
aenoic acid is negatively associated with HOMA-IR in all
children. Regression lines and 95% CI are shown for the associations
between eicosapentaenoic acid and diastolic blood pressure in boys,
b = 2.9, P = 0.02, n = 366 (A) and girls, b = 21.6, P = 0.28, n = 340 (B) and
for the association between docosahexaenoic acid and HOMA-IR in the
total study population, b = 20.03, P = 0.002, n = 713 (C). Plots were
adjusted for school, class, parental education, age, height, puberty, and
total fatty acids in whole blood. Blood pressure plots were additionally
adjusted for ambient temperature and blood pressure device.
doi:10.1371/journal.pone.0109368.g001
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The present study is the first to assess associations between n-3

LCPUFA status and a wide range of cardiometabolic markers in

healthy children. It is strengthened by the large sample size,

elaborate measurements including 7-day recordings of diet and

physical activity by accelerometry, as well as clinical measurements

and blood samples collected under highly standardized conditions.

As part of the explorative yet hypothesis-based approach we

conducted multiple statistical tests, which increase the risk of

chance findings. Bonferroni corrections are known to be very

conservative and not suited for highly correlated data, such as the

cardiometabolic markers, as it assumes independent outcomes

[47], and were therefore not applied. Therefore the results should

be interpreted with caution. However, the tests were based on

specific biological hypotheses, we thoroughly adjusted for

confounding factors and all these analyses showed highly

consistent results. For the dietary data energy under- and over-

reporters were excluded based on common cutoffs for all children,

assuming a relatively low mean physical activity level (PAL) of 1.55

[23]. This conservative approach was chosen based on its high

specificity, on the cost of the sensitivity, which is a limitation of the

present study. More individualized cut-offs could have been

estimated using each child’s accelerometry data to estimate activity

levels. However, the conversion of accelerometer counts to PAL in

individual children can be discussed [48] and activities such as

swimming and particularly bicycling which is common in Danish

children are not captured by the accelerometers. Also, not all

children had complete accelerometry data, and we therefore chose

a more simple approach.

Our study population was to a large degree representative of

Danish children; all educational groups were represented, the

baseline diet of the children was in line with the representative

Danish National Dietary Surveys [49], and the prevalence of

overweight and obesity corresponds to the level found in a recent

Danish cohort [50]. However, when trying to determine the effects

of n-3 LCPUFA on cardiometabolic risk markers in children, the

results should be interpreted with caution as the data presented are

cross-sectional and cannot determine causality. However, at least

reverse causality seems unlikely i.e. that the cardiometabolic risk

markers affect whole-blood n-3 LCPUFA status.

We used whole blood EPA and DHA as markers of n-3

LCPUFA status. In normo-lipidemic individuals erythrocytes,

plasma, and buffy coat (which is mainly leucocytes) have been

shown to account for approximately 30–35, 50–60, and 10–15%

of the total fatty acids in whole blood (K. D. Stark and A. H.

Metherel, Department of Kinesiology, University of Waterloo,

Ontario, Canada, unpublished results). The response of whole

blood fatty acids to n-3 LCPUFA supplementation has been

shown to be intermediate between that of plasma (which reflect

intakes over the last days or weeks) and erythrocyte fatty acids

(reflecting intakes over the last months) [51]. Although EPA and

DHA measured in erythrocytes would be a better marker of

longer-term intakes, whole blood was a well-suited analysis

material and elaborate erythrocyte washing was not required.

DHA in blood tends to be mainly located in inner membranes

(erythrocytes), whereas EPA tends to be mainly found in the more

dynamic outer membranes (lipoproteins and erythrocytes) [51]. In

line with this, plasma EPA compared to plasma DHA has been

shown to respond faster to the immediate intake of n-3

polyunsaturated fatty acids [52] and this is possibly also true in

erythrocytes [53]. Whole blood EPA and DHA were found to

correlate strongly with each other. Therefore, we do not know

whether the differential associations between whole blood EPA

and DHA and some cardiometabolic risk markers are a

consequence of different molecular mechanisms of action, a

specific sensitivity of EPA and DHA to different ranges of intake,

or whether EPA and DHA are markers of different pools of n-3

LCPUFA in the whole blood.

The implications of blood pressure, lipid profile, and insulin in

school-aged children for later risk of cardiovascular disease is

uncertain. However, atherosclerosis is a gradual and life-long

process, blood pressure and lipid profile show tracking from

childhood and adolescence to adulthood [54,55], and metabolic

dysregulations during childhood have been shown to increase the

risk of MetS and type II diabetes in adulthood [5]. Therefore, it is

likely that low values of these markers in childhood will be

beneficial over the life course. The implications of positive

associations between blood pressure and EPA status in boys are

unknown and may not be beneficial, but may depend on the

mechanisms behind this association i.e. whether it is a behavioral

or a cardiovascular phenomenon.

In conclusion, this study showed that EPA in whole-blood was

negatively associated with heart rate and plasma triacylglycerol

and positively associated with cholesterols and with blood pressure

in boys only, whereas DHA was negatively associated with heart

rate and insulin resistance in 8–11-year-old children. The

associations were not mediated through waist circumference or

physical activity and persisted after adjustment for potential

dietary confounders. The sex-specific associations with blood

pressure confirm our previous findings and warrant further

investigation in long-term randomized controlled trials.
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