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Abstract

Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and
economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative
prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic
ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in
dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in
chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments
showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but
also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to
explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense
phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting
levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will
enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some
threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2

depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust.
Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water
interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn
that rising CO2 levels may result in a marked intensification of phytoplankton blooms in eutrophic and hypertrophic waters.
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Introduction

Since the start of the industrial revolution, atmospheric CO2

concentrations have increased from 275 to 400 ppm CO2, and

climate change scenarios predict that atmospheric CO2 will

further increase [1]. Enhanced dissolution of CO2 will lower the

pH of aquatic ecosystems [2,3]. However, CO2 in freshwater

ecosystems does not only originate from dissolution of atmospheric

CO2, but also from mineralization of organic carbon obtained

from terrestrial sources in the surrounding watershed [4].

Mineralization of organic carbon causes CO2 supersaturation in

many lakes, in some cases even reaching CO2 levels exceeding

10,000 ppm [5–7].

Phytoplankton fix CO2 for photosynthesis, and many species

can also utilize bicarbonate as a carbon source [8–10]. Assimila-

tion of inorganic carbon by dense phytoplankton blooms can

deplete the dissolved CO2 concentration [11–15], sometimes

down to levels below 1 ppm [7,15], so that these waters become

severely CO2-undersaturated. CO2 depletion will cause an

increase in pH [11,16,17]. Indeed, in eutrophic lakes with dense

phytoplankton blooms, pH easily exceeds values of 9 [7,15], and

can reach values as high as 11 in shallow hypertrophic lakes [18].

The combination of high pH values and CO2 depletion in

freshwaters is often associated with cyanobacterial blooms [19,20].

Several of the cyanobacterial species that commonly dominate

these blooms are capable of producing toxic substances [21,22].

Consequently, cyanobacterial blooms threaten the water quality of

many freshwater lakes and brackish waters around the world,

including Lake Erie in USA-Canada [23], Lake Taihu in China

[24,25], Lake Biwa in Japan [26], Lake Victoria in Africa [27,28],

the Baltic Sea in Northern Europe [29,30], and many other

ecologically and economically important lakes, rivers and estuaries

[21,22,31,32]. Cyanobacterial blooms are expected to benefit from

global warming [32–35]. The response of cyanobacteria to rising

CO2 concentrations, however, is less well understood, although it

is clear that there is a strong interaction between cyanobacterial

bloom development and CO2 availability.

As an illustration, Fig. 1 provides data from Lake Volkerak, a

large eutrophic lake in The Netherlands [31,36]. In winter and

spring, CO2 concentrations in Lake Volkerak largely exceed the
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CO2 concentrations that would be predicted from equilibrium

with the atmosphere, and hence the lake is supersaturated with

CO2. In summer and early fall, however, Lake Volkerak is covered

by dense blooms of the harmful cyanobacterium Microcystis
[31,36]. The photosynthetic activity of these blooms depletes the

CO2 concentration, such that the lake becomes undersaturated

with CO2 in summer while the pH rises to values above 9 for

several months (Fig. 1, Text S1).

Hence, there is a strong and complex coupling between

phytoplankton growth and the inorganic carbon chemistry of

aquatic ecosystems that may lead to CO2 depletion during dense

blooms, even in lakes that would otherwise be supersaturated with

CO2. This biological-chemical coupling is further complicated by

several additional feedbacks. For instance, dense phytoplankton

blooms not only deplete CO2 and enhance pH but also increase

the turbidity of the water column as a result of self-shading,

thereby reducing light available for carbon fixation by photosyn-

thesis [31,37]. Moreover, nutrient uptake by dense blooms also

affects alkalinity [38–40], which in turn feeds back upon pH and

the speciation of dissolved inorganic carbon (DIC). Given the pH

and total DIC concentration, it is straightforward to calculate the

CO2, bicarbonate and carbonate concentrations [41–43]. How-

ever, we still lack an integrative understanding that incorporates

the different feedback loops to enable quantitative prediction of

the changes in DIC concentration and pH during phytoplankton

bloom development. Yet, such an integrative approach will be

required to assess how rising CO2 concentrations will affect

phytoplankton blooms and carbon sequestration in aquatic

systems.

In this study, we investigate the dynamic feedbacks between

phytoplankton growth, DIC, alkalinity, pH and light during

phytoplankton bloom development. Our study specifically focuses

on eutrophic and hypertrophic waters, where an excess of mineral

nutrients provides ideal conditions for phytoplankton blooms. We

incorporate standard inorganic carbon chemistry into a mathe-

matical model of phytoplankton growth with CO2, bicarbonate

and light as limiting resources. We test the model in controlled

laboratory experiments at different pCO2 levels and alkalinities

using the harmful cyanobacterium Microcystis aeruginosa, a

cosmopolitan and often toxic species that develops dense blooms

in Lake Volkerak and many other eutrophic lakes worldwide [23–

27,31,33]. Our model fits were in good agreement with the

experimental results, and show that the coupling between

phytoplankton growth and inorganic carbon chemistry is strongly

affected by the CO2 level. Subsequently, we use the experimen-

tally validated model to explore how phytoplankton blooms in

eutrophic lakes may respond to rising CO2 availability.

Figure 1. Seasonal dynamics of phytoplankton blooms in Lake Volkerak. (A) Changes in phytoplankton population density (strongly
dominated by the cyanobacterium Microcystis) and measured dissolved CO2 concentration ([CO2]) during two consecutive years. The dashed line is
the expected dissolved CO2 concentration ([CO2*]) when assuming equilibrium with atmospheric pCO2. Dark shading indicates that the lake is
supersaturated with CO2, while light shading indicates undersaturation. (B) Changes in pH, bicarbonate and total DIC concentration. Sampling details
are described in Text S1.
doi:10.1371/journal.pone.0104325.g001
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The Model

General outline
Our model builds upon a long tradition of model studies in

phytoplankton ecology [44–49], extending these earlier studies by

the incorporation of dynamic changes in inorganic carbon

availability, alkalinity and pH induced by phytoplankton blooms.

The model considers a well-mixed water column, illuminated from

above, with a growing phytoplankton population that is homoge-

neously distributed over depth. Here we introduce the key

assumptions, while the model is described in full detail in Text

S2 (for chemostats) and Text S3 (for lakes).

Phytoplankton population dynamics
In this study, we focus on eutrophic and hypertrophic

ecosystems where all nutrients are in excess. Hence, the specific

growth rate of phytoplankton does not become limited by

nutrients but depends only on its cellular carbon content. The

cellular carbon content is a dynamic variable, which increases by

the photosynthetically-driven uptake of CO2 and bicarbonate,

while it decreases by respiration and by dilution of the cellular

carbon content due to population growth. More precisely, let X
denote the population density of the phytoplankton, and let Q
denote its cellular carbon content. Changes in phytoplankton

population density and its carbon content can then be described

by:

dX

dt
~m(Q)X{mX ð1Þ

dQ

dt
~uCO2zuHCO3{r{m Qð ÞQ ð2Þ

where m(Q) is the specific growth rate of the phytoplankton as

function of its cellular carbon content, m is the specific loss rate

(e.g., by background mortality, grazing, sedimentation), uCO2 and

uHCO3 are the uptake rates of CO2 and bicarbonate, respectively,

and r is the respiration rate.

We assume that the specific growth rate increases with the

cellular carbon content of the phytoplankton, which require a

minimum cellular carbon content in order to function (i.e.,

m(QMIN) = 0) and reach their maximum specific growth rate when

satiated with carbon (i.e., m(QMAX) = mMAX). Uptake rates of CO2

(uCO2) and bicarbonate (uHCO3) are increasing but saturating

functions of the ambient CO2 and bicarbonate concentration

according to Michaelis-Menten kinetics, and are suppressed when

cells become satiated with carbon [50]. The energy for carbon

assimilation comes from photosynthesis, and therefore depends on

light availability. The underwater light environment is described

by Lambert-Beer’s law, taking into account that a growing

phytoplankton population gradually increases the turbidity of the

water column through self-shading and thereby reduces the light

available for further photosynthesis [31,51]. We assume that the

respiration rate (r) increases with the cellular carbon content,

approaching maximum values when cells become satiated with

carbon [52]. The mathematical equations describing these

relationships are presented in Text S2.

To assess to what extent phytoplankton growth is limited by

carbon, we introduce a simple relative measure of the inorganic

carbon availability for photosynthesis (fC):

fC~
1

uMAX ,CO2zuMAX ,HCO3

uMAX ,CO2½CO2�
HCO2z½CO2�

z
uMAX ,HCO3½HCO{

3 �
HHCO3z½HCO{

3 �

� � ð3Þ

where uMAX,CO2 and uMAX,HCO3 are the maximum uptake rates of

carbon dioxide and bicarbonate, respectively, and HCO2 and

HHCO3 are their half-saturation constants. We note that 0#fC#1.

The level of carbon limitation (LC) can then be defined as the

reduction in carbon uptake due to low carbon availability:

LC = (12fC)6100%. Accordingly, if CO2 and bicarbonate are

both available in saturating concentrations, LC will be close to 0%.

Conversely, if CO2 and bicarbonate are available only in trace

amounts, LC approaches 100%.

Dissolved inorganic carbon, alkalinity and pH
On the timescales used in our model (ranging from minutes to

days) the speciation of dissolved inorganic carbon is essentially in

equilibrium with alkalinity and pH. Therefore, let [DIC] denote

the total concentration of dissolved inorganic carbon. Changes in

[DIC] can be described by:

d DIC½ �
dt

~D DIC½ �IN{ DIC½ �
� �

z
gCO2

zMAX

z r{uCO2{uHCO3ð ÞX
ð4Þ

The first term on the right-hand side of Eqn (4) describes

changes in the DIC concentration due to the influx ([DIC]IN) and

efflux of water containing DIC, where D is the dilution rate. The

second term describes exchange of CO2 gas with the atmosphere,

where gCO2 is the CO2 flux across the air-water interface (also

known as the carbon sequestration rate) and division by zMAX

converts the CO2 flux per unit surface into a volumetric CO2

change. The third term describes how the DIC concentration

increases through respiration (r) and decreases through uptake of

CO2 (uCO2) and bicarbonate (uHCO3) by phytoplankton.

The CO2 flux across the air-water interface is proportional to

the difference between the dissolved CO2 concentration that

would be attained in equilibrium with the atmospheric pressure

([CO2*]) and the actual dissolved CO2 concentration [53,54]:

gCO2~v ½CO2
��{½CO2�ð Þ ð5Þ

where v is the gas transfer velocity. The equilibrium value [CO2*]

is calculated from Henry’s law, i.e., [CO2*] = K0 pCO2, where

pCO2 is the partial pressure of CO2 in air and K0 is the solubility

constant of CO2 gas in water. In our experiments, gas exchange

will increase with the gas flow rate (a). Hence, we assume v = b a,

where b is a constant of proportionality reflecting the efficiency of

gas exchange.

Changes in pH depend on alkalinity, which is a measure of the

acid-neutralizing capacity of water. In our experiments, alkalinity

is dominated by dissolved inorganic carbon and inorganic

phosphates [40]:
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Figure 2. Changes in inorganic carbon chemistry during phytoplankton growth in two chemostat experiments. Left panels: Chemostat
experiment with low pCO2 of 200 ppm in the gas flow and 500 mmol L21 bicarbonate in the mineral medium. Right panels: Chemostat experiment
with high pCO2 of 1,200 ppm in the gas flow and 2,000 mmol L21 bicarbonate in the mineral medium. Both chemostats were inoculated with
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ALK~ HCO{
3

� �
z2 CO2{

3

� �
z HPO2{

4

� �
z2 PO3{

4

� �
z OH{½ �{ H3PO4½ �{ Hz½ �

ð6Þ

We note from Eqn (6) that changes in the concentration of

dissolved CO2 do not change alkalinity. Furthermore, uptake of

bicarbonate for photosynthesis is accompanied by the release of a

hydroxide ion or uptake of a proton, and therefore does not

change alkalinity either. Hence, carbon assimilation by phyto-

plankton does not affect alkalinity [40]. However, nitrate,

phosphate and sulfate assimilation are accompanied by proton

consumption to maintain charge balance, and thus increase

alkalinity [38–40]. More specifically, both nitrate and phosphate

uptake increase alkalinity by 1 mole equivalent, whereas sulfate

uptake increases alkalinity by 2 mole equivalents [40]. Hence,

changes in alkalinity can be described as:

dALK

dt
~D ALKIN{ALKð Þz uNzuPz2uSð ÞX ð7Þ

where ALKIN is the alkalinity of the water influx, and uN, uP and

uS are the uptake rates of nitrate, phosphate and sulfate by the

growing phytoplankton population. The model keeps track of the

nitrate, phosphate and sulfate concentration.

At each time step, the dissolved CO2, bicarbonate and

carbonate concentration and pH are calculated from [DIC] and

alkalinity (Text S2).

Materials and Methods

Experiments
Experimental system. We tested the model using two

strains of the freshwater cyanobacterium Microcystis aeruginosa.

Strain Microcystis CYA140 was obtained from the Norwegian

Institute for Water Research (NIVA). Strain Microcystis HUB5-2-

4 was obtained from the Humboldt University of Berlin,

Germany. Both Microcystis strains grow as single cell populations.

Although all culture equipment was autoclaved prior to the

experiments, we were not able to sustain axenic conditions.

However, regular microscopic inspection confirmed that abun-

dances of heterotrophic bacteria remained low (,0.1% of the total

biomass) for the entire duration of the experiments.

The experiments were carried out in laboratory-built chemo-

stats specifically designed for phytoplankton studies [49,55,56].

Each chemostat consisted of a flat culture vessel illuminated from

one side with a constant incident light intensity of IIN = 5061

mmol photons m22 s21 provided by white fluorescent tubes (Philips

PL-L 24W/840/4P, Philips Lighting, Eindhoven, The Nether-

lands). The chemostats had an optical path length (‘‘mixing

depth’’) of zMAX = 5 cm, and an effective working volume of 1.7 L.

The chemostats were supplied with a nutrient-rich mineral

medium [57] to prevent nutrient limitation during the exper-

iments. Under conditions of nutrient excess, phytoplankton

population densities tend to become much higher in laboratory

chemostats where phytoplankton is concentrated within only 5 cm

depth than in lakes where the phytoplankton population is

dispersed over several meters depth [51,58]. This scaling rule

implies that nutrient concentrations have to be much higher in

mineral media of small-scale laboratory chemostats than in

eutrophic lakes to sustain these high population densities. The

chemostats were maintained at a constant temperature using a

metal cooling finger connected to a Colora thermocryostat, and

were aerated with sterilized (0.2 mm Millex-FG Vent Filter,

Millipore, Billerica, MA, USA) N2 gas enriched with different

CO2 concentrations using Brooks Mass Flow Controllers (Brooks

Instrument, Hatfield, PA, USA). The gas mixture was dispersed

from the bottom of the chemostat vessel in fine bubbles at a

constant gas flow rate (a) of 25 L h21.

Treatments. First, we studied dynamic changes in inorganic

carbon chemistry and pH in six chemostats without any

phytoplankton, to assess whether the model adequately described

the dissolution of CO2 and subsequent dynamic changes in

inorganic carbon chemistry. These auxiliary experiments are

described in Text S4.

Subsequently, we ran two chemostat experiments with Micro-
cystis CYA140 to investigate dynamic changes in phytoplankton

growth, inorganic carbon chemistry, alkalinity and pH. The first

chemostat was provided with a low pCO2 of 200 ppm in the gas

flow and 0.5 mmol L21 NaHCO3 in the mineral medium. The

second chemostat was provided with a high pCO2 of 1,200 ppm in

the gas flow and 2.0 mmol L21 NaHCO3 in the mineral medium.

Both chemostats had a dilution rate of D = 0.011 h21. The

chemostats were sampled every other day, from the inoculation of

a small number of Microcystis CYA140 cells to steady state with

high population densities.

Next, we studied the steady states of six chemostats of

Microcystis HUB5-2-4 along a gradient from carbon-limited to

light-limited conditions. The chemostats had a dilution rate of

D = 0.00625 h21, and were provided with different pCO2

concentrations in the gas flow (0.5, 50, 100, 400 or 2,800 ppm

CO2) and two different NaHCO3 concentrations in the mineral

medium (0.5 or 2.0 mmol L21). The steady states were monitored

for at least ten days.

Measurements. The incident light intensity (IIN) and the

light intensity transmitted through the chemostat vessel (IOUT)

were measured with a LI-COR LI-250 quantum photometer (LI-

COR Biosciences, Lincoln, NE, USA) at 10 randomly chosen

positions on the front and back surface of the chemostat vessel,

respectively. Background turbidity (Kbg) was calculated from the

light transmission through chemostat vessels without phytoplank-

ton using Lambert-Beer’s law, as Kbg = ln(IIN/IOUT)/zMAX.

DIC concentrations were determined by sampling 15 mL of

culture suspension, which was immediately filtered over 0.45 mm

membrane filters (Whatman, Maidstone, UK). DIC was subse-

quently analyzed by phosphoric acid addition on a Model 700

TOC Analyzer (OI Corporation, College Station, TX, USA), with

a detection limit of 0.15 ppm. Temperature and pH were

measured with a SCHOTT pH meter (SCHOTT AG, Mainz,

Germany). Concentrations of dissolved CO2, bicarbonate and

carbonate were calculated from DIC and pH [30], based on the

dissociation constants of inorganic carbon corrected for temper-

ature and salinity (Table S2.1 in Text S2). Alkalinity was

determined in a 50 mL sample that was titrated in 0.1 to 1 mL

Microcystis CYA140. (A, B) Population density (expressed as biovolume) and light intensity penetrating through the chemostat (IOUT), (C, D) dissolved
CO2, bicarbonate and carbonate concentrations, (E, F) total DIC concentration and pH, and (G, H) alkalinity (ALK) and concentrations of dissolved
inorganic nitrogen (DIN) and phosphorus (DIP). Symbols represent measurements, lines show the model fits. The model and its parameter values are
detailed in Text S2.
doi:10.1371/journal.pone.0104325.g002
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Figure 3. Trajectories of dissolved CO2 and population density. Trajectories predicted by the model for chemostats with (A) low pCO2 of
200 ppm in the gas flow and 500 mmol L21 bicarbonate in the mineral medium, and (B) high pCO2 of 1,200 ppm in the gas flow and 2,000 mmol L21

bicarbonate in the mineral medium. The trajectories start from a series of different initial conditions, and all converge to the same equilibrium point.
Arrows indicate the direction of the trajectories. The model assumes species parameters specific for Microcystis CYA140, and is detailed in Text S2.
doi:10.1371/journal.pone.0104325.g003
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steps with 10 mmol L21 HCl to a pH of 3.0. The alkalinity was

subsequently calculated using Gran plots [30].

Residual nitrate and phosphate concentrations in the chemo-

stats were determined in triplicate by sampling 15 mL of culture

suspension, which was immediately filtered over 0.45 mm mem-

brane filters (Whatman, Maidstone, UK) and the filtrate was

stored at 220uC. Nitrate concentrations were analyzed using a

Skalar SA 400 autoanalyzer (Skalar Analytical B.V., Breda, The

Netherlands), and phosphate concentrations were analyzed

spectrophotometrically [59].

Phytoplankton population density, both as cell numbers and

total biovolume, was determined in triplicate using a Casy 1 TTC

cell counter with a 60 mm capillary (Schärfe System GmbH,

Reutlingen, Germany). Cell size varied considerably during the

experiments, ranging from 31–66 mm3 cell21 in Microcystis
CYA140 and from 25–50 mm3 cell21 in Microcystis HUB5-2-4.

We therefore used the total biovolume (i.e. the summed volume of

all cells per litre of water) as a measure of phytoplankton

population density.

Samples for cellular carbon, nitrogen, phosphorus and sulfur

content were pressurized at 10 bar to collapse the gas vesicles of

Microcystis and subsequently centrifuged for 15 min at 2,000 g.

After discarding the supernatant, the pellet was resuspended in

demineralised water, and centrifuged for 5 min at 15,000 g. The

supernatant was discarded, pellets were stored at 220uC and

subsequently freeze-dried and weighted to determine dry weight.

The carbon, nitrogen and sulfur content of homogenised freeze-

dried cell powder were analysed using a Vario EL Elemental

Analyzer (Elementar Analysensysteme GmbH, Hanau, Germany).

To determine the phosphorus content, cells were oxidized with

potassium persulfate for 1 h at 100uC [60], and phosphate

concentrations were subsequently analyzed spectrophotometrically

[59].

To calculate the carbon sequestration rate of the experiments at

steady state, we solved Eqns (1), (2) and (4) for zero. This yields:

gCO2~zMAX D ½DIC�{ DIC½ �IN

� �
zzMAX DQX ð8Þ

where we assumed that the specific loss rate of the phytoplankton

was governed by the dilution rate of the chemostat (i.e., m = D).

This equation shows that, at steady state, the carbon sequestration

rate equals the net enhancement of the DIC concentration plus the

carbon fixation rate of the phytoplankton population.

Parameter estimation
System parameters such as incident light intensity, mixing depth

of the chemostats, composition of the mineral medium, dilution

rate and CO2 concentration in the gas flow were measured prior

to and/or during the experiments. Some phytoplankton param-

eters were measured experimentally, while others were estimated

from fits of the model predictions to time courses of the

experimental variables following the same procedures as in earlier

studies [49,55]. An overview of all parameter estimates is given in

Text S2.

Extrapolation to lakes
Chemostats provide ideal systems to test models under highly

controlled conditions. They operate at the laboratory scale, with

parameter settings tuned to the small size of the chemostat vessel.

To extrapolate the model predictions to natural waters, we

therefore adapted several model assumptions. Phytoplankton

parameters were still based on our laboratory experiments with

Microcystis HUB5-2-4. However, we used physical and chemical

parameter settings typical for the summer situation in eutrophic

lakes based on our data from Lake Volkerak, The Netherlands

[31]. For instance, the mixing depth was increased from a

chemostat of only 5 cm deep to a lake of 5 m deep. The very high

phosphate and nitrate concentrations in the mineral medium of

the chemostat were reduced to a lower (but still fairly high)

phosphate concentration of 15 mmol L21 and nitrate concentra-

tion of 150 mmol L21, representative for hypertrophic lakes

dominated by cyanobacterial blooms [15,25,31–33]. The high

influx of CO2 gas into the chemostat vessel was replaced by a low

gas transfer velocity across the air-water interface of lakes

[54,61,62]. Full implementation of the lake model is described in

Text S2 and Text S3.

Sensitivity analysis
We performed a sensitivity analysis to assess how variation in

the model parameters would affect the model predictions. In this

analysis, we focus on low-alkaline lakes (ALKIN = 0.5 mEq L21),

since they are more sensitive to rising atmospheric CO2

concentrations than high-alkaline lakes. The sensitivity analysis

investigates how the model predictions were affected by variation

in two input parameters: (i) the atmospheric CO2 level and (ii) a

second model parameter of choice. In contrast to traditional one-

factor-at-a-time (OAT) sensitivity analysis, this two-dimensional

approach may reveal possible interactions between the two model

parameters [63]. For instance, model predictions might be more

sensitive to parameter changes at low than at high atmospheric

CO2 levels.

In addition, we calculated the normalized sensitivity coefficient

(SC), which is a local sensitivity index that quantifies the relative

change in model output Y with respect to a relative change in input

parameter Z [64]:

SC~
(DY=Y )

(DZ=Z)
ð9Þ

The normalized sensitivity coefficient is dimensionless, and

allows comparison between input and output parameters inde-

pendent of their units of measurement. |SC|..1 implies that the

model prediction is very sensitive to a change in the input

parameter, whereas |SC|,,1 implies that the model prediction

is rather insensitive to a change in the input parameter. We based

the calculation of SC on a 1% increment of the input parameter.

The sensitivity coefficient was calculated at two atmospheric CO2

levels, the present-day level of 400 ppm and an elevated level of

Figure 4. Steady-state patterns of phytoplankton population density and inorganic carbon chemistry in chemostat experiments.
Steady-state results are shown for 6 chemostats with Microcystis HUB5-2-4 exposed to different pCO2 levels in the gas flow and two different
bicarbonate concentrations in the mineral medium (0.5 or 2.0 mmol L21). (A) Phytoplankton population density (expressed as biovolume), (B) light
intensity penetrating through the chemostat (IOUT), (C) dissolved CO2 concentration, (D) bicarbonate concentration, (E) pH, (F) alkalinity, (G) DIC
concentration, and (H) carbon sequestration rate. Symbols show the mean (6 s.d.) of 5 measurements in each steady-state chemostat, lines show the
model fits. For comparison, dashed lines show steady-state patterns predicted for chemostats without phytoplankton. Shading indicates the level of
carbon limitation (LC) predicted by the model. The model and its parameter values are detailed in Text S2.
doi:10.1371/journal.pone.0104325.g004
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750 ppm predicted for the year 2150 by the RCP6 scenario of the

Fifth Assessment Report of the IPCC [1].

Results

Dynamic changes during phytoplankton growth
We studied dynamic changes in inorganic carbon chemistry

during the growth of Microcystis CYA140 in two chemostats that

differed with respect to the pCO2 level in the gas flow and the

bicarbonate concentration in the medium (Fig. 2). In both

chemostats, the population density increased after inoculation,

while light penetration (IOUT) decreased due to shading by the

growing Microcystis populations, until steady state was reached

after ,30 days (Figs. 2A and 2B). At high pCO2 the population

Figure 5. Steady-state patterns predicted for phytoplankton blooms in low-alkaline lakes. Steady-state predictions of the model
evaluated across a wide range of atmospheric pCO2 levels. (A) Phytoplankton population density (expressed as biovolume), (B) light intensity
reaching the lake sediment (IOUT), (C) dissolved CO2 concentration, (D) bicarbonate concentration, (E) pH, (F) alkalinity, (G) DIC concentration, and (H)
carbon sequestration rate. Shading indicates the level of carbon limitation (LC). For comparison, dashed lines show steady-state patterns predicted for
low-alkaline waters without phytoplankton. The model parameters are representative for eutrophic low-alkaline lakes (ALKIN = 0.5 mEq L21)
dominated by the cyanobacterium Microcystis HUB5-2-4. The model and its parameter values are detailed in Text S2 and Text S3.
doi:10.1371/journal.pone.0104325.g005

Figure 6. Contour plots of phytoplankton blooms predicted for different pCO2 levels and alkalinities. Model predictions of (A) the level
of carbon limitation, and (B) phytoplankton population density (expressed as biovolume, in mm3 L21). The vertical solid line represents the present-
day atmospheric CO2 level of ,400 ppm, while the vertical dashed line shows the atmospheric CO2 level of 750 ppm predicted for the year 2150 by
the RCP6 scenario of the Fifth Assessment Report of the IPCC. The model predictions are based on steady-state solutions across a grid of
40650 = 2,000 simulations, using the model and parameter values detailed in Text S2 and Text S3.
doi:10.1371/journal.pone.0104325.g006
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Figure 7. Sensitivity of the model predictions to variation in phytoplankton traits. Contour plots of the level of carbon limitation (left
panels) and steady-state phytoplankton population density (right panels, expressed as biovolume, in mm3 L21) predicted for different atmospheric
pCO2 levels and phytoplankton traits. The phytoplankton traits are (A, B) the half-saturation constant for CO2 uptake (HCO2), (C, D) the half-saturation
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density became two times higher and light penetration decreased

more strongly than at low pCO2.

Phytoplankton growth impacted DIC, pH and alkalinity in both

chemostats, but in a different way. With a low pCO2 in the gas

flow, the growing phytoplankton population depleted the dissolved

CO2 concentration over almost two orders of magnitude, from 10

to 0.2 mmol L21, while the bicarbonate concentration varied

between 600 and 900 mmol L21 (Fig. 2C). At high pCO2, the

dissolved CO2 concentration was much less depleted, while the

bicarbonate concentration doubled from 2,000 mmol L21 at

inoculation to 4,000 mmol L21 at steady state (Fig. 2D). The

strong CO2 depletion raised the pH from 8 to 10 at low pCO2

(Fig. 2E), while the pH increased only to ,8.5 at high pCO2

(Fig. 2F). The increase in pH mediated a shift in carbon speciation

in both chemostats, although the shift was more dramatic at low

pCO2 (Fig. 2C and 2D). In particular, the carbonate concentra-

tion increased to ,45% of the total DIC at low pCO2, while it

remained at only 4% at high pCO2. The total DIC concentration

increased from 600 to 1,000 mmol L21 at low pCO2 (Fig. 2E), and

from 2,100 to 4,200 mmol L21 at high pCO2 (Fig. 2F).

Despite the increase in total DIC, the phytoplankton experi-

enced considerable carbon limitation (LC = 44%) in the experi-

ment at low pCO2. This was primarily due to depletion of the

dissolved CO2 concentration. Carbonate is unavailable for uptake,

while our model estimated a half-saturation constant for bicar-

bonate of 75 mmol L21 (Table S2.3 in Text S2), indicating that the

bicarbonate uptake rate was essentially saturated with bicarbonate

throughout the experiment. At high pCO2, carbon limitation was

negligible (LC = 2%), and growth was primarily limited by the low

availability of light. At steady state, the light intensity penetrating

through the chemostat vessel (IOUT) was only 0.8 mmol photons

m22 s21 (Fig. 2B).

The growing phytoplankton population reduced the residual

nitrate and phosphate concentration, yet nitrate and phosphate

remained available at saturating concentrations of .10 mmol N

L21 and .180 mmol P L21, respectively (Fig. 2G and 2H). Hence,

nitrate and phosphate were not depleted to limiting levels.

However, uptake of nitrate, phosphate and sulfate by phytoplank-

ton consumed H+ ions and thereby increased alkalinity in both

chemostats (Fig. 2G and 2H). Since a larger population density

consumes more nutrients, alkalinity increased more strongly in the

high pCO2 than in the low pCO2 treatment. The model fits

captured the coupling between phytoplankton growth, carbon

availability, nutrients, light, pH and alkalinity quite well at both

low and high pCO2 levels (Fig. 2).

Separation of time scales
Because of the relatively high dimensionality of our model,

formal mathematical analysis of the existence, uniqueness and

stability of the equilibrium point is not straightforward. Therefore,

we explored the full phase space of the model by extensive

numerical simulations. This did not reveal any indications for

alternative stable states or non-equilibrium dynamics. Instead, we

always found at most one unique positive equilibrium point that

was locally and globally stable whenever it existed.

Two examples are given in Fig. 3, where we used the calibrated

model to investigate trajectories of dissolved CO2 and population

density from a range of different initial conditions. Interestingly,

the trajectories show that the dynamics operated at two distinct

time scales: fast chemical dynamics and slow biological dynamics.

The inorganic carbon chemistry equilibrated with the standing

population density within a few hours, as indicated by the

horizontal parts of the trajectories in Fig. 3. These rapid dynamics

are consistent with the inorganic carbon chemistry in our

chemostat experiments without phytoplankton, which also equil-

ibrated within 1–4 hours (Fig. S4.1 in Text S4). Subsequently, the

population density slowly converged to equilibrium within a time

span of several weeks. These slow dynamics are indicated in Fig. 3

by the thick curved parts of the trajectories, which ultimately lead

to the equilibrium point. Hence, the inorganic carbon chemistry

rapidly adjusted to the standing population, and subsequently

tracked the slower changes in population density.

Steady-state patterns
We investigated steady-state patterns of phytoplankton abun-

dance and inorganic carbon chemistry using six chemostats of

Microcystis HUB5-2-4 (Fig. 4). The steady-state population density

increased with pCO2, demonstrating that it was limited by the

supply of inorganic carbon. The population density leveled off

when carbon limitation was alleviated at pCO2.200 ppm

(Fig. 4A). At pCO2 levels ,1 ppm, a low DIC concentration of

0.5 mmol L21 in the mineral medium provided insufficient

inorganic carbon, whereas a higher DIC concentration of

2.0 mmol L21 was sufficient to sustain a steady-state population

density. At pCO2 levels .100 ppm, the influx of DIC supplied by

the mineral medium was small compared to the influx of CO2

supplied by the high gas flow rate, such that the four-fold

difference in DIC concentration in the mineral medium had little

effect on the steady-state population density.

The increase in population density with rising pCO2 reduced

light penetration through the chemostats (Fig. 4B), which shifted

the growth conditions from carbon limitation at low pCO2 to light

limitation at high pCO2. At pCO2 levels ,100 ppm, phytoplank-

ton strongly depleted the dissolved CO2 concentration to a stable

level of ,0.1 mmol L21 (Fig. 4C), while pH was maintained at

values around 10 (Fig. 4E). At pCO2 levels .100 ppm, the

dissolved CO2 concentration increased and pH decreased with

increasing pCO2 (Fig. 4C, E). The pH remained consistently

higher in the presence than in the absence of phytoplankton.

Counterintuitively, at pCO2.100 ppm, the bicarbonate con-

centration became higher in the presence than in the absence of

phytoplankton (Fig. 4D), even though phytoplankton consume

bicarbonate as inorganic carbon source. This unexpected result is

caused by the shift in pH in combination with an increase in

alkalinity associated with uptake of nitrate, phosphate and sulfate

by the phytoplankton population (Fig. 4F; see also Eqn (7)). An

increased alkalinity enhances the storage capacity for bicarbonate

and carbonate in the system. The alkalinity, bicarbonate

concentration and total DIC concentration all showed a similar

increase with rising pCO2 as the phytoplankton population density

(compare Figs. 4D, F, G with Fig. 4A). At pCO2.200 ppm, 70–

80% of the total amount of carbon in the system was in

phytoplankton biomass while 20–30% of the total carbon was

DIC.

The carbon sequestration rate also showed a similar increase

with rising pCO2 as the DIC concentration and phytoplankton

constant for bicarbonate uptake (HHCO3), (E, F) the maximum CO2 uptake rate (uMAX, CO2), and (G, H) the cellular N:C ratio (cN). The model considers a
low-alkaline lake (ALKIN = 0.5 mEq L21). Vertical lines represent atmospheric CO2 levels of 400 ppm (present-day) and 750 ppm (predicted for the year
2150 by the RCP6 scenario of the IPCC). Horizontal dotted lines represent our default parameter values. The contour plots are based on steady-state
solutions across a grid of 40650 = 2,000 simulations.
doi:10.1371/journal.pone.0104325.g007
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Figure 8. Sensitivity of the model predictions to variation in lake properties. Contour plots of the level of carbon limitation (left panels) and
steady-state phytoplankton population density (right panels, expressed as biovolume, in mm3 L21) predicted for different atmospheric pCO2 levels
and lake properties. The lake properties are (A, B) lake depth (zMAX), (C, D) CO2 gas transfer velocity (v), (E, F) DIC concentration of the influx ([DIC]IN),
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population density, and leveled off when the population

approached its maximum productivity at .200 ppm (Fig. 4H).

The model fits were in good agreement with the observed

steady-state patterns in phytoplankton population density, inor-

ganic carbon availability, alkalinity and pH along the entire CO2

gradient.

Extrapolation to lakes
The model was adapted to natural waters to explore the impact

of rising atmospheric CO2 levels on phytoplankton blooms in

lakes. Although it is difficult to capture the complex dynamics of

natural systems, such a modelling exercise may help in under-

standing the coupling between phytoplankton blooms and

inorganic carbon chemistry. As a first step, we investigated

steady-state patterns of phytoplankton abundance in low-alkaline

lakes, where bicarbonate concentrations are low and phytoplank-

ton growth therefore largely depends on dissolved CO2 as a

carbon source. This is a similar situation as in our chemostat

experiments, and the model predictions for low-alkaline lakes are

therefore qualitatively similar to the results obtained in our

chemostats (compare Fig. 4 and Fig. 5). The phytoplankton

population can be sustained at pCO2 levels above 0.17 ppm,

and is predicted to increase strongly with pCO2 (Fig. 5A). Above

2,000 ppm, a further rise of the pCO2 level no longer enhances

the population density, because the high CO2 supply in

combination with self-shading in dense phytoplankton blooms

has shifted phytoplankton growth from carbon-limited to light-

limited conditions (Fig. 5B).

Over a wide range of pCO2 levels, from 0.17 to 1,000 ppm,

phytoplankton blooms exert strong control over the dissolved CO2

concentration and pH, depleting the dissolved CO2 concentration

below 0.1 mmol L21 and raising pH to 10 (Fig. 5C, E). The

bicarbonate and total DIC concentration are reduced by the

phytoplankton population for pCO2 levels ranging from 0.17 to

1,400 ppm CO2 (Fig. 5D, G). The bicarbonate concentration,

total DIC concentration, alkalinity and carbon sequestration rate

all increase with rising pCO2, and level off when the phytoplank-

ton population approaches maximum densities (Fig. 5D, F–H).

Above 1,000 ppm, phytoplankton blooms exert less control over

CO2 availability and pH, and the dissolved CO2 concentration

increases while pH decreases with a further rise in pCO2 (Fig. 5C,

E).

Figure 6 summarizes the level of carbon limitation and the

population density predicted for dense phytoplankton blooms in

different eutrophic waters spanning a wide range of alkalinities and

pCO2 levels. In line with expectation, the model predicts that

carbon limitation of dense phytoplankton blooms will be most

pronounced in low-alkaline waters, where CO2 provides the main

inorganic carbon source (Fig. 6A). Rising atmospheric pCO2 levels

are expected to lead to a strong increase in phytoplankton

population density in these low-alkaline waters (Fig. 6B). In lakes

with a moderate alkalinity, where bicarbonate can partially

supplement growth when CO2 is depleted, carbon limitation is

predicted to be less intense but may still play a substantial role (i.e.,

LC = 10–50%; Fig. 6A). In high-alkaline waters and soda lakes,

however, carbon will rarely be limiting at ambient atmospheric

pCO2 levels (Fig. 6A). Their large DIC pools provide a sufficient

supply of CO2 and bicarbonate to produce high phytoplankton

population densities at ambient pCO2 levels (Fig. 6B).

Sensitivity analysis
Phytoplankton traits. As a first step, we investigated the

sensitivity of the model predictions to variation in the half-

saturation constant for CO2 uptake (Fig. 7A, B). Note that an

increase of the half-saturation constant implies a reduced affinity.

All else being equal, an increase in the half-saturation constant for

CO2 therefore leads to stronger carbon limitation and lower

phytoplankton population densities (Fig. 7A, B). The normalized

sensitivity coefficients were small, both at 400 and at 750 ppm

(Table 1). A value of SC = 0.10 implies that for a 1% increase in

the half-saturation constant, the model predicts only a 0.1%

increase in the level of carbon limitation. Hence, the sensitivity of

the model predictions to variation in the half-saturation constant

for CO2 uptake is relatively low.

The half-saturation constant for bicarbonate shows a similar

pattern (Fig. 7C, D).

An increase in the maximum uptake rate of CO2 causes

stronger CO2 depletion during phytoplankton blooms, which

results in stronger carbon limitation and higher population

densities (Fig. 7E, F). Interestingly, comparison of the sensitivity

coefficients indicates that changes in the maximum uptake rate of

CO2 have a larger effect on the level of carbon limitation than on

the phytoplankton population density (Table 1).

Changes in the C:N stoichiometry of phytoplankton cells do not

directly affect the growth rates in our model, because we assumed

that all nutrients are available at saturating levels. Changes in

cellular C:N stoichiometry may have a small indirect effect,

however, because nitrate uptake affects alkalinity, and thereby

inorganic carbon availability. Hence, as expected, the model

predictions are rather insensitive to changes in cellular C:N

stoichiometry (Fig. 7G, H; Table 1).

Lake properties. Lake depth has strong effects on the model

predictions. In deep lakes, the phytoplankton population is spread

out over a large water volume, and will be light-limited in deeper

parts of the water column. Hence, all else being equal, CO2

depletion in deep lakes will be less intense, resulting in lower levels

of carbon limitation than in shallow lakes (Fig. 8A). Phytoplankton

population densities are therefore predicted to respond more

strongly to rising pCO2 levels in shallow than in deep lakes

(Fig. 8B).

The CO2 gas transfer velocity across the air-water interface

varies with wind speed and precipitation events [54,61,62]. An

increase in CO2 gas transfer velocity strongly reduces the level of

carbon limitation and increases the phytoplankton population

density (Fig. 8C, D). Interestingly, the sensitivity coefficients point

at an interactive effect with the atmospheric CO2 level. The model

predictions become more sensitive to changes in CO2 gas transfer

velocity at higher atmospheric CO2 levels (Table 1).

Enhanced mineralization of organic carbon in the sediment or

additional CO2 input from the surrounding watershed may cause

an enhanced CO2 influx into the lake. In our model this would be

represented by an increase in DIC influx without a change in

alkalinity. Such an enhanced CO2 influx reduces the level of

carbon limitation, thereby raising phytoplankton population

density (Fig. 8E, F). The sensitivity coefficients indicate that the

and (G, H) salinity (Sal). The model considers a low-alkaline lake (ALKIN = 0.5 mEq L21). Vertical lines represent atmospheric CO2 levels of 400 ppm
(present-day) and 750 ppm (predicted for the year 2150 by the RCP6 scenario of the IPCC). Horizontal dotted lines represent our default parameter
values. In (E, F), the dotted line indicates equilibrium with the atmospheric CO2 pressure. The contour plots are based on steady-state solutions across
a grid of 40650 = 2,000 simulations.
doi:10.1371/journal.pone.0104325.g008
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model predictions respond strongly to changes in DIC input

(Table 1).

Salinity has a negative impact on the solubility of CO2 in water

[65], but a positive impact on the dissociation constants of

carbonic acid and bicarbonate [66]. We explored salinities from 0

to 40 g L21, covering the full salinity range from freshwater lakes

to the oceans. The results show that, all else being equal, changes

in salinity have only minor effects on the predicted level of carbon

limitation and phytoplankton population density (Fig. 8G, H;

Table 1).

All normalized sensitivity coefficients remained below 1,

indicating that none of the model parameters had an unexpectedly

strong nonlinear effect on the model output.

Discussion

Coupling between phytoplankton blooms and inorganic
carbon chemistry

Our theoretical and experimental results demonstrate that the

development of dense algal blooms can dramatically change the

dissolved CO2 concentration, alkalinity and pH of aquatic

ecosystems. In our experiments, phytoplankton growth induced

a strong CO2 drawdown, especially when provided with a low

pCO2 level in the gas flow. Assimilation of CO2 and nutrients such

as nitrate, phosphate and sulfate increased alkalinity and pH

during bloom development [38–40]. Increases in pH and alkalinity

shifted the inorganic carbon composition towards bicarbonate and

carbonate. These findings are in good agreement with field

observations, as similar changes in DIC speciation, pH, and

alkalinity have also been documented in studies of dense

phytoplankton blooms in natural waters (Fig. 1) [11,12,15].

Dense phytoplankton blooms contribute to both ‘biological

enhancement’ and ‘chemical enhancement’ of the CO2 influx into

aquatic ecosystems. Biological enhancement is due to the

drawdown of the dissolved CO2 concentration by dense phyto-

plankton blooms, which enlarges the CO2 concentration gradient

across the air-water interface. Hence, dense phytoplankton blooms

can turn aquatic ecosystems into net carbon sinks, and the

resultant influx of atmospheric CO2 can further fuel phytoplank-

ton growth [15,67]. Chemical enhancement occurs because part of

the influx of CO2 chemically reacts with water, and is transferred

to bicarbonate and carbonate [68]. This chemical enhancement is

promoted by the high pH and alkalinity induced by phytoplankton

blooms, which enlarge the DIC storage capacity of aquatic

ecosystems.

Interestingly, our laboratory experiments show that the

enhanced CO2 influx induced by dense phytoplankton popula-

tions can even raise the bicarbonate and total DIC concentration

(Fig. 2E, 2F, 4G). This may seem counterintuitive, because

phytoplankton populations consume inorganic carbon. However,

the high pH and alkalinity in phytoplankton blooms favors the

formation of bicarbonate and carbonate. Depending on the

interplay between CO2 gas transfer, inorganic carbon uptake,

alkalinity and pH, this can result in either a decrease or increase in

total DIC concentration. The lake model predicts that dense

phytoplankton blooms may increase the bicarbonate and DIC

concentration in lakes, but only at very high pCO2 levels. At pCO2

levels below 1,400 ppm, the lake model predicts a reduced

bicarbonate and DIC concentration during phytoplankton blooms

(Fig. 5D, G), which is supported by our observations from Lake

Volkerak (Fig. 1B).

Carbon limitation
In contrast to nutrients and light, carbon availability is often

dismissed as an important limiting factor for phytoplankton

growth. One common argument is that the CO2 concentrations

in many freshwater lakes are sufficiently high to cover the carbon

demands of phytoplankton populations, because these lakes are

often supersaturated with CO2 [5,6,69]. However, dense phyto-

plankton blooms can strip surface waters from dissolved CO2, as

has been observed in a wide range of aquatic ecosystems

[11,13,15]. This is exemplified by our data from Lake Volkerak,

which is supersaturated with CO2 in winter, yet dense cyano-

bacterial blooms deplete the CO2 concentration during the

summer period (Fig. 1). Our laboratory experiments and model

simulations indicate that dense phytoplankton blooms can deplete

the dissolved CO2 concentration of low-alkaline waters by two to

three orders of magnitude (Figs. 2, 4, 5).

Another common argument is that alkaline lakes typically have

sufficiently high bicarbonate concentrations to cover the carbon

demands of phytoplankton populations. Indeed, in addition to

CO2, many phytoplankton species also utilize bicarbonate as

Table 1. Normalized sensitivity coefficients of selected model parameters at atmospheric CO2 levels of 400 ppm (SC400) and
750 ppm (SC750).

Parameter Description Level of carbon limitation Population density

SC400 SC750 SC400 SC750

Species traits

HCO2 Half-saturation constant for CO2 uptake 0.07 0.10 –0.11 –0.09

HHCO3 Half-saturation constant for bicarbonate uptake 0.03 0.03 –0.04 –0.02

uMAX, CO2 Maximum uptake rate of CO2 0.56 0.88 0.17 0.17

cN Cellular N:C ratio 0.04 0.08 –0.06 –0.07

Lake properties

zMAX Lake depth –0.51 –0.65 –0.78 –0.87

v Gas transfer velocity of CO2 –0.25 –0.63 0.40 0.54

[DIC]IN Concentration of DIC at influx –0.61 –0.84 0.96 0.71

Sal Salinity 0.00 –0.01 0.00 0.01

The normalized sensitivity coefficient expresses the relative change in model output with respect to a relative change in input parameter. We used several species traits
and lake properties as input parameters, and the level of carbon limitation and phytoplankton population density as model output.
doi:10.1371/journal.pone.0104325.t001
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carbon source [8–10]. However, utilization of bicarbonate

requires additional investments in, e.g., sodium-dependent and

ATP-dependent bicarbonate uptake systems and carbonic anhy-

drases [9,10]. The costs of bicarbonate utilization may therefore

have repercussions for the growth rates that can be achieved.

Synechococcus leopoliensis, for instance, grows at ,80% of its

maximum growth rate when provided with bicarbonate as its main

carbon source [70]. Our parameter estimates indicate that

Microcystis CYA 140 grows at ,50% while Microcystis HUB5-

2-4 can only grow at 35% of its maximum growth rate on

bicarbonate alone (Table S2.3 in Text S2). This is supported by

the chemostat experiments. For instance, Microcystis HUB5-2-4

could just barely sustain a low population density when CO2 was

largely removed from the gas flow, even though bicarbonate was

provided at a saturating concentration of 2,000 mmol L21 in the

mineral medium (see the datapoint at 0.5 ppm pCO2 in Fig. 4A).

For both strains, an increase in pCO2 level led to a clear increase

in population density (Figs. 2 and 4). Hence, our experiments

demonstrate that, even for cyanobacteria with their sophisticated

carbon-concentrating mechanisms, increasing pCO2 levels in

bicarbonate-rich waters can cause an increase in phytoplankton

population density.

In line with expectation, our model predicts that the potential

for carbon limitation strongly depends on alkalinity (Fig. 6). This is

consistent with studies in natural waters. Carbon limitation is often

observed during algal blooms in eutrophic low-alkaline lakes,

where CO2 is the main inorganic carbon source [11,71]. Carbon

limitation has also been reported for moderately alkaline lakes

(Fig. 1) [12,13,72], where bicarbonate partially supplements

phytoplankton growth when CO2 is depleted. The model predicts

that carbon limitation will be almost absent in high-alkaline waters

and soda lakes, owing to their high inorganic carbon availability

(Fig. 6). Indeed, tropical soda lakes are widely recognized to be

among the world’s most productive ecosystems, and can sustain

extremely dense populations of cyanobacteria [73,74].

Only high nutrient loads can sustain phytoplankton blooms

dense enough to deplete the dissolved CO2 concentration and

induce carbon limitation [75]. In an analysis of 131 eutrophic lakes

in the Midwestern USA, Balmer and Downing [15] showed that

dissolved CO2 decreased below atmospheric equilibrium when

total phosphorus (TP) concentrations exceeded 1–2 mmol L21 and

chlorophyll a levels exceeded 10–20 mg L21. Severe CO2

depletion occurred at chlorophyll concentrations exceeding 80–

100 mg L21. This matches our data from Lake Volkerak, which

has a summer TP concentration of ,3 mmol L21 [31], and where

the dissolved CO2 concentration became undersaturated at

chlorophyll concentrations exceeding 20 mg L21 and was severely

depleted during the height of the blooms (Fig. 1A). Such

conditions also seem to be representative of several other eutrophic

and hypertrophic lakes with dense phytoplankton blooms. For

example, TP concentrations exceeding 2 mmol L21 are also found

in Lake Taihu in China [25], Lake Victoria in East Africa [76], the

western part of Lake Erie, USA [23,77], the southern part of Lake

Peipsi on the border of Estonia and Russia [78,79], and several

smaller lakes and reservoirs [33,71,80], all of which have suffered

from dense cyanobacterial blooms in summer. This indicates that

the nutrient availability in these eutrophic and hypertrophic lakes

is, at least in potential, high enough for dense phytoplankton

blooms to induce carbon-limited conditions.

Model limitations
Combining models and experiments has several advantages. It

allows quantitative analysis of the different processes under

controlled conditions. Furthermore, it ensures that model predic-

tions are strongly grounded in measured data, which adds

confidence to the model output. Moreover, the model aids

interpretation of the experimental results, and also offers a tool for

extrapolation of the investigated processes to natural waters

(Figs. 4–7).

Nevertheless, like all models, our model is at best a major

simplification of reality, based on a series of simplifying

assumptions that ignore many of the intriguing complexities of

the natural world. In particular, the domain of applicability of our

model predictions is restricted to eutrophic and hypertrophic

waters where all nutrients are in excess. In oligotrophic waters,

rising atmospheric CO2 levels will probably have a much smaller

effect on the development of phytoplankton blooms, because

nutrient limitation suppresses phytoplankton growth [25,81].

Therefore, we recently extended our model and associated

experiments to nutrient-limited conditions [75]. This confirmed

that, at low nutrient levels, rising CO2 concentrations will have

much less impact on phytoplankton biomass development. Lower

phytoplankton population densities will lead to less CO2 depletion

and have a smaller impact on pH. However, at low nutrient levels,

rising CO2 concentrations may lead to a strong increase of the

carbon:nutrient stoichiometry of phytoplankton, with possible

repercussions for their nutritional quality as food for herbivores

[75].

Furthermore, natural waters vary in phytoplankton species

composition, while our laboratory experiments were based on a

single species only. Cyanobacteria and eukaryotic phytoplankton

show genetic and physiological variation in carbon concentrating

mechanisms, both between and within species [8–10]. Likewise,

lakes vary in lake depth and DIC input from the surrounding

watershed. We therefore performed a sensitivity analysis to assess

how intrinsic uncertainty and natural variation in the model

parameters would affect the model predictions. The sensitivity

analysis shows that the model predictions are relatively robust to

variation in species traits such as the half-saturation constants of

CO2 and bicarbonate uptake, but respond strongly to changes in

lake depth, CO2 gas transfer velocity and DIC input. The

sensitivity of the model predictions to these lake properties

indicates that the response to rising CO2 levels is likely to be

lake specific. Yet, the general patterns predicted by the model are

qualitatively robust, in the sense that rising atmospheric CO2 levels

are predicted to alleviate the level of carbon limitation and to

increase phytoplankton population densities irrespective of the

exact parameter values used (Figs. 7, 8).

Finally, we emphasize that the extrapolation of our model to

natural waters is intended to be of an exploratory nature. We

focused exclusively on feedbacks between dense phytoplankton

blooms and the inorganic carbon chemistry of lakes. However,

many other processes are also known to affect phytoplankton

blooms, such as nutrient availability, thermal stratification, and

day-to-day weather variability [33,82,83]. Interactions with other

species in the food web may induce phytoplankton-zooplankton

oscillations [84,85], the collapse of phytoplankton blooms by

viruses [86], and other nonequilibrium dynamics [87]. Further-

more, the alkalinity and pH of natural systems is influenced not

only by phytoplankton growth, but also by a variety of

hydrological and biogeochemical processes [40,42,88]. Applica-

tion of our model to specific phytoplankton blooms in specific lakes

is encouraged, but will require incorporation of the myriad of

additional processes that are considered to be of relevance for the

particular lake under study.
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Effects of rising CO2

Our results support earlier reports that rising atmospheric pCO2

levels are likely to promote phytoplankton productivity in

eutrophic waters [89,90]. More specifically, both our model

predictions and laboratory experiments indicate that elevation of

the atmospheric pCO2 will enhance the CO2 influx across the air-

water interface during dense phytoplankton blooms, which in turn

will tend to further increase the population density of these

blooms.

Our study shows that dense phytoplankton blooms are capable

to deplete the dissolved CO2 concentration and increase the pH

over a relatively wide range of atmospheric CO2 levels (Fig. 4C, E,

Fig. 5C, E). Yet, at some point, rising atmospheric CO2 levels will

alleviate phytoplankton blooms from carbon limitation, such that

they will exert much less control over the dissolved CO2

concentration and pH. Beyond this point, phytoplankton blooms

become carbon-saturated and a further rise in atmospheric CO2

levels will not enhance population densities but will lead to less

intense CO2 depletion and a lower pH during the blooms. Our

results indicate that the atmospheric CO2 level at which blooms

become carbon-saturated is likely to vary among phytoplankton

species depending on e.g. their carbon concentrating mechanisms

[8–10], and among ecosystems depending on e.g. alkalinity, lake

depth and CO2 input from the mineralization of dissolved organic

carbon (Figs. 6–8). For instance, in our chemostat experiments the

population density increased for atmospheric pCO2 levels from 10

to 200 ppm, while the Microcystis population became carbon-

saturated at pCO2 levels beyond 200 ppm (Fig. 4A). In contrast,

for low-alkaline lakes, our baseline model predicts a strong

increase in phytoplankton population density from 100 to

1,500 ppm, while the transition to carbon-saturated Microcystis
blooms is predicted to occur only when the pCO2 level exceeds

1,500 ppm (Fig. 5A).

Intensification of phytoplankton blooms by rising CO2 levels

may further aggravate the problems associated with these blooms,

such as anoxia and fish kills [82,91] and the loss of submerged

vegetation due to an increased turbidity [83,84]. In particular,

enhanced bloom formation by toxic phytoplankton species, like

the cyanobacterium Microcystis of this study, can pose health risks

for humans and animals, and may threaten the use of eutrophic

waters for recreation, fisheries, drinking water and agricultural

irrigation [21–25].

Conclusions

The interplay between data-driven models and model-driven

experimentation explored by our study may offer an important

step towards an improved quantitative understanding and

prediction of the impacts of rising CO2 on phytoplankton blooms.

Our results demonstrate that, under controlled laboratory

conditions, the coupling between phytoplankton growth, CO2

drawdown and the inorganic carbon chemistry of aquatic systems

can be captured by a relatively simple model. Extrapolation of this

experimentally validated model to lakes warns that rising CO2

levels are likely to intensify phytoplankton blooms, especially in

low to moderately alkaline waters with high nutrient loads.
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