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Abstract

Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical
difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon
dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed.
Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial
replication of these observations is needed to strengthen confidence our predictions, especially because very few studies
have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal
communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to
levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity,
temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with
decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between
sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory
experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal
cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community
response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira
corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania
rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our
results show that benthic community responses to ocean acidification are strongly affected by season.
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Introduction

Increasing anthropogenic atmospheric CO2 is altering the

chemistry of surface seawater worldwide, resulting in ocean

acidification. Mean surface ocean pH has already decreased by

0.1 units (a 30% increase in H+ concentration) compared to pre-

industrial times, and is rapidly decreasing [1]. Studies on the

effects of ocean acidification indicate that it will impact a wide

array of fundamental biogeochemical and biological processes.

Early work on the effects of ocean acidification involved

experiments that focused on single species in laboratory condi-

tions, where pH variability was minimised, for periods of up to 18

months [2]. This body of work has rapidly advanced our

knowledge of the relative sensitivity of different species, which

can be used to formulate hypotheses on responses at the

community level, although there is a growing realisation of the

need to incorporate natural pH variability and species interactions

into ocean acidification research [3,4].

Interactions between species can cause unpredicted responses to

increased levels of pCO2. For instance, Hale et al. [5] report that

most invertebrate taxa in a mesocosm experiment responded to

increased pCO2 as expected from single species experiments.

Nematodes, however, unexpectedly increased in abundance,

probably because of altered species interactions. Community

responses to ocean acidification will also depend on indirect effects

of carbon dioxide, such as altered animal behaviour [6]. Thus,

physiology and ecological niche cannot fully predict a species’sus-

ceptibility to environmental changes [7]. Moreover, laboratory

and mesocosm experiments are usually too brief to ascertain the

effect of increased carbon dioxide on climax communities

comprising long-lived organisms [2]. Hypotheses formulated using

data from short-term single-species laboratory experiments thus

need to be tested in complex communities, ideally in real marine

ecosystems [8].

Areas chronically exposed to high pCO2 can be used to assess

long-term community responses to ocean acidification [9,10].
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Hydrothermal seeps with high pCO2 levels occur worldwide [11],

but many CO2 seeps also have steep gradients in temperature,

salinity, total alkalinity, toxic gases and metals, which could

confound the ecological effects of carbon dioxide [12]. In addition,

volcanic fluids are often enriched in ammonia, silicate and

phosphate [13]. Baseline surveys are therefore needed to check

the extent to which vent systems can be used as natural ocean

acidification laboratories [14,15].

Only a few CO2 seeps have so far been located that are suitable

for use as ocean acidification analogues, namely seeps off Italy [9],

Papua-New Guinea [16] and Japan [18]. Studies of these sites

have shown that benthic biodiversity decreases as seawater pCO2

levels increase [10,19–22]. Replication of such studies in a wider

range of settings would strengthen the evidence for the ecosystem

effects of increasing pCO2 at the landscape scale. Previous studies

found that well-fed individuals are more resilient to ocean

acidification [23]; a natural ocean acidification analogue in the

Eastern Mediterranean could reveal how marine organisms

respond to increased CO2 levels in oligotrophic areas. This is of

global relevance since nutrient-poor regions are thought to be

expanding worldwide due to increased thermal stratification of

ocean waters caused by ongoing climate change [24].

Most laboratory experiments into the effects of ocean acidifi-

cation on macroalgae have focused on calcifying species such as

coralline algae and Halimeda spp.; responses of brown seaweeds to

increased carbon dioxide are poorly known [25,26], even though

they are keystone habitat-forming species in temperate regions

worldwide[27]. In addition, many experiments on temperate

seaweeds have been performed under constant temperature and

light regimes, which are not representative of the daily and

seasonal fluctuation these organisms experience in nature [28].

Even when macroalgae are exposed to natural temperature and

light fluctuation (e.g. using outdoor mesocosms with continuous

seawater pumping), experiments are rarely replicated to encapsu-

late seasonal responses. Seasonal surveys can easily be made at

shallow coastal ocean acidification analogues [22], but have rarely

been performed. We therefore have scarce knowledge of how

seaweeds may respond to ocean acidification over yearly cycles,

even though seasonality heavily influences biological responses to

ocean acidification [29].

Temperate marine ecosystems undergo large yearly changes in

light and temperature regimes, which indirectly influence other

factors important for biological communities such as nutrient levels

[30]. In the Mediterranean Sea, these three factors strongly

influence macroalgal communities: macroalgal biomass peaks in

late spring, and community composition changes among seasons

[31]. Specifically, many turf algae disappear and most erect algae

decrease in cover during the cold season [32].

Our limited ability to predict community responses of macro-

algal communities to ocean acidification, and an overall paucity of

research performed on Mediterranean species, add value to studies

examining community responses to ocean acidification using CO2

vents in the Mediterranean Sea. Results from surveys off Ischia

and Vulcano (both in Italy) show how increased carbon dioxide is

likely to cause changes in macroalgal communities: as CO2

increases coralline algae are replaced by fleshy brown algae such

as Dictyota spp., Cystoseira spp. and Sargassum vulgare [22]

together with decalcified Padina pavonica [33]. This response to

increased CO2 differs from shifts towards opportunistic macroalgal

species such as Ulva spp. or mat-forming algae reported in stressed

marine benthic ecosystems [34–38]; there decreased floral

complexity can have detrimental effects on local biodiversity

[39] and indirectly affect the abundance of many fish species of

commercial importance, such as labrids [25,40]. Carbon dioxide

can be a resource that benefits carbon-limited fleshy algae [22,36].

The aim of this study was first to determine whether CO2 seeps

off Methana (Aegean Sea, Greece) were suitable for ocean

acidification studies, so we monitored temperature, salinity, pH,

Total Alkalinity and the concentrations of heavy metals, hydrogen

sulphide and inorganic nutrients (nitrite, nitrate, ammonium,

phosphate and silicate). As identifying changes in benthic

community composition and abundance in a wide range of

environmental conditions is crucial to improve predictions of

future ecosystem function, we assessed whether benthic commu-

nities changed near the CO2 seeps in a manner that could be

predicted from previous studies. Since timing can influence

biological responses to increased carbon dioxide, from mollusc

and coral calcification [41] to change in crops yield [42], we

assessed whether responses to ocean acidification were modulated

by seasonality.

Methods

Study area
Methana is a peninsula on the NE coast of Peloponnese in

Greece, located at the western end of the Southern Aegean

Volcanic Arc, formed by subduction of the African tectonic plate

beneath the Eurasian plate. The last eruption on Methana was in

230 BC, but the area is still hydrothermally active [13]. The CO2

seeps studied here are located on the northern part of the

peninsula. They appeared shortly after the last volcanic eruption,

and thermal baths adjacent to the marine seeps have been used

since at least the 1st century AD [43]. Gas emissions at our

Methana study site are mainly carbon dioxide, with smaller

amounts of nitrogen, carbon monoxide and methane (Table 1).

Methane concentrations (17–26 ppm) are much lower than those

detected at ocean acidification analogues off Ischia (200–800 ppm

[9]), Vulcano (1700 ppm [15]) and Papua New Guinea (87–

4360 ppm [16]).

The study area is part of the Saronikos Gulf (Central Aegean

Sea); this part of Greece is characterised by a Mediterranean

climate with strong seasonal differences in temperature, precipi-

tation and day length (Figure 1). The Saronikos Gulf is generally

oligotrophic except for its NE part, where wastewater treatment

and other anthropogenic pressures along the wider Athens

metropolitan coastal front result in increased nutrient loads [44].

Average air temperature varies from 10uC in winter to over 28uC
in summer, with sea temperature ranging from 14uC in winter to

25uC in summer. Day length peaks at 14 hours and 43 minutes in

June, and is shortest in December (9 hours and 51 minutes).

Site descriptions
Preliminary surveys revealed that a small area (,20 m of

shoreline) near the main CO2 seeps had a pHNBS constantly below

8.0 (Figure 2), while a much more extensive area had pH

variability that exceeded the background conditions of the

reference sites.

Five sites were selected that had comparable geomorphology

and wave exposure, but different pH regimes: a site with pH,8.0

near the main seeps (SEEP), two sites with variable pH located

approximately 200 m eastwards and westwards of the seep area

(200 E and 200 W) and two reference sites, one just outside the

variable pH area (REF A) and one at a more distant site unaffected

by volcanic activity (REF B). Wave exposure was estimated using

methods in Howes et al. [45]. All sites had large boulders and a

low degree of urbanisation. Photographs of the typical benthic

communities at SEEP and 200 E are shown in Figure 3. The
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dominant canopy-forming macroalgal species in all sites at ,

1.5 m depth was Cystoseira corniculata, a fucoid alga characteristic

of the Eastern Mediterranean Sea [46]. Cystoseira spp. are

considered indicators of good environmental conditions [47,48]

and C. corniculata is common on relatively exposed Eastern

Mediterranean rocky shores [49]. No specific permits were

required for collecting samples in the present location, as none

of the sampling sites are subject to particular protection

restrictions, privately-owned or protected in any way; no protected

species were sampled in this study.

Seawater physico-chemical parameters
The seeps were monitored from 2011 to 2013 (September 2011,

January, February, May and September 2012, June and Septem-

ber 2013); seawater physicochemical parameters were measured at

different times of the day and in different meteorological

conditions during each trip. Surface seawater pH, temperature

and salinity were measured using a multiprobe (YSI 63). The

probe was calibrated before use with pH 4.01, 7.01 and 10.01

NBS standards. Since variations of up to 1 pH unit were detected

over a few hours at the high CO2 site, the uncertainty in using the

NBS scale for seawater pH measurements (approximately 0.05 pH

[50]) was considered acceptable for this study. For pH, medians

and interquartile ranges (IQ) were calculated from hydrogen ion

concentrations before re-converting back to pH values following

seep monitoring methods advised by Kerrison et al. [14].

Seawater samples for Total Alkalinity (AT) determination were

collected in 125 ml borosilicate glass bottles with Teflon caps.

Three samples per site were collected during each visit,

immediately poisoned with HgCl2 and stored in the dark until

analysis. Samples were analysed by Gran titration (AS-ALK 2,

Apollo SciTech) and the reliability of the measurements was

checked against standard seawater samples provided by A.

Dickson (batch 121). The average AT value per site and individual

pH measurements were used to calculate pCO2, HCO3
2, CO3

22,

VAr and VCa using the CO2SYS software [51].

Seawater nutrient concentrations
In June 2013 three water samples per site were collected for

nutrient analysis. Samples were stored frozen (220uC), then

analysed using a BRAN+LUEBBE II autoanalyser. Inorganic

phosphate determination followed the colorimetric method of

Murphy and Riley [52] and nitrite ions (NO2
2) were measured

colorimetrically according to Bendscheider and Robinson [53].
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Figure 1. Long-term monthly average day length (hours),
rainfall (mm), air temperature (T, 6C) and Sea Surface
Temperature (6C) for the Saronikos Gulf. SST data are from the
World Ocean Atlas 2013 (NOAA), all other data from the World
Meteorological Organisation.
doi:10.1371/journal.pone.0106520.g001
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Determination of nitrate (NO3
2) was performed after its reduction

to nitrite, which was then determined colorimetrically as above.

Silicate was determined by adding a molybdate solution to the

sample. The silicomolybdic acid that formed was then reduced to

an intensely blue-coloured complex by adding ascorbic acid as a

reducing agent [54]. The determination of ammonium was

performed according to Koroleff [55] using a Perkin Elmer 25

Lambda spectrophotometer.

Figure 2. Study sites (points), Loutra baths (*) and area where pH was more variable than at reference sites (light grey). Geographical
data downloaded from OpenStreetMap and modified using GNU Image Manipulation Program 2.8.
doi:10.1371/journal.pone.0106520.g002

Figure 3. Typical appearance of benthic communities at SEEP (left) and 200 E (right) sites at 0.5 m depth in May 2012 with CO2

bubbles seeping from the sea floor (arrow). Brown algae (e.g. Dictyota sp.) are dominant near the seeps; crustose coralline algae (CCA) become
dominant as CO2 levels decrease.
doi:10.1371/journal.pone.0106520.g003
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Free sulphides in seawater
Free sulphides were determined using a method modified from

Cline [56]. Three seawater samples per site were collected in May

2012 using plastic syringes, and 2 ml of seawater were injected

into a nitrogen-filled septum vial containing a small crystal of

cadmium chloride. In order to validate the method, one sample

was taken at the sulphide-rich Loutra thermal baths (location

shown in Figure 2). For laboratory analysis, most of the water was

removed by syringe after allowing the precipitate to settle. The

samples were thus reduced to 0.8 ml volume, agitated to suspend

all the precipitate and drawn up in a 1 ml disposable syringe which

had been flushed with Ar.

Subsequently, 0.2 ml of a solution prepared using 400 mg of

N,N-dimethyl-p-phenylene-diamine-dihydrochloride and 600 mg

FeCl3.6H2O dissolved in 100 ml 50% HCl were drawn into the

same syringe. The argon bubble in the syringe was used to mix by

inverting it a few times. The sample was left to stand for 20

minutes and then injected into a 1 ml semi-microcuvette and read

in a Perkin Elmer Lambda 35 UV-VIS spectrometer at 670 nm.

Standards were made using a 10 mM sodium sulphide stock

solution (249 mg Na2S.9 H2O in 100 ml degassed Milli-Q water).

The stock solution was diluted immediately before use in degassed

seawater to give a range of 0.1 to 100 mM.

Heavy metals in macroalgae
Five individuals of Dictyota sp. (Phaeophyta) per site were

collected at ,2 m depth in May 2012, rinsed with fresh water to

eliminate salt, gently brushed to remove epiphytes, kept frozen

until transported to the laboratory and then freeze-dried. Freeze-

dried macroalgae were ground with pestle and mortar and

approximately 0.1 g of each sample was weighed in acid-washed

Teflon tubes with a high precision digital scale (0.1 mg accuracy).

Two ml of concentrated nitric acid were then added, and the tube

containing the digestant was placed in a high-Throughput

Microwave Reaction System Run (MARSXpress, CEM Corpo-

ration, Matthews, USA) and gently heated to boiling for at least

1 h to ensure full digestion. Samples were allowed to cool and then

quantitatively transferred into pre-cleaned 10 ml volumetric flasks

and diluted to volume with Milli-Q water. Blanks were prepared

following the same procedure, but omitting the sample; a certified

reference material (NIES Certified Reference Material No. 3,

Chlorella) was simultaneously digested and analysed. Samples

were then analysed for heavy metal content (Al, Cd, Cr, Co, Cu,

Fe, Pb, Ni, Zn) using inductively coupled plasma optical emission

spectrometry ICP-OES) and inductively coupled plasma mass

spectrometry (ICP-MS) when concentrations were below the

confidence interval of the ICP-OES.

Benthic communities
Benthic community composition was assessed in May and

September 2012: samples were collected from 0.7–1.0 m below

mean sea level using 20620 cm quadrats on sub-horizontal rocky

substratum following methods described by Fraschetti et al. [57].

A frame with 25 464 cm squares was used to assess percentage

cover (C%) and number of taxa (S). Percentage cover of algae and

sessile invertebrates was determined by assigning each taxon a

score ranging from 0 to 4 within each square and summing the 25

estimates following methods described by Dethier et al. [58]. Taxa

were identified to the lowest possible taxonomic level, usually

species. Seven replicate quadrats, randomly chosen but placed at

least 4–5 m from each other were assessed for every site in May

2012 and six replicates were collected in September 2012.

Statistical analyses
Analysis of nutrient and metal concentration data was

performed using separate multivariate analyses of variance

(MANOVA) with one factor (site). Normality and homogeneity

of variances were tested by visually examining boxplots and

residual error plots and using Levene’s test, and transformed when

necessary. When significant differences among sites were detected,

a Tukey HSD test for multiple comparisons was performed.

Analysis of pH data was performed using a non-parametric

analysis (Kruskal-Wallis ANOVA) followed by pairwise multiple

comparisons.

Differences in macroalgal community structure and composi-

tion were assessed by analysing macroalgal species percent cover

with a Permutational Multivariate Analysis of Variance (PRIMER

6 and PERMANOVA + package [59]). The analysis had two fixed

factors, season and site. The analysis was performed on Bray-

Curtis measures of square-root transformed data, using 9999

permutations of residuals under a reduced model. Pair-wise

comparisons were then performed for significant factors with more

than two levels. The SIMPER analysis was then used to identify

the taxa primarily responsible for the dissimilarity between sites.

Macroalgal cover data were used to calculate Shannon diversity

[60] for each sample. The index was analysed using an ANOVA

followed by a Tukey HSD test for multiple comparisons. Taxa

driving community differences among sites (Table S6 in File S1)

were grouped in two categories, canopy-forming algae (Cystoseira
corniculata, Cystoseira amentacea, Sargassum vulgare and Cla-
dostephus spongiosum) and calcifying algae (CCA, Jania rubens,
Corallina sp., Amphiroa sp. and Padina pavonica). After testing for

normality and homoscedasticity, canopy-forming and calcifying

algae arcsin-transformed percent cover was analysed using a two-

way ANOVA with site and functional group as fixed factors;

seasons were tested separately. The site*functional group interac-

tion was then decomposed to obtain multiple comparisons among

sites for each season separately. The same analysis was then

Figure 4. Variability in pH at the five study sites off Methana
between September 2011 and September 2013. Horizontal line
= median, vertical boxes = 25th and 75th percentiles, whiskers = min/
max values if smaller than 1.5 times the inter-quartile range and dots =
outliers.
doi:10.1371/journal.pone.0106520.g004
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performed for selected single species. All univariate analyses were

performed using SPSS v19.

Results

Seawater physico-chemical parameters
All sites were classified as semi-exposed according to the

classification suggested by Howes et al. [45]. Table 2 shows that

the seeps had the lowest median pHNBS (7.69, IQ range 7.57–7.85,

n = 40) and were significantly different from the intermediate sites,

which had higher median values (7.87, n = 26 and 7.96, n = 26 for

200 E and 200 W, respectively; results of statistical analysis shown

in Table S1 in File S1) and comparable variability (IQ ranges

7.75–8.04 and 7.73–8.03 for 200 E and 200 W, respectively). At

intermediate sites pH sometimes exceeded 8.0. The reference sites

had significantly higher pH values (median values of 8.11, n = 21

and 8.12, n = 19 for REF A and REF B, respectively) and lower

variability (Figure 4).

Temperature and salinity varied seasonally and were uniform

across sites. The minimum temperature was 14.2uC in February,

whereas in summer the temperature could reach 26.8uC; salinity

varied from 37.5 to 40.0 ppt. Total Alkalinity varied from 2.615 to

2.944 mmol*kg21 with no seasonal trend (Table 2), with slightly

lower values and less variability than CO2 vents off Vulcano,

where AT varies between 2.78 to 3.17 mmol*kg21 [15]. Seawater

pCO2 had a median value of over 1300 matm at the SEEP site,

almost three times the values calculated for the reference sites. The

median saturation state of calcite and aragonite is always .1,

although sites with high and intermediate pCO2 levels were

occasionally under-saturated with respect to both calcite and

aragonite (Table 2).

Free sulphide concentrations were below the measurable limit

(1 mM) for the method used at all five sites. In contrast, our sample

from Loutra thermal baths had a concentration of free sulphides of

35 mM. Nutrient concentrations were similar to background levels

in the Saronikos Gulf [61] except for silicate, which was mostly

higher than the background value of 1.22 mM even at one of the

reference sites (Table 3). When values were ,LOQ. (Limit Of

Quantification) they were substituted with LOQ/2;

LOQ. = 0.126 mM for NO2+NO3 and 0.102 mM for NH4.

Statistically significant differences between sites were only detected

for nitrite and silicate (Table S2 in File S1). Nitrite, however, had a

very small range, varying from 0.04060.005 mM in REF B to

0.05460.002 mM in 200 E, and these were the only two sites that

were significantly different. Silicate had a wider range (from

1.18060.269 mM in REF B to 6.37161.841 mM in 200 W); only

site 200 W was significantly different from the reference sites

according to pairwise comparisons. No significant differences and

relatively uniform values were measured for phosphate, whereas

nitrate and ammonium showed higher values at 200 E, although

these differences were not significant, possibly due to high within-

site variability.

Heavy metals in macroalgae
Measured concentrations of elements in the reference materials

were used to assess the quality of the sample measurements; if

measured values in the reference material were within 20% of

certified values, the quantification of that element was considered

Table 3. Average seawater nutrient concentrations (6SE, n = 3) at Methana in June 2013.

SEEP 200 W 200 E REF A REF B Bgd

NO3 (mM) 0.07060.036 0.09460.040 0.55960.297 0.05460.032 0.08560.026 0.42

NO2 (mM) 0.05460.002a,b 0.04460.003a,b 0.05960.004b 0.04260.002a,b 0.04060.005a n.d.

NH4 (mM) 0.23260.099 0.26560.109 1.07560.318 0.20360.109 0.29860.053 0.36

PO4 (mM) 0.02560.005 0.03160.007 0.03860.009 0.02460.004 0.04460 0.12

SiO4 (mM) 4.01860.387a,b 6.37161.841a 1.60760.288c 1.88360.127b,c 1.18060.269c 1.22

For the five sites, nitrite, nitrate, ammonium, phosphate and silicate are shown. Background values (Bgd) for the Aegean Sea from Friligos [61]. Different letters indicate
significantly different values according to post-hoc pairwise comparisons; n.d. = not determined.
doi:10.1371/journal.pone.0106520.t003

Table 4. Dictyota sp. metal content at the five sites.

Element SEEP 200 W 200 E REF A REF B

Al 66.58629.78a 391.846222.71b 75.01614.21a,b 314.626108.93a,b 89.77617.85a,b

As 15.9061.03a 39.0262.26d 25.7962.68c 18.4161.30a,b 22.5260.37b,c

Cd 0.01460.002a 0.01860.003a,b 0.03460.006b,c 0.57360.102c 0.06760.016d

Co 0.05960.023a 0.10760.020a 0.09660.013a 1.61360.316b 0.11960.016a

Cr 0.85760.070a,b 2.52660.527c 0.57960.050a 1.20460.243b 1.09360.218a,b

Cu 2.06960.228a 3.16060.269a,b 3.43560.569a,b 7.72661.492c 4.77160.303b,c

Fe 587.1642.8b 5659.86603.9a 485.5646.8b,c 316.3688.5c,d 146.3632.5d

Ni 0.91660.100a 1.32560.126a 1.33860.578a 4.18160.267b 2.55460.103b

Pb 2.70460.215a 17.60569.465b 2.37860.276a 25.979611.705b 10.82065.743b

Zn 10.9565.25a 11.7060.53a 8.2260.83a 42.0269.28b 14.6860.60a,b

Means (6SE; mg/kg dry weight; n = 5) are shown for each metal and site; different letters indicate significant differences according to Tukey HSD test.
doi:10.1371/journal.pone.0106520.t004
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reliable. In the reference material analysed, all elements except Pb

were within 20% of the certified values, where reported (i.e.

excluding Al, Cr, Ni, As). Log-transformed metal concentrations

were significantly different between sites for all elements analysed

(Table S3 in File S1). Average concentration of elements in

Dictyota sp. tissues and results of the Tukey HSD test are shown in

Table 4. There was a great spatial variability in metal content, but

no specific metal concentration consistently increased with

decreasing pH. Particularly high concentrations were recorded

at station 200 W for aluminium, arsenic and iron, and at REF A

for aluminium and zinc.

Values higher than ranges reported in the literature for seaweed

tissues from unpolluted sites (Table 5) were found for aluminium,

arsenic and iron at 200W and for aluminium and zinc in REF A.

Benthic communities
Overall, 18 macroalgal taxa and three invertebrate taxa (two

sponges and one hydrozoan) were recorded. Benthic communities

significantly differed among sites and seasons (Table 6), with a

significant interaction between the two factors (pseudo-

F4,55 = 1.754, p(perm) = 0.0457). In spring the high pCO2 site

was significantly different from the reference sites, while the

intermediate pCO2 sites were not significantly different from any

of them. In autumn, the high pCO2 site was significantly different

from all other sites (Table 7; results of pairwise comparisons shown

in Table S4 in File S1). Site had a significant effect on diversity

(p = 0.049, Table S5 in File S1) with a clear decreasing trend as

CO2 increased, as shown in Figure 5 (0.9460.10, n = 26 to

0.5560.08, n = 13; mean 6SE).

Percent cover of canopy-forming algae and calcifying algae are

shown for May (Figure 6a) and September (Figure 6b). As no

significant differences were found within intermediate and

reference sites, pCO2 levels were pooled for clarity. Both

categories showed very strong seasonal patterns: no differences

in canopy-forming algal cover were detected in May, but in

September the high pCO2 site had a trend towards higher canopy

cover compared to the control sites. Likewise, calcifying algae

showed no significant difference among pCO2 levels in spring, but

in autumn the high pCO2 site had a significantly lower cover of

calcareous algae compared to intermediate and control pCO2

levels.

The species forming these two categories changed along the

pCO2 gradient depending on the season, and the main canopy-

forming and calcareous species covers are shown for May and

September in Figure 7a and 7b, respectively. As no significant

differences were found within intermediate and reference sites,

pCO2 levels were pooled for clarity. In spring, S. vulgare was

more abundant at the high pCO2 site, but it was almost absent

from all sites in autumn. In contrast, C. corniculata was more

constant over time; its cover significantly increased in the high

pCO2 site from spring to autumn, while the opposite was true for

the intermediate and reference sites, where C. corniculata cover

Table 5. Comparison of metal concentration (mg/kg dry weight) in Dictyota spp. measured in this study with values found in the
literature for unpolluted sites (n.d. = not determined; b.d.l. = below detection limit).

This study Abdallah et al., 2005 [62]
McDermid and Stuercke, 2003
[63] Raman et al., 2013 [64]

Element (means range) (mean±SD, n = 3) (range) (mean±S.D., n = 3)
Maher and Clarke, 1984
[65]

Al 66–391 n.d. n.d. n.d. n.d.

As 15–39 n.d. n.d. n.d. 26.3

Cd 0.014–0.573 0.9860.3 n.d. 3.960.3 n.d.

Co 0.059–1.613 4.361.2 n.d. 5.560.2 n.d.

Cr 0.579–2.526 1.160.3 n.d. b.d.l. n.d.

Cu 2–8 1.360.4 5 6.460.3 n.d.

Fe 316–5659 n.d. 438–608 504612.4 n.d.

Ni 0.916–4.181 2.260.6 n.d. 2760.4 n.d.

Pb 2–25 19.265.5 n.d. 28.563.5 n.d.

Zn 8–42 4.961.2 13–16 11.760.3 n.d.

doi:10.1371/journal.pone.0106520.t005

Table 6. PERMANOVA analyses on square-root transformed percentage cover of Methana benthic communities.

Source df SS Pseudo-F p (perm) Unique perms

season 1 31069 19.234 0.0001 9949

site 4 21820 3.377 0.0001 9918

Season 6 site 4 11330 1.754 0.0457 9916

Residual 55 88840

Total 64 1.5273E5

The table shows main factors and their interaction and degrees of freedom (df), sum of squares (SS), pseudo-F, permutational p and unique permutations for each of
them.
doi:10.1371/journal.pone.0106520.t006
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decreased from spring to autumn. As for the coralline algae, CCAs

recruited earlier than J. rubens and reached their maximum cover

in spring at the intermediate sites, while in the reference sites their

cover increased from spring to autumn. The articulate coralline

alga J. rubens had extremely low abundances at all sites in spring,

while in autumn its percent cover decreased with increasing pCO2

levels.

Discussion

Our results suggest that increased seawater pCO2 has profound

effects on macroalgal communities in oligotrophic conditions, but

that sampling season strongly affects the response of benthic

communities to ocean acidification. Below we firstly examine the

suitability of CO2 seeps off Methana for ocean acidification

studies, and then discuss the effects of increased carbon dioxide on

macroalgal communities.

Site suitability for ocean acidification studies
Seeps off northern Methana had a median pH value (7.69)

similar to that predicted for 2100 according to the IPCC ‘‘business

as usual’’ scenario [66], whereas the reference sites had median

values above 8. The seeps had no confounding gradients in

temperature, salinity, total alkalinity, hydrogen sulphide or wave

exposure. The low pH area in Methana had pCO2 levels

comparable to those reported at other ocean acidification

analogues [14–16], making it suitable to assess community

responses to increased pCO2. Macroalgal community data

indicated that elevated carbon dioxide had a profound influence

on community composition and structure in an oligotrophic

environment, although patterns varied seasonally.

Enrichment in silicate, which was significantly different from

reference values in one of the intermediate sites, is likely due to

water-rock interactions common in hydrothermal environments

[17]. However, it is unlikely that silicate is limiting in the Aegean

Sea; for instance, Si becomes limiting to diatoms when the N:Si

ratio in seawater is higher than two [67], whereas the background

ratio for the Aegean Sea is 0.64 [61]. Significant differences in

nitrite concentrations among sites are unlikely to explain the

community changes either, as their range is very small (0.040–

0.059 mM). Mediterranean organisms are normally not limited by

silicate or inorganic nitrogen, but by phosphate [68], for which no

confounding gradient was found.

No free sulphides were detected near the seeps, although they

were present at the Loutra thermal baths, over 10 km from the

study site. Hydrogen sulphide is toxic for cellular respiration, and

it is often emitted from Mediterranean volcanic vents [13].

However, sulphides are extremely reactive and oxidise quickly to

sulphates in oxygenated waters. It is therefore common to find

very low or undetectable sulphide concentrations just a few meters

away from volcanic seeps. For instance, at Vulcano sulphides

become undetectable at 30 m from the main vents, even though

hydrogen sulphide gas has a concentration of 400 ppm at the main

bubbling site [15].

Brown algae are a good indicator of bioavailable metal since

they are not able to regulate metal uptake [69]. Values higher than

ranges reported in the literature were found for aluminium,

arsenic and iron at 200 W and for aluminium and zinc in REF A

(Table 6). Aluminium variability is likely to be related to local

mineralogy [70], while enrichment in the other elements has

previously been linked to hydrothermal activity [71]. Metal

bioaccumulation is a common occurrence at shallow and deep

hydrothermal vents [11], but at Methana metal enrichment did

not seem to have major effects at the community and species level.

The intermediate and reference sites enriched in some elements

(200 W and REF A) were not significantly different from the other

intermediate and reference sites (200 E and REF B) with regards to

key species percent cover and overall community structure.

The need to translate results from laboratory experiments to

more realistic systems has led to several areas with naturally high

pCO2 to be used to infer biological community responses to ocean

acidification. Examples include estuaries acidified by acid sulphate

soils [72], groundwater submarine springs [73] and upwelling

regions [74]. None of the above are perfect ocean acidification

analogues, as they can have confounding gradients in salinity and

alkalinity (groundwater springs) or in temperature and nutrients

(upwelling areas). In addition, low pH recorded in groundwater

springs and acidified estuaries is not always caused by increased

carbon dioxide concentrations, so only the effects of low pH on

biological communities can be tested. However, studies from low

pH/high CO2 sites mostly report decreased abundance and

diversity of calcifying organisms, in accord with findings from CO2

seeps and laboratory experiments [2,9,10]. General patterns of

community responses to ocean acidification can then be detected

using areas with naturally low pH, even though confounding

factors should always be taken into account.

As with other carbon dioxide seeps used as natural analogues for

ocean acidification, Methana has some limitations. Mobile taxa

Table 7. Pair-wise comparisons of macroalgal community structure and composition between sites for each season (different
letters represent significantly different groups).

Season Sites

Spring SEEP a 200 W a,b 200 E a,b REF A b REF B b

Autumn SEEP a 200 W b 200 E b REF A b REF B b

doi:10.1371/journal.pone.0106520.t007

Figure 5. Shannon diversity (mean H’ SE) of macroalgal
communities at high, intermediate and reference CO2 in
Methana in May and September 2012.
doi:10.1371/journal.pone.0106520.g005
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such as fish or some large invertebrates (e.g. cephalopods) are able

to move in and out of high CO2 areas [75] and pelagic larvae can

come from unaffected populations [20]. Moreover, carbonate

chemistry is much more variable near the seeps than in reference

conditions, as changes in current direction and intensity influence

the dispersal of the dissolved gas emissions. Compared to other

volcanic seeps, at Methana seawater pCO2 is high and variable on

a greater scale (.15 vs ,0.3 km of shoreline [9,15,16]). Thus,

Methana might offer an opportunity to study ecological processes

such as recruitment in a high CO2 area probably less influenced by

unaffected populations than smaller sites.

Macroalgal community responses to increased pCO2

The present study shows that biological responses to elevated

carbon dioxide are modulated by season. Macroalgal communities

off Methana had year-round decreased diversity, especially of

calcifying species, as carbon dioxide increased, in line with results

from surveys at other CO2 seeps [10,16,22] and from laboratory

experiments [2,5]. Seasonality strongly affected community

responses to increased pCO2: coralline algal cover decreased

while canopy-forming algae were more abundant as pCO2

increased, but our sampling design only revealed a significant

difference in autumn. This pattern has not been detected so far in

macroalgal communities since most field studies have been carried

out in one season, while laboratory and mesocosm experiments

rarely last long enough to incorporate the effect of seasonality.

Godbold and Solan [29] found that seasonality greatly affected

invertebrate responses to both ocean acidification and increased

temperature.

Our study did not detect an increase in mat-forming algae as

CO2 increased, in contrast with previous laboratory experiments

[36]. However, another shallow subtidal survey off Italian CO2

seeps [22] detected a decrease in mat-forming algal biomass at

pCO2 levels of about 1000 ppm. This shows that shifts to mat-

forming algae do not necessarily happen at intermediate pCO2

levels, especially if not associated with increased nutrient levels

[36] or other disturbances disrupting kelp cover [76]. In this case,

canopy-forming algae appear to increase their growth rates

(authors’ personal observation), suggesting that macroalgae can

use intermediate carbon dioxide levels as a resource [77].

Decreased abundance of calcifying algae is consistent with

previous results from volcanic seeps off Ischia, in Italy [22].

However, this pattern was only detected in autumn because of the

marked annual cycle of the dominant coralline alga, Jania rubens.
This species grows best at temperatures above 20uC and reaches

Figure 6. Mean percentage cover (±SE) of canopy-forming
algae (grey) and calcifying algae (black) in May (a) and
September (b) at high (n = 6), intermediate (n = 14) and
reference (n = 14) CO2 conditions off Methana. Different letters
indicate significant differences between groups.
doi:10.1371/journal.pone.0106520.g006

Figure 7. Mean percentage cover (±SE) of dominant macro-
algal species in May (a) and September (b) at high (n = 6),
intermediate (n = 14) and reference (n = 14) levels of CO2 in
Methana. Round points represent canopy-forming species (S. vulgare
dark grey, C. corniculata light grey), rhomboids represent calcifying
species (CCA black, J. rubens grey). Different letters and numbers
indicate significant differences between groups.
doi:10.1371/journal.pone.0106520.g007
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its biomass peak later than most other Mediterranean seaweed

species [78]. Cover of crustose coralline algae (CCA) decreased as

pCO2 increased, confirming that calcifying algae are likely to be

threatened by ocean acidification, especially those species living

near their thermal limit [26]. Intermediate pCO2 levels appeared

to increase CCA abundance in spring, possibly because the energy

surplus caused by carbon fertilisation is used to enhance

calcification when pCO2 is below 1000 matm [79,80]. Recent

studies found that CCA are more sensitive to rates, not magnitude,

of ocean acidification [81] and that fluctuating pH reduces growth

in an articulated coralline alga [4]: high variability in pCO2 at the

seeps could therefore lead to an over-estimation of its negative

effects on coralline algae.

The increase in canopy-forming algal cover at high CO2 was

mostly caused by an increased abundance of Sargassum vulgare in

spring and of Cystoseira corniculata in autumn. Sargassum vulgare
was more abundant at high CO2 also at volcanic seeps off Ischia

[22] and Vulcano (authors’ personal observation). However, this

species was not seen in Methana in autumn because of its

pronounced seasonal cycle. As for C. corniculata, it is likely that

the higher autumnal cover in the elevated pCO2 site was due to

the absence of S. vulgare and J. rubens. In fact, the genus

Sargassum can be advantaged over Cystoseira when competing for

space [82], while J. rubens is an epiphyte that can overgrow

canopy-forming algae and become dominant in autumn [77].

Physiological responses of J. rubens to high pCO2 are likely to be

the main determinant of its decrease in cover, but enhanced

chemical defences of C. corniculata cannot be excluded, as some

fucoid algae are carbon limited, and elevated CO2 can cause a

sharp increase in their defensive compounds [83].

Conclusions

Marine volcanic seeps off Methana (Aegean Sea) proved to be

suitable for investigations into the response of rocky shore

communities to high pCO2 levels. We found that benthic

community changes along pCO2 gradients in the oligotrophic

Mediterranean Sea are consistent across different nutrient

regimes. Responses in temperate regions will probably be strongly

influenced by seasonality and this alters species interactions during

the year. The seeps at Methana revealed loss of diversity and

reduced abundance of ecologically important calcifying algae at

elevated carbon dioxide levels, adding to a growing body of

evidence that ocean acidification is likely to alter coastal

community composition [9,10,22].

Changes in benthic community structure may have profound

effects on biological processes such as food web dynamics, nutrient

cycling and primary productivity [84], thus affecting ecosystem

functioning. Furthermore, ocean acidification is only one of the

many changes marine ecosystems are facing. Additional stressors

such as increased temperature or eutrophication are likely to

exacerbate the negative effects of increased carbon dioxide [2,36].

Oligotrophic regions such as the Eastern Mediterranean are

therefore extremely vulnerable to future environmental changes,

since many organisms already live close to their upper thermal

limits, as shown by several mass mortalities following heat waves in

recent years [85]. Further research is needed to predict how

benthic communities will respond to future environmental

conditions, but we provide the first test of subtidal community

responses to increased pCO2 over different seasons and show that

seasonal patterns can alter community responses to ocean

acidification in warm-temperate coastal ecosystems.
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