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Abstract

Internet addiction disorder (IAD) is increasingly recognized as a mental health disorder, particularly among adolescents. The
pathogenesis associated with IAD, however, remains unclear. In this study, we aim to explore the encephalic functional
characteristics of IAD adolescents at rest using functional magnetic resonance imaging data. We adopted a graph-theoretic
approach to investigate possible disruptions of functional connectivity in terms of network properties including small-
worldness, efficiency, and nodal centrality on 17 adolescents with IAD and 16 socio-demographically matched healthy
controls. False discovery rate-corrected parametric tests were performed to evaluate the statistical significance of group-
level network topological differences. In addition, a correlation analysis was performed to assess the relationships between
functional connectivity and clinical measures in the IAD group. Our results demonstrate that there is significant disruption in
the functional connectome of IAD patients, particularly between regions located in the frontal, occipital, and parietal lobes.
The affected connections are long-range and inter-hemispheric connections. Although significant alterations are observed
for regional nodal metrics, there is no difference in global network topology between IAD and healthy groups. In addition,
correlation analysis demonstrates that the observed regional abnormalities are correlated with the IAD severity and
behavioral clinical assessments. Our findings, which are relatively consistent between anatomically and functionally defined
atlases, suggest that IAD causes disruptions of functional connectivity and, importantly, that such disruptions might link to
behavioral impairments.
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Introduction

It has been reported that overuse of the internet can lead to

altered socio-behavioral characteristics that are similar to those

found in substance addictions and pathological gambling [1,2].

With the soaring number of internet users over the past decades,

this problem has been increasingly considered as a serious public

health issue [3]. Internet addictions, and computer-related

addictions in general, appear to be a wide-spread phenomenon,

affecting millions of individuals in the United States and abroad,

with the highest rates of incidence occurring among adolescents

and college students in developing regions of Asia [3–7]. The effect

of internet overexposure during young adulthood is of particular

clinical and societal significance, as adolescence is a period of

significant changes in neurobiology related to decision-making [8]

and thereby exhibits a higher susceptibility to affective disorders

and addiction [9–11]. Since the seminal work by Young [2],

internet addiction has attracted significant attention from sociol-

ogists, psychologists, psychiatrists, and educators.

The clinical features of behavioral problems related to internet

use have been described under various diagnostic criteria,

including internet addiction disorder (IAD) [12], pathological

internet use [13], and problematic internet use [14]. IAD has been

classified as an impulse-control disorder, since it involves

maladaptive internet use without any intoxicant, similar to

pathological gambling. IAD manifests similar characteristics of

other addictions, including the development of academic, finan-

cial, and occupational difficulties as a result of addictive behavior

and problems in developing and maintaining personal and family

relationships. Individuals who are suffering from IAD will spend

more time in solitude, which in turn affects their normal social

functioning. In the worst cases, patients may experience physical

discomfort or medical problems such as carpal tunnel syndrome,

dry eyes, backaches, severe headaches, eating irregularities, and
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disturbed sleep [15,16]. Moreover, patients are often resistant to

treatment of IAD and have a high relapse rate [17], and many of

them also suffer from other addictions, such as addiction to drugs,

alcohol, gambling, or sex [18].

While IAD is not yet considered as an addiction or mental

disorder in the DSM-5 [19], there are ample studies, mainly based

on self-reported psychological questionnaires, showing negative

consequences in daily life in terms of behavioral components,

psychosocial factors, symptom management, psychiatric comor-

bidity, clinical diagnosis, and treatment outcome [6,20–23].

Besides these behavioral-based analyses, neuroimaging techniques

have been applied recently to explore the effect of heavy internet

overuse on the structural and functional characteristics of the

human brain [7,24–29]. Resting state functional magnetic

resonance imaging (R-fMRI), an effective in vivo tool for

investigating neuronal activities of the brain, has previously been

employed to identify possible disruptions of the encephalic

functional characteristics in IAD [24,26,27,30]. In [27], regional

homogeneity (ReHo) analysis, which measures the consistency of

regional low frequency fluctuations (LFF) within brain networks,

revealed enhanced synchronization between brain regions related

to reward pathways in IAD patients. A similar study of individuals

with online gaming addiction (OGA) proposed using increased

amplitude LFF in the left medial orbitofrontal cortex, which has

anatomical connections to several regions related to goal-directed

decision-making, as a biomarker for the disease [30]. Hong et al.
used the network-based statistic (NBS) to analyze group differences

in inter-regional functional connectivity between IAD and control

groups, and widespread reduction of functional connectivity was

observed in the IAD group with, notably, no global disruption of

overall network topology [26]. In another functional connectivity-

based study, alterations in default network connectivity were

explored using the posterior cingulate cortex (PCC) as a seed

region [24]. Results showed increased functional connectivity

between the bilateral cerebellum posterior lobe and middle

temporal gyrus, as well as decreased connectivity between the

bilateral inferior parietal lobule and right inferior temporal gyrus.

In current study, we apply graph-theoretic approach to analyze

IAD based on R-fMRI data. We first evaluate the significance of

the functional connectivity disruption using parametric tests
with multiple comparison correction. This enables us to fully

explore the full pattern of brains functional connections
and the patterns of connectivity between large-scale
networks [31]. Second, we investigate possible connectivity

disruptions associated with IAD in terms of global network
properties, including small-worldness properties (i.e., clustering

coefficient and characteristic path length) and network efficiency

(i.e., global and local efficiencies) over a small-world regime.

Third, with the same network sparsity range, we assess the

functional importance of a network by taking into account a

region’s relationship with the entire functional connectome [32]

based on the centrality measures of each ROI. We are motivated

to use network centrality to better localize the disrupted regions

on a more local level. Finally, we explore relationships
between network metrics and both behavioral and
clinical scores of participants. Investigating the connection

between network properties and clinical outcome enhances our

knowledge of addiction pathology and provides vital insight for the

development of more reliable IAD diagnosis techniques.

Materials and Methods

Participants
Thirty-three right-handed participants, comprising 17 adoles-

cents with IAD (15 men and 2 women) and 16 sex-, age-, and

education-matched healthy control (HC) subjects (14 men and 2

women), participated in this study. The patients were recruited

from the Department of Child and Adolescent Psychiatry,

Shanghai Mental Health Center, School of Medicine of Shanghai

Jiao Tong University. The control subjects were recruited from the

local community using advertisements. The study was approved

by the Medical Research Ethics Committee and Institutional

Review Board of Shanghai Mental Health Center in accordance

with the Declaration of Helsinki, and full written informed consent

was obtained from the parents/guardians of each participant.

The duration of IAD was estimated via a retrospective

diagnosis. All subjects were requested to recall their life-style

when they were initially addicted to the internet. To validate their

internet addiction, the patients were retested according to the

modified Young’s Diagnostic Questionnaire (YDQ) for internet

addiction criteria by Beard and Wolf [33], and the reliability of the

self-reported IAD was confirmed through interview with their

parents. The IAD patients spent at least 4:8+2:2 hours per day on

internet or online gaming, and 6:5+1:5 days per week. We

verified this information from the roommates and classmates of the

patients that they often insisted being on the internet late at night,

disrupting others’ lives despite the consequences. Note all the

patients were addicted to internet at least or more than 2 years.

Details of the modified YDQ for internet addiction criteria are

provided in File S1.

Following previous IAD research [34], only those HCs who

spent less than 2 hours (hour spent = 1:3+0:6) per day on the

internet were included in the current study. The HC group spent

4:6+2:1 days per week on the internet. The HCs were also tested

with the modified YDQ criteria to ensure they were not suffering

from IAD. All recruited participants were native Chinese speakers

and had never used illegal substances. Note the modified YDQ

was translated to Chinese for the convenience of the participants.

To further justify the diagnosis results, another IAD diagnostic

measure, Young’s Internet Addiction Scale (YIAS) [35], was

conducted for each participant. The YIAS is a 20-item question-

naire developed by Dr. Kimberly Young to assess the degree of

internet addiction. It categorizes internet users into three degrees

of severity based on a 100-point score scheme: mild online user

(20*49 points), moderate online user (50*79 points), and severe

online user (80*100 points).

Besides diagnosis of IAD via the modified YDQ and YIAS, the

behavioral conditions of IAD patients were also assessed using

several behavior-related questionnaires: Barratt Impulsiveness

Scale-11 (BIS-11) [36], Time Management Disposition Scale

(TMDS) [37], Strengths and Difficulties Questionnaire (SDQ)

[38], and McMaster Family Assessment Device (FAD) [39]. Both

the child and parent versions of SDQ were used in the study.

Details of these questionnaires are provided in the File S1.

Before being interviewed for medical history, all participants

underwent a simple physical examination (blood pressure and

heartbeat tests) to exclude physical disorders related to the motion,

digestive, nervous, respiratory, circulation, endocrine, urinary, and

reproductive systems. The exclusionary criteria included: 1) a

history of comorbid psychiatric and non-psychiatric disorders,

such as anxiety disorder, depression, compulsivity, schizophrenia,

autism, or bipolar disorder; 2) a history of substance abuse or

dependency; 3) a history of physical disorders related to the

motion, digestive, nervous, respiratory, circulation, endocrine,
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urinary, and reproductive systems; and 4) pregnancy or menstrual

period in women during the day of scanning. This exclusionary

procedure is important to ensure the participants in this study are

not affected by other physical, neurological or neuropsychiatric

disorders and hence reduces possible biases in the findings

obtained. Detailed demographic information and clinical scores

are provided in Table 1.

Data Acquisition and Preprocessing
Data acquisition was performed using a 3.0 Tesla scanner

(Philips Achieva). Resting-state functional images of each partic-

ipant were acquired with echo time (TE) = 30 ms and repetition

time (TR) = 2000 ms. The acquisition matrix was 64664 with a

rectangular FOV of 2306230 mm2, and voxel resolution of

3.5963.5964 mm3. The scan included 220 volumes for each

participant. During the data acquisition, participants were asked to

lie quietly in the scanner with their eyes closed. Although no extra

technique or device was used to measure whether the subjects

actually kept their eyes closed, the subjects have confirmed that

they were aware and kept their eyes closed during the scan.

Data preprocessing was carried out using a standard pipeline in

two R-fMRI processing toolboxes, DPARSF [40] and REST [41].

Prior to any preprocessing, the first 10 R-fMRI volumes of each

subject were discarded to achieve magnetization equilibrium. R-

fMRI volumes were normalized to the MNI space with resolution

36363 mm3. Regression of nuisance signals including ventricle,

white matter, and global signals was performed. None of the

participants were excluded based on the criterion of a displace-

ment of more than 3 mm or an angular rotation of greater than 3

degrees in any direction. To further minimize the effects of head

motion, we used Friston 24-parameter correction as well as voxel-

specific mean framewise displacement (FD) [42] with FD threshold

of 0.5. Prior to functional connectivity estimation, the mean R-

fMRI time series of each ROI was band-pass filtered

(0:01ƒf ƒ0:08 Hz).

Network Construction and Individual Connections
Analysis

Graph theoretical analysis was adopted in this study to

investigate functional alterations of the brain connectome caused

by IAD among a group of Chinese adolescents. Functional brain

networks were constructed at a macroscale level where nodes

represent the predefined brain regions and edges represent

interregional resting-state functional connectivity (RSFC). To

define network nodes, we parcellated the brain into N~90
regions-of-interest (ROIs) by warping the fMRI images to the

Automated Anatomical Labeling (AAL) atlas [43]. Regions based

on the AAL atlas are listed in Table S1 in File S1. The

representative time series of each ROI was then obtained by

averaging the regressed time series over all voxels in each

individual ROI. To measure interregional RSFC, we calculated

the pairwise Pearson correlation for all possible ((90|89=2)

= 4005) ROI pairs and constructed a symmetric connectivity

matrix to represent these connections. We analyzed group-level

differences between every pair of ROIs in terms of connection

strength. Significant differences for each functional connection

were assessed using mass univariate (two-tailed) t-tests with a

threshold of pv0:05 and false discovery rate (FDR) correction.

Network Metrics and Characteristics Analysis
The Pearson correlation-based functional connectivity matrix is

densely connected, with many spurious, low-strength elements. To

better model human brain networks, which exhibit small-world

properties, each individual’s functional connectivity matrix was

further processed to have a sparsity range that falls within the

small-world regime (0:10vSv0:34) [44–48]. This regime ensures

relatively consistent small-world characteristics for brain networks

of 90 ROIs [44]. Specifically, the Pearson correlation matrix of

every subject was converted into binarized adjacency matrices,

G~½tij �N|N , according to the predefined sparsity, where all tij are

initially set to one, and then the elements corresponding to the

lowest correlation values are repeatedly set to zero until a certain

level of sparsity is achieved. Based on these networks, we employed

both global and regional network metrics to analyze overall

architecture and regional nodal centrality of the brain networks for

Table 1. Demographic information of the participants involved in this study.

Variables IAD Control p-value

No. of subjects 17 16 -

Gender 15M/2F 14M/2F 0.9484a

Age (years) 17.3 + 2.6 17.7 + 2.5 0.6297b

Education (years) 10.8 + 2.6 11.6 + 2.8 0.4029b

Hours of internet used (/day) 4.8 + 2.2 1.3 + 0.6 ,0.001b

Days of internet used (/week) 6.5 + 1.5 4.7 + 2.2 0.001b

YIAS 62.4 + 17.1 37.0 + 10.6 ,0.001b

BIS-11 69.2 + 12.7 66.8 + 7.8 0.5154b

TMDS 126.5 + 23.2 124.4 + 19.8 0.7890b

SDQ-P 21.4 + 3.7 16.5 + 3.8 v0:001b

SDQ-C 37.3 + 10.7 23.9 + 6.0 v0:001b

FAD 151.4 + 20.1 137.5 + 12.3 0:0208b

(YIAS = Young’s Internet Addiction Scale, BIS-11 = Barratt Impulsiveness Scale-11, TMDS = Time Management Disposition Scale, SDQ-P = Strengths and Difficulties
Questionnaire parent version, SDQ-C = Strengths and Difficulties Questionnaire children version, FAD = McMaster Family Assessment Device).
aThe p value was obtained by two-tailed Pearson Chi-square (x2) test.
bThe p value was obtained by two-sample two-tailed t-test.
doi:10.1371/journal.pone.0107306.t001
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group-level comparison. The global metrics employed included

small-world parameters, namely the clustering coefficient (CB) and

characteristic path length (LB ) [49,50], as well as the global

network efficiency (EB
glob) and local network efficiency (EB

loc). In

addition, we calculated normalized versions of these measures

using random networks ( ~CCB, ~LLB, ~EEB
glob, and ~EEB

loc) to ensure small-

world property of the constructed brain networks. We define a

network as small-world if it meets the following three criteria:
~CCB

w1, ~LLB&1, and small-world ratio, s~~CCB=~LLB
w1. Three

nodal centrality metrics – degree (KB), efficiency (eB), and

betweenness (bB) – of each brain region were calculated to

investigate the local characteristics of the functional network G
[44,46].

To statistically investigate between-group differences, we

performed two-tailed, two-sample t-tests with a threshold of

pv0:05 (FDR corrected) on each network metric (global and

regional) based on the area under curve (AUC) of each network

metric constructed from the small-world regime [48]. AUC

provides a summary of the topological characteristics of brain

networks over the entire small-world regime, instead of only

considering the topology at a single sparsity threshold [44,51].

Specifically, for each network metric, we first calculated the AUC

value of each individual subject across networks with different

levels of sparsity and then performed two-sample t-tests to

statistically quantify any group-level difference between IAD and

healthy groups. It is noteworthy that before the statistical tests, we

applied multiple linear regressions to remove the effects of age,

gender and education, as well as their interactions [31,52–54].

Reliability and Repeatability using Functional Atlas
In the current study, functional connectivity networks were

constructed at a regional level by parcellating the whole brain into

90 ROIs based on the AAL atlas. However, it has also been

reported that brain networks derived from different parcellation

schemes or using different spatial scales may exhibit distinct

topological architectures [55–57]. To evaluate the reliability and

repeatability of our results, we repeated the experiments using the

Dosenbach’s functional atlas [58], which partitions the human

brain into 160 ROIs, including the cerebellum. In this atlas, each

ROI is defined as a 10 mm diameter square surrounding a

selected seed point, and the distance between all ROI centers is at

least 10 mm with no spatial overlap, meaning some brain areas

are not covered by the set of ROIs.

Relationships Between Network Metrics and Behavioral
Scores

For those regions (based on the AAL atlas) that show significant

group-level differences in regional nodal centrality, we used

pairwise Pearson correlation (pv0:05, FDR corrected) to analyze

the relationships between each region’s network properties and an

individual’s behavioral scores. Specifically, in the correlation

analysis, network metrics were treated as the dependent variables,

while behavioral scores, i.e., BIS-11, TMDS, SDQ, and FAD,

were treated as the independent variables. To further understand

the relationship between the affected brain regions and disease

severity, we also computed the Pearson correlation coefficient

between network features and YIAS scores.

Results

Demographic and Clinical Characteristics
There is no significant difference in terms of age, gender, and

years of education (all with pw0:4) between the IAD and HC

groups. However, there are significant differences in internet use in

terms of days per week (p~0:001) and hours per day

(p~8:509|10{7). While there is no significant difference

between groups for the BIS-11 and TMDS scores (all with

pw0:5), the SDQ-P (pv7:179|10{4), SDQ-C (pv5:317|

10{4), and FAD (p~0:021) scores are significantly higher in the

IAD group, as shown in Table 1 and Figure 1. Notably, the YIAS

(p~7:277|10{5), the clinical measure used to classify IAD,

shows the most significant group-level difference.

Individual Functional Connectivity
Compared to the HC group, only three functional connections

experienced significant alteration after FDR correction. Two

inter-hemispheric connections, one between the left angular gyrus

(parietal lobe) and right middle orbitofrontal cortex (frontal lobe)

and another between the left fusiform gyrus (occipital lobe) and

right angular gyrus (parietal lobe), exhibit increased connectivity

strength in IAD patients. One intra-hemispheric connection,

between the right caudate (subcortical cortex) and right supra-

marginal gyrus (parietal lobe), shows decreased connectivity in the

disease group. These significantly altered functional connections

are illustrated in Figure 2. Red and blue color connections denote

the increased and decreased functional connectivities, respectively,

in the IAD group. Note that most of the affected functional

connections involve regions located in the right hemisphere and

parietal lobe.

Global characteristics of the Functional Networks
We explored the topological properties of intrinsic functional

brain networks by comparing their small-world behaviors with

comparable random networks over multiple network sparsity

levels, S. In particular, we investigated small-world parameters

(e.g., clustering coefficient, characteristic path length, and small-

world ratio, s), as well as the global and local efficiencies. Random

networks used in the study preserved the number of nodes and

edges, as well as the degree distributions of real brain networks in

concern through the rewiring technique described in [59].

Statistical analyses using two-sample t-tests (pv0:05, FDR

corrected) on AUC values over the small-world regime demon-

strated no significant difference between the IAD and HC groups

in terms of global network properties.

Regional Nodal Characteristics of Functional Networks
Despite the common small-world topology, there were signif-

icant group-level differences observed in the regional nodal

centrality. In this study, we consider a brain region to be

significantly altered in IAD group if at least one of its three

regional nodal metrics has a p-value smaller than 0.05 (FDR

corrected) based on its AUC values. Table 2 summarizes the

regions that are significantly altered in IAD patients. Compared to

the HC group, IAD patients showed nodal centrality alterations

predominantly located in the left inferior parietal lobule (IPL), left

thalamus (THA), and other regions such as the limbic system,

specifically the right anterior cingulate gyrus (ACG) and right

middle cingulate gyrus (MCG). Notably, the IPL and ACG are

components of the default-mode network (DMN), which has

previously been linked to altered connectivity in substance

addiction [60–62].

Reliability and Repeatability using Functional Atlas
When the Dosenbach’s atlas is used to define ROIs, significant

group differences are observed mainly in frontal and parietal

connections to the cerebellem. These findings are summarized in
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Table 3. Although these connections differ from those identified

based on the AAL atlas, most disrupted connections involve the

same lobes of the brain, except for the cerebellum regions. In

terms of global network metrics, we found no difference between

IAD and HC groups, similar to the results based on the AAL atlas.

For local network metrics, we found that some of the identified

regions are located spatially near to the regions identified based on

the AAL atlas, such as the ACG and THA as given in Table 4.

Figure 1. Between-group differences in terms of clinical and behavioral measures. (YIAS = Young’s Internet Addiction Scale, BIS-
11 = Barratt Impulsiveness Scale-11, TMDS = Time Management Disposition Scale, SDQ-P = Strengths and Difficulties Questionnaire parent version,
SDQ-C = Strengths and Difficulties Questionnaire children version, FAD = McMaster Family Assessment Device).
doi:10.1371/journal.pone.0107306.g001

Figure 2. Significantly altered functional connections in IAD patients (FDR corrected). Red: increased functional connectivity, Blue:
decreased functional connectivity. (FRO: Frontal, INS: Insula, TEM: Temporal, PAR: Parietal, OCC: Occipital, LIM: Limbic, SBC: Subcortical). This
visualization is created using the BrainNet Viewer package (http://www.nitrc.org/projects/bnv) and the Circos (http://circos.ca/).
doi:10.1371/journal.pone.0107306.g002
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Relationships Between Network Metrics and Behavioral
Measures

There is no significant (pw0:05, FDR corrected) correlation

between global network metrics (CB, LB, EB
glob, and EB

loc) and

behavioral and clinical scores. However, regional nodal metrics of

several regions are significantly (pv0:05, FDR corrected) corre-

lated with behavioral and clinical scores. The right ACG is

positively correlated with the YIAS score. The right MCG is

positively correlated with the YIAS score. The left THA is

positively correlated with the YIAS and SDQ-P scores. However,

the left IPL is not significantly correlated to any behavioral or

clinical score. The brain regions that are significantly correlated

with the behavioral and clinical scores are shown in Figure 3.

Discussion

Alterations of Individual Functional Connectivity
Insights into the mechanism of human brain development is

important for better understanding of the pathological underpin-

nings of disorders affecting children and adolescents, leading to

possible early treatment. Based on the graph theoretical analysis of

R-fMRI data, it has been suggested that functional organization of

the human brain matures and evolves from childhood to

adolescence to adulthood by following a unique trend - greater

functional segregation in children and greater functional integra-

tion in adults at the whole-brain level [63–66]. In particular, the

organization of functional brain networks shifts from local

connectivity to a more distributed architecture with development

[63,66], where adults tend to have weaker short-range functional

connectivity and stronger long-range functional connectivity than

children [65].

Our findings demonstrate that the disrupted connections

observed in IAD, although only a handful after FDR correction,

are long-range and inter-hemispheric functional connections that

are important for long distance communication in the human

brain. The disruption of long-range and inter-hemispheric

connections is a common symptom in many behavioral abnor-

malities, including autism [67–70], schizophrenia [71], opioid

addiction [72,73], and cocaine addiction [74]. Impairment of

long-range connections can be seen as a failure of the integration

process within a distributed functional network of the human brain

[63,64,75], a deviation from the normal neurodevelopmental

trajectory. Hence, we speculate that the abnormal development of

long-range and inter-hemispheric connectivity in IAD adolescents

observed in this study is one of the possible reasons for their

addictive behavior.

Alterations in Global Network Properties
The human brain is regarded as a complex and large

interconnected dynamic system with various important topological

properties, such as small-worldness, high efficiency at low wiring

cost, and highly connected hubs [46,76–79]. In a small-world

network, nodes are locally clustered in favor of modular

information processing and are remotely connected through a

small number of long-range connections for efficient overall

routing [50]. Both the IAD and HC groups demonstrated small-

world properties, i.e., high clustering coefficients (CB
w1) and

similar characteristic path lengths (LB&1), when compared with

comparable random networks. However, we observed consistently

larger normalized clustering coefficients and similar normalized

characteristic path length in IAD group compared with HC group

over the connection density, in line with previous R-fMRI studies

[26]. Larger clustering coefficient reflects disrupted neuronal

integration between distant regions, which show relatively sparse

long-distant and relatively dense short-distant functional connec-

tions in IAD and HC groups. Progression of clinical stages, from

mild to severe, may cause more impairment or disconnection of

long-distant connections, and thus possibly encourage the estab-

lishment of short-distant connections within cluster as alternative

paths to preserve information transmission between two distant

regions. However, establishment of short-distant connections may

introduce abnormal clusters that increases the risk of generating an

uncontrolled or random flow of information through the entire

network. On the other hand, all brain networks demonstrated

similar parallel information processing of global and local

efficiencies compared to comparable random network [80]. These

findings support the concept of a small-world model of the human

brain that provides a balanced combination of local specialization

and global integration [81]. Our observation of no significant

difference between IAD and HC groups in terms of global network

properties may imply that the changes of functional network

structure in IAD are subtle. Consequently, further research into

region-specific IAD biomarkers could reveal significant informa-

tion about the pathology of the disease, and of addiction, in

general.

Regional Nodal Characteristics of Functional Networks
The IAD-related alterations of nodal centrality are mainly

found in limbic system components including ACG and MCG,

IPL, and THA. Disturbances of these regions as well as their

related connection pathways can be interpreted to reflect

decreased information processing efficiency, possibly mirroring

functional disruptions in IAD.

Table 2. Regions showing abnormal nodal centralities in the IAD patients compared with healthy controls (HC) based on the AAL
atlas.

p-value

Regions Degree Efficiency Betweenness

Right anterior cingulate gyrus (limbic) 0.2092 0.4844 0.0080

Right middle cingulate gyrus (limbic) 0.8702 0.9456 0.0333

Left inferior parietal lobule (parietal) 0.0350 0.2822 0.8362

Left thalamus (subcortical) 0.4803 0.9647 0.0069

Regions with p-values smaller than 0.05 after multiple comparison correction using FDR (shown in bold font) in at least one of the three regional nodal centralities are
considered abnormal.
doi:10.1371/journal.pone.0107306.t002
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The cingulate gyrus (CG), an integral part of the limbic system,

is involved in emotion formation and processing, learning and

memory, executive function, and respiratory control [82]. It

receives inputs from the THA and the neocortex and projects to

the entorhinal cortex via the cingulum. This pathway focuses on

emotionally significant events and regulates aggressive behaviors

[29]. Disruption of functions related to the CG could impair an

individual’s ability to monitor and control his or her behaviors,

especially behaviors related to emotion [83]. Most substance and

behavioral addiction analyses have shown significant alterations in

anterior and posterior parts of the CG (ACG and PCG), including

alcohol addiction [84], pathological gambling [85], and IAD [27,

29]. In cocaine abusers, similar, additional alterations in the MCG

have also been reported [86]. In previous fMRI studies, it has also

been shown that the anterior, middle, and posterior CG are all

affected in reward and punishment conditions [87]. Due to the

role of the MCG in processing positive and negative emotions, it is

not surprising that the region shows significant connectivity

disruption in IAD patients.

The THA is a switchboard of brain information and is involved

in many brain functions including reward processing [88], goal-

directed behaviors, and cognitive and motor functions [89]. It

relays sensory and motor signals from subcortical regions to the

cerebral cortex [90]. Through the THA, the orbitofrontal cortex

receives direct and indirect projections from other limbic brain

regions that are involved with drug reinforcement, such as the

amygdala, CG, and hippocampus [91], to control and correct

reward- and punishment-related behaviors [92]. Abnormal

thalamo-cortical circuitry found in online game addicts [93] may

suggest an impairment of THA functioning related to chronic

patterns of poor sleep quality [94] and overwhelming attentional

focus on computer. In addition, the THA is functionally connected

to the hippocampus [95] as part of the extended hippocampal

system, which is crucial for cognitive functions such as spatial

navigation and the consolidation of information from short-term

memory to long-term memory [96,97].

We observed significant alterations of nodal centralities in the

IPL, in line with the results reported in recent R-fMRI-based IAD

studies [24,93]. Similar to the THA, the IPL is massively

connected to the auditory, visual, and somatosensory cortexes, and

it is able to process different kinds of stimuli simultaneously. As one

of the last developed structures of the human brain in the course of

development, the IPL may be more vulnerable to the excessive

exposure of auditory and visual stimuli, particularly during

childhood. IPL impairment induced by internet overuse may

suppress the ability of an individual to properly mediate response

inhibition of impulse regulation [98,99], damaging their ability to

resist cue-induced internet cravings, which may further impair the

IPL. Such circular patterns are often seen in substance and

behavioral addicts.

Regions of the DMN are commonly more active at rest than

performing goal-directed tasks [62]. These regions known to be

involved in emotional modulation and self-referential activities,

including evaluating salience of internal and external cues,

remembering the past, and planning the future [60,62], which

are the important criteria in diagnosis IAD. It has previously been

suggested that altered connectivity involving the DMN regions

contributes to various symptomatic behaviors in diseases [100],

including substance addictions [101,102] and behavioral addic-

tions [24,103]. Our findings of altered of functional connectivity

involving several regions of DMN is partially consistent with the

previous observations, which suggests the DMN has the potential

to serve as a biomarker for identifying IAD patients.T
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Reliability and Repeatability using Functional Atlas
Some of the abnormal brain regions identified based on the

AAL atlas were also identified using the functional atlas,

supporting the reliability and repeatability of our results. One

possible reason of the slightly different results is the regime of

0:10ƒSƒ0:34 used in this study. The small-world characteristics

of connectivity networks constructed based on the AAL atlas of 90

ROIs is most consistent within this range [44]. However, this

sparsity range may not be optimal for atlases with different

numbers of ROIs. Furthermore, ROIs obtained from the

Dosenbach atlas are defined functionally and do not cover the

whole brain [58]. In this atlas, centers of all 160 ROIs are first

identified and a sphere with a radius of 5 mm is grown from each

center, producing a 10 mm spherical ROI. The center of each

ROI is also set to be at least 10 mm apart from the centers of other

ROIs, leading to spatially non-overlapping atlas. On the other

hand, the AAL atlas covers the gray matter tissue of the whole

cerebrum. These differences in ROI definition and overall area

covered may contribute to the variations of the results. Hence,

Table 4. Regions showing abnormal nodal centralities in IAD patients compared with healthy controls (HC) based on the
Dosenbach’s atlas.

p-value

Regions x y z Degree Efficiency Betweenness

temporal (temporal) 51 230 5 0.0090 0.0084 0.1412

precentral gyrus (frontal) 54 222 22 0.0010 0.0038 0.7138

ACC (limbic) 9 39 20 0.0350 0.2822 0.0036

thalamus (subcortical) 212 23 13 0.4803 0.9647 0.0009

Regions with p-values smaller than 0.05 after multiple comparison correction using FDR (shown in bold font) in at least one of the three regional nodal centralities are
considered abnormal.
doi:10.1371/journal.pone.0107306.t004

THA 
MCG 

ACG 

IPL 

Figure 3. The brain regions that are significantly correlated with behavioral and clinical scores in the IAD group (FDR corrected).
This illustration was created using the BrainNet Viewer package (http://www.nitrc.org/projects/bnv). (YIAS = Young’s Internet Addiction Score, BIS-
11 = Barratt Impulsiveness Scale-11, TMDS = Time Management Disposition Scale, SDQ-P = Strengths and Difficulties Questionnaire parent version,
SDQ-C = Strengths and Difficulties Questionnaire children version.).
doi:10.1371/journal.pone.0107306.g003
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further research using a larger cohort is necessary to determine the

extent the choice of brain parcellation scheme affects the

characterization of network topology.

Correlation Between Network Metrics and Behavioral
Measures

In this study, we did not observe any correlation between global

network metrics and behavioral measures, implying the absence of

alterations in whole brain network topology. This finding may also

suggest that the variations of brain network is subtle due to the

plasticity of the human brain (neuroplasticity) [104,105] in

recovering most of its daily functions via alternative pathways

(neural circuitry). Brain plasticity involves reorganization of

connections between nerve cells or neurons and can be influenced

by a myriad of factors [106–108]. It happens in an age-related

manner with greater prevalent during childhood and adolescence

than adulthood, suggesting a better recovery of impaired neuronal

connections in adolescents with IAD. Furthermore, it has been

shown that a variety of behavioral conditions, ranging from

addiction to neurological and psychiatric disorders, are correlated

with localized changes in neural circuits [106]. It is thus not

surprising that coarse level global network measures such as mean

clustering coefficient, characteristic path length, and network

efficiencies are less sensitive in detecting brain circuitry changes in

the IAD group.

However, regional nodal metrics of several brain regions are

correlated with some of the behavioral measures. In particular, the

parent version of SDQ (SDQ-P), which measures both the ability

of an individual to appropriately handle impulsiveness and the

severity of emotion and prosocial behavior problems based on the

information provided by the parents of the studied adolescents, is

positively correlated with the functionally affected brain regions

found in IAD. The inability to control impulsive behaviors and

emotions is one of the main behavioral symptoms. It is common

that the patients do not aware of the changes to their emotions and

behaviors although these changes are relatively obvious to people

surrounding them. This may be the main reason why none of the

network measures are correlated with the children version of SDQ

(SDQ-C) due to its self-assessment nature. On the other hand,

there is no significant correlation between regional network

measures and other behavioral measures including BIS-11, FAD,

and TMDS. This finding is supported by the large p-values for

these measures between the IAD and healthy groups (Table 1).

These findings may suggest that some of these behavioral

measures are useful to determine affected regions and hence help

IAD diagnosis, although a significant amount of work is still

required to better understand the roles of these measures in

behavioral addictions or disorders.

Methodological Issues/Limitations
There are several limitations that should be highlighted in this

study. First, the diagnosis of IAD was mainly based on results from

self-reported questionnaires, which might affect the reliability of

diagnoses. In the future, standardized diagnostic tools for IAD

identification must be developed to improve the reliability and

validity of IAD diagnoses. Second, our study is limited by the small

sample size and the imbalance of the gender of the participants (31

males and 4 females), which might reduce the statistical power and

generalizability of the findings, although these factors have been

controlled in analysis. The effect of gender on IAD prevalence is

still a debated issue. Based on the findings of Young [35], a high

number of females exhibit internet dependence. In contrast, one

recent study reported that males display a higher risk of IAD

behavior [109]. However, it has also been reported that there is no

relationship between gender and IAD [110,111]. Future

experiments using a larger cohort with a more balanced gender

ratio are required to better assess the relationship between gender

and IAD susceptibility.
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