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Abstract

Dietary exposure to aflatoxin B1 (AFB1) is detrimental to avian health and leads to major economic losses for the poultry
industry. AFB1 is especially hepatotoxic in domestic turkeys (Meleagris gallopavo), since these birds are unable to detoxify
AFB1 by glutathione-conjugation. The impacts of AFB1 on the turkey hepatic transcriptome and the potential protection
from pretreatment with a Lactobacillus-based probiotic mixture were investigated through RNA-sequencing. Animals were
divided into four treatment groups and RNA was subsequently recovered from liver samples. Four pooled RNA-seq libraries
were sequenced to produce over 322 M reads totaling 13.8 Gb of sequence. Approximately 170,000 predicted transcripts
were de novo assembled, of which 803 had significant differential expression in at least one pair-wise comparison between
treatment groups. Functional analysis linked many of the transcripts significantly affected by AFB1 exposure to cancer,
apoptosis, the cell cycle or lipid regulation. Most notable were transcripts from the genes encoding E3 ubiquitin-protein
ligase Mdm2, osteopontin, S-adenosylmethionine synthase isoform type-2, and lipoprotein lipase. Expression was
modulated by the probiotics, but treatment did not completely mitigate the effects of AFB1. Genes identified through
transcriptome analysis provide candidates for further study of AFB1 toxicity and targets for efforts to improve the health of
domestic turkeys exposed to AFB1.
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Introduction

Consumption of feed contaminated with mycotoxins can

adversely affect poultry performance and health. Mycotoxins are

estimated to contaminate up to 25% of world food supplies each

year [1]. Due to potent hepatotoxicity and worldwide impacts,

aflatoxin B1 (AFB1) is one of the most important mycotoxins [2,3].

The extreme toxicity of AFB1 in domestic turkeys (Meleagris

gallopavo) was demonstrated in 1960, when Turkey ‘‘X’’ Disease

caused the deaths of over 100,000 turkeys and other poultry in

England as a result of feeding AFB1-contaminated peanut-meal

[4]. High doses of AFB1 can cause acute mortality; exposure at

lower concentrations causes loss of appetite, liver damage, and

immunosuppression [3]. Chronic dietary exposure to AFB1 and

other aflatoxins also negatively affects poultry production traits,

including weight gain, feed conversion, egg production and

hatchability [5,6,7]. Consequently, aflatoxicosis is estimated to

cost the poultry industry over $143 million in losses each year [1].

The toxicity of AFB1 is initiated by its bioactivation into the

electrophilic exo-AFB1-8,9-epoxide (AFBO) [8]. Bioactivation is

mediated by cytochrome P450s (P450s) located predominantly in

hepatocytes, making the liver the primary target for toxicity [8].

The high sensitivity of domestic turkeys to AFB1 is likely due to a

combination of efficient hepatic P450s and dysfunctional alpha-

class glutathione S-transferases (GSTAs) that cannot conjugate and

detoxify AFBO [9,10,11]. Although the cytochrome (CYP) and

GSTA genes involved in the bioprocessing of AFB1 have been

examined in the turkey, the impact of AFB1 on expression of other

genes is not well understood. AFBO forms adducts with DNA and

RNA, which can block transcription and translation and can

induce DNA mutations [2,8,12]. Genes directly involved in these

processes are likely candidates for expression changes in response

to AFB1, along with genes that initiate or prevent apoptosis and

carcinogenesis. In liver tissue from chickens (Gallus gallus), AFB1 is

known to affect genes associated with fatty acid metabolism,

development, detoxification, immunity and cell proliferation [13].

Once the impact of AFB1 on gene expression is understood,

these changes can be used to evaluate methods directed at

reducing and/or preventing aflatoxicosis. Probiotic gram-positive

strains of Lactobacillus, Propionibacterium and Bifidobacterium can bind

to AFB1 in vitro [14,15,16]. In chickens, injection of L. rhamnosus

strain GG (LGG), L. rhamnosus strain LC-705 (LC-705), and P.

freudenrieichii strain shermanii JS (PJS) into the intestinal lumen has
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also been shown to decrease AFB1 absorption into duodenal tissue

[15,17]. A probiotic mixture of LGG, LC-705, and PJS has

therefore been proposed as a feed additive to inhibit AFB1 uptake

from the small intestine and attenuate AFB1-induced toxicity in

poultry. Given their susceptibly to AFB1, domestic turkeys provide

an ideal model to test the ability of these probiotics to reduce

aflatoxicosis.

This study was designed to examine the response of the turkey

hepatic transcriptome to AFB1 and evaluate the chemopreventive

potential of Lactobacillus-based probiotics using high throughput

RNA-sequencing (RNA-seq). Corresponding phenotypic data

from this challenge trial has been characterized in another report

[18]. To our knowledge, only one study on swine has used RNA-

seq to investigate the impacts of AFB1 exposure on gene expression

[19]. Therefore, this analysis provides the first detailed examina-

tion of genes involved in turkey responses to AFB1 and modulation

of its toxicity by probiotics.

Materials and Methods

Ethics Statement
All in-vivo work, including AFB1 challenge trial and sample

collection, was performed at Utah State University (USU) in an

Association for Assessment and Accreditation of Laboratory

Animal Care accredited facility according to a protocol (Number:

1001R) approved by the USU Institutional Animal Care and Use

Committee. All efforts were made to minimize suffering, such as

dosage that would not cause mortality and euthanasia of poults by

CO2 asphyxiation upon completion of the study.

Animals and Probiotic Preparation
One day-old male Nicholas domestic turkey poults (generously

supplied by Moroni Feed Co., Ephraim, UT) were acclimated for

10 days at USU on a corn-based commercial diet (Moroni Feed

Co.). The challenge trial was performed on young poults, rather

than adults, since the activity of P450s and AFBO production is

inversely related to age [20]. A probiotic mixture of lyophilized

bacteria from Valio Ltd. (Helsinki, Finland) was used in the

challenge trial. This mixture contained 2.361010 CFU/g of L.

rhamnosus GG, 3.061010 CFU/g of L. rhamnosus LC-705,

3.561010 CFU/g of Propionibacterium freunchdenreichii sp. shermani

JS, and 2.961010 CFU/g of Bifidobacterium sp., along with 58%

microcrystalline cellulose, 27% gelatin and magnesium salt.

Probiotic (PB) solution was prepared by directly suspending

bacteria in phosphate buffered saline at a final concentration of

161011 CFU/mL as previously described [21].

AFB1 Challenge Trial
Poults (N = 40) were randomly assigned to one of 4 treatment

groups (n = 10/group) (phosphate buffered saline control (CNTL),

probiotic mixture (PB), aflatoxin B1 (AFB), and probiotic +
aflatoxin B1 (PBAFB). After the 10 day acclimation period, turkeys

in the PB and PBAFB groups were given 0.5 mL of PB

(561010 CFU) daily by oral gavage from day 11 to day 31. Birds

in the CNTL and AFB groups were administered 0.5 mL of

phosphate buffered saline by oral gavage on day 11–31. The corn-

based starter diet was fed to all poults in all treatments from day 11

to day 20. On day 21–31, turkeys in the CNTL and PB groups

continued to receive the unaltered feed, while 1 ppm AFB1 was

introduced into the diet fed to birds in the AFB and PBAFB

groups. Poults were euthanized by CO2 asphyxiation on day 31.

Liver samples were collected directly into RNAlater (Ambion, Inc.,

Austin, TX), perfused overnight at 4uC, and then stored at 220uC
to preserve RNA. Phenotypic effects of aflatoxicosis, including

weight gain, liver weight, histopathology, and serum analysis for

this challenge trial are presented elsewhere [18]. Aflatoxicosis was

verified by these measures for individuals in the AFB1-treated

groups.

RNA Isolation and Sequencing
Total RNA was isolated by TRIzol extraction (Ambion, Inc.)

from 3 tissue samples/treatment group (n = 12) and stored at 2

80uC to prevent degradation. gDNA contamination was removed

from each RNA sample with the Turbo DNA-freeTM Kit (Ambion,

Inc.). RNA concentration and quality were assessed by denaturing

gel electrophoresis and Nanodrop 1000 spectrophotometer

(Nanodrop Technologies, Wilmington, DE). For each treatment

group, individual DNase-treated RNA samples were pooled (n = 3)

in equimolar amounts and RNA concentration in each pool was

verified by spectrophotometry. Samples were pooled to maximize

the depth of sequence collected from each treatment group,

including rare sequences. Total RNA samples from the CNTL

and AFB groups (8.5 mg) and the PB and PBAFB groups (6 mg)

were submitted for sequencing on the Illumina Genome Analyzer

II at the Mayo Clinic (Rochester, MN). Four libraries (1 library/

treatment group) were constructed according to the Illumina

mRNA Sequencing Protocol. RNA integrity for each library was

confirmed with the 2100 Bioanalyzer (Agilent Technologies, Santa

Clara, CA). Libraries were run on 4 flow cell lanes to produce

51 bp single-end reads. Sequencing at this depth required 2 flow

cells (CNTL and AFB groups on flow cell 1 and PB and PBAFB on

flow cell 2).

Read Filtering, Trimming, and Dataset QC Analysis
RNA-seq datasets for each library were filtered by BLAST

aligning reads against common contaminating sequences, includ-

ing bacteria gDNA and Illumina sequencing adaptors/primers.

Using CLC Genomics Workbench (CLC bio, Cambridge, MA),

reads were then trimmed for low quality (limit 0.05 for error

probability, maximum of 2 ambiguities) and end trimmed (4

terminal bases on both 59 and 39 ends) to reduce library base

composition biases and end quality dips. FastQC [22] was utilized

to examine dataset quality before and after the trimming and

filtering protocols.

De novo Assembly
The Velvet [23] and Oases [24] pipelines were used for de novo

assembly of the corrected reads from all four datasets into

predicted transcripts. Multiple sub-assemblies were generated in

Velvet and Oases using a range of k-mer (hash) lengths (21, 23, 25,

27, 29, and 31) to construct contigs. A final merged assembly was

created using the contigs from all six sub-assemblies as input

sequence for Velvet and Oases with a k-mer value of 27. Default

parameters were utilized for all assemblies, with the cutoffs for

contig coverage and connection support set at 3. Corrected reads

were mapped back to the final assembled predicted transcripts

using BWA [25]. Counts of reads uniquely mapping to each

transcript were determined using HTSeq in intersect-nonempty

mode [26]. Reads that mapped to multiple transcripts were not

included in coverage counts.

Transcript Annotation
Predicted transcripts were annotated by three BLAST align-

ments. Transcripts were first compared to cDNAs from the turkey

genome build UMD 2.01 (www.ensembl.org) and assigned their

coordinating NCBI Transcript Reference Sequence (RefSeq) IDs.

A similar search of the chicken genome (Galgal 4.0) identified
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matches to chicken RefSeq mRNAs and a final BLAST

comparison was performed to the UniProtKB Swiss-Prot protein

database. For all three searches, BLAST hits were considered valid

for bit scores $100 and the top hits were recorded. Transcripts

that showed significant differential expression (DE) but lacked hits

from the transcriptome-wide BLAST search were then aligned to

the NCBI non-redundant nucleotide (NR) database. This allowed

identification of un-annotated but previously characterized

cDNAs, non-protein coding RNAs and other sequences only

accessioned in the NR database.

Transcript Coverage Filtering
A coverage threshold of 0.1 read/million mapped was applied

to filter predicted transcripts for sufficient read depth. To account

for differences in the total number of mapped reads per treatment

group, the minimum number of reads that must map to each

transcript was determined separately in each treatment (Table S1).

Transcripts were included in the transcriptome content and

numbers for any treatment group in which they met this coverage

threshold; lowly expressed transcripts were excluded only from the

transcript list in the treatment(s) in which they fell below this

threshold.

Differential Expression Analysis
Expression of each transcript in each treatment group was

determined from read counts normalized with size scaling using

the R package DESeq [27]. Since datasets were derived from

RNA pools, DESeq estimated the within-treatment variation in

expression of each transcript using its mean and the dispersion of

its expression across all treatment groups (method = ‘‘blind’’ and

sharingMode = ‘‘fit-only’’ settings). To prevent skewing of the

means and variance estimates, all predicted transcripts were

analyzed by DESeq rather than just the filtered set. Pair-wise

comparisons for statistical significance based on a negative

binomial distribution were made in DESeq using the mean and

dispersion estimates and p-values were assigned. Expression in

each treatment was compared to the CNTL group to determine

the impact of AFB1 and/or PB. Two additional contrasts of the

PBAFB group with the AFB and PB groups were also performed

to investigate the ability of PB to mitigate AFB1 effects. Transcripts

were considered to have significant DE if q-values (FDR adjusted

p-values based on the Benjamin-Hochberg procedure) were

#0.05. Scatter plots and heat maps generated in R were used to

visualize the datasets and results of the expression analyses. Venn

diagrams were created using a combination of BioVenn [28],

Venny [29] and the R package VennDiagram 1.6.4 [30].

Genome and Functional Analysis
Filtered transcripts were aligned to the domestic turkey genome

build UMD 2.01 using GMAP [31]. Gene Ontology (GO) terms

associated with significant DE transcripts were determined using

Blast2GO V.2.6.6 [32,33]. Further functional characterization of

these DE transcripts was performed using Ingenuity Pathway

Analysis (IPA) (Ingenuity Systems, Redwood City, CA).

Results

RNA-seq Datasets
Sequencing of the four pooled libraries produced over 356 M

51 bp reads with an average quality score of 32.4 (Table 1) (as part

of SRA project ID: SRP042724). Libraries run on the same flow

cell generated similar read numbers, with 75 M reads collected for

the CNTL library (SRX566381), 65 M for AFB (SRX569978),

111 M for PB (SRX570327) and 105 M for PBAFB (SRX570328).

The number of sequence reads varied between flow cells, with

more than 76 M additional reads produced on the second flow

cell. Given this variation, normalization for library size was critical

for accurate expression analyses. After read trimming and filtering

(33.9 M reads removed), the corrected datasets were reduced by

an average of 8.5 M reads. Average read length decreased to

42.9 bp, while average quality score per read increased to 33.3.

Quality scores remained lower for reads collected on the first flow

cell (CNTL and AFB datasets) than the second (PB and PBAFB)

even after filtering and trimming (Figure S1). Box-plots demon-

strate that the quality scores across base position in each corrected

dataset were sufficiently high for reliable base calling (Figure S2).

Cumulatively, all corrected reads comprise 13.8 Gb of usable

sequence for transcriptome assembly (Table 1).

De novo Transcriptome Assembly
Final assembly of the transcriptome via the Velvet and Oases

pipelines utilized 95.2% of the groomed RNA reads and generated

211 Mb of potential expressed sequence (Table 2). The assembly

contains 174,010 predicted transcripts ranging in size from 200 to

39,213 bp. This number decreased to 169,387 transcripts after

filtering out transcripts with insufficient coverage (Table 2; Table

S1). Interestingly, the coverage threshold of 0.1 read/million

mapped coincided with the most frequent read depth in each

treatment (Figure S3). Although this filtering kept 99.9% of

mapped reads, between 6.8% and 13% of expressed predicted

transcripts fell below the threshold in each treatment group (Table

S1).

Fitting expectations for the turkey transcriptome, transcripts

that met the coverage threshold had an N50 of 2.1 Kb and a GC

content of 46.9% (Table 2). Mean filtered transcript length was

1.2 Kb, which is shorter but consistent with the average size of

cDNAs in the turkey (1.7 Kb), chicken (2.5 Kb), duck (1.7 Kb)

and zebra finch (1.4 Kb) Ensemble gene sets (genome assemblies

UMD 2.01, Galgal 4.0, BGI duck 1.0 and taeGut 3.2.4). The

majority (87.0%) of filtered liver transcripts ranged from 250 bp to

4 Kb (Figure S4). The few overly large transcripts have BLAST

hits to known genes, but also contain repetitive sequences and

expressed retrotransposons like CR1 repeats and LTR-elements.

These large constructs were generated because the repeat-

containing reads from across the genome cannot be uniquely

distinguished during assembly even if discarded in mapping.

Most filtered transcripts (81.8%) were represented in all

datasets; however, 24,518 (14.5%) were shared between only

two or three treatments and 6,252 (3.7%) were unique to a single

treatment (Figure 1). Of these unique transcripts, 76.9% did not

match to previously annotated genes. BLAST screening identified

only 63.5% of all filtered transcripts (Table 2). Although only

50.2% of filtered transcripts matched to known turkey mRNAs,

89.4% of transcripts mapped to the turkey genome (Table S2).

This difference suggests that the majority of unknown transcripts

represent splice variants, unannotated genes, and non-protein

coding RNAs. Therefore, mapped transcripts provide a resource

for genome annotation and improvement of gene models. The

number of mapped transcripts per Mb of chromosome can be used

to predict gene density. Microchromosomes, although small, were

especially gene-rich. MGA18 and MGA27 had inflated relative

gene content due to their poor representation in the genome

assembly.

Differential Expression and Functional Analysis
Pair-wise comparisons of expression for predicted transcripts

were performed using DESeq to normalize read counts, estimate

dispersions, and perform significance tests. Since individuals were
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pooled prior to library construction, DESeq estimated within-

group expression variance for each transcript using the relation-

ship between the mean and the dispersion across all conditions.

This decreases power and may limit to some extent the ability to

identify significant differences in transcript abundance; estimation

also increases type 1 errors. Therefore, the 803 transcripts with

significant DE in at least one between-group comparison likely

represent a subset of the total influenced by each treatment. Read

counts from HTSeq, results from DESeq, BLAST annotations,

and associated GO terms are provided for significant DE

transcripts in each pair-wise comparison in Table S3. Data from

DE analysis and BLAST screening for the complete list of

predicted transcripts is available upon request.

In pair-wise comparisons to the CNTL group, 538 transcripts

were identified with significant DE in at least one other treatment

(Figure 2A). Only 41 transcripts had significant DE in all three

treatments (AFB, PB and PBAFB), including transcripts from

apolipoprotein A-IV (APOA4) and alpha-2-macroglobulin (A2M).

BLAST annotated 77.9% of these significant DE transcripts,

including matches to sequences in the NR database (Table S3).

Despite relatively high BLAST identification, Biological Process

GO-terms could only be associated with 37.7% of these significant

DE transcripts.

To visualize the significant transcripts, log2 fold change was

plotted against mean normalized expression for each predicted

transcript (Figure 3; Figure S5). In the AFB to CNTL comparison,

transcripts with significant DE are located nearer the asymptotic

curves for fold change in both the positive and negative directions

(Figure 3). As mean normalized expression values decrease,

expression changes must increase for transcripts to be significant.

The same relationship for significance is demonstrated in all

comparisons between treatment groups (Figure S5).

Relative similarity between the four treatments depends on the

transcripts selected for comparison. When the 50 transcripts with

highest expression levels are compared, the treatments divide into

two clusters (CNTL and PB, and AFB and PBAFB) with highest

expression values in the CNTL (Figure 4A). When comparing

expression of the 50 transcripts with the greatest significant DE,

the PB and PBAFB groups cluster (Figure 4B). Expression in the

AFB group shares similarities with both this cluster and the CNTL

group. Beyond these overall trends, each pair-wise comparison

also illustrates specific effects of AFB1 and probiotic treatments on

expression.

AFB versus CNTL
Comparison of expression in the AFB and CNTL groups

identified 144,403 shared transcripts after threshold filtering

(Figure 1). Expression of 313 predicted transcripts was significantly

affected by AFB1 treatment (Figure 2A); this is a greater number of

significant DE transcripts than observed in any other treatment

group (PB or PBAFB, see below). In the AFB group, 60.4% of

significant DE transcripts were up-regulated (Figure 2A;

Figure 5A), with large log2 fold changes seen in transcripts from

keratin 20 (KRT20), cell-death activator CIDE-3 (CIDEC), and E3

ubiquitin-protein ligase Mdm2 (MDM2). DE was most significant

for transcripts from S-adenosylmethionine synthase isoform type-2

(MAT2A) and A2M (q-value = 3.22E-11). BLAST identified genes

corresponding to 50.5% of transcripts with significant DE in the

AFB group (Table S3). When expanded to include all sequences in

the NR database, annotation increased to 88.8%, primarily due to

hits to uncharacterized cDNAs.

Associations to level 2 Biological Process GO terms were made

for 132 significant DE transcripts (42.2%) (Table S3). Cellular

process, single-organism process and biological regulation were the
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most often associated GO terms (Figure 6). As a parent term for

apoptotic GO terms, ‘‘single-organism process’’ occurred more

frequently in the AFB group (13.0%) than in any other treatment.

Many (21.4%) significant DE transcripts have homology to genes

with known function in carcinogenesis or apoptosis. The most

significant of these transcripts are shown in Table 3. Other

transcripts with significant DE in the AFB group had homology

with genes involved in lipid metabolism or accumulation. For

example, lipoprotein lipase (LPL) and MID1 interacting protein 1

(MID1IP1) were significantly down-regulated only in the AFB

group (Table 4).

Although the liver is the site of AFB1 bioprocessing, none of the

transcripts associated with CYP and GSTA genes had significant

DE in the AFB group. Almost no change in expression was

observed for transcripts from CYP1A5 and CYP3A37, which

encode the two liver P450s that activate AFB1 [11] (average log2

fold changes of 20.01 and 20.16). Expression changes were also

minimal for five of the six GSTA genes (averages of 0.16, 0.25,

0.24, 1.38, and 0.39 for GSTA1.1, GSTA1.2, GSTA2, GSTA3, and

GSTA4). No transcripts matched to the GSTA1.3 gene in any

treatment group.

PB versus CNTL
The PB and CNTL groups share the fewest number of filtered

transcripts (143,890) (Figure 1), yet only 206 significant DE

transcripts were identified in the PB treatment group (Figure 2A).

BLAST annotated 46.6% (58.3% with NR sequences) of these

transcripts (Table S3). Unlike the AFB group, significant DE

transcripts in the PB group are predominantly down-regulated

(Figure 2A; Figure 5A), leading to a significantly lower mean log2

fold change than in the AFB1-treated groups (AFB or PBAFB,

Figure S6A). Some down-regulated transcripts, including many

from A2M, had higher significance (smaller q-values) than any

transcripts in the AFB1-treated groups (Figure S7A, B, C).

Associations were made between 41.3% of these significant DE

transcripts and Biological Process GO terms (Table S3). The most

frequently associated level 2 terms were cellular process, metabolic

process, and biological regulation (Figure 6). Transcripts from

CYP2H1 and poly(U)-specific endoribonuclease-A-like (ENDOU)

were significantly down-regulated in the PB group (Table S3),

illustrating the impact of probiotics on metabolic and enzymatic

functions. Unlike the AFB1-treated groups (AFB and PBAFB), only

9.7% of significant transcripts in PB had links to cancer and these

were almost exclusively transcripts from A2M. Since these

transcripts were significantly down-regulated in all three treatment

groups (Table 3), A2M is unlikely to be involved in AFB1 toxicity.

PBAFB versus CNTL
A total of 145,708 filtered transcripts were shared between the

PBAFB and CNTL groups (Figure 1), exceeding those found for

Table 2. Summary of the de novo liver transcriptome assembly.

Total Assembled Above Coverage Threshold1

Number of Reads Mapped 307,105,226 (95.2%) 306,815,840 (95.1%)

Unmapped 15,489,472 (4.8%) 15,778,858 (4.9%)

Total Number of Predicted Transcripts 174,010 169,387

Transcript Length (bp) Min 200 200

Mean 1,213 1,238

Max 39,213 39,213

N50 2,038 2,052

Total Residues (bp) 211,012,448 209,738,998

Average GC Content/Transcript 46.9% 46.9%

Transcripts Identified Turkey 85,435 (49.1%) 85,052 (50.2%)

Chicken 102,421 (58.9%) 101,831 (60.1%)

Swiss-Prot 78,167 (44.9%) 78,009 (46.1%)

Total Known 108,161 (62.2%) 107,503 (63.5%)

Unknown 65,849 (37.8%) 61,884 (36.5%)

1Predicted transcripts were filtered according to a coverage threshold of 0.1 read/million mapped.
doi:10.1371/journal.pone.0100930.t002

Figure 1. Comparative transcriptome content in domestic
turkey liver. The number of transcripts shared or unique to each
combination of treatments after filtering is indicated in each section of
the diagram. Totals for the control (CNTL), aflatoxin B1 (AFB), probiotic
mixture (PB), and probiotic + aflatoxin B1 (PBAFB) groups are shown
above each ellipse.
doi:10.1371/journal.pone.0100930.g001
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both the AFB and PB groups. Only 208 predicted transcripts had

significant DE in the PBAFB group (Figure 2A) and BLAST

successfully identified 66.8% (80.3% with NR sequences) of these

transcripts (Table S3). More than half (51.4%) were shared with

the AFB group, but only 34.1% were significantly DE in both

PBAFB and PB (Figure 2A). Similar to the AFB group, the

majority (57.2%) of transcripts with significant DE were up-

regulated (Figure 2A; Figure 5A). Larger changes in expression

were required for significant DE in the PBAFB group, than in

either AFB or PB (Figure 5A). Transcripts with significant DE in

the PBAFB group more closely resembled those of the AFB group,

indicating an AFB1 treatment effect.

Functional analysis found GO term associations for 42.3% of

significant DE transcripts (Table S3) and identified further

similarities between PBAFB and the other treatment groups. As

in the PB group, biological regulation, metabolic process, and

cellular process were the most commonly associated level 2 GO

terms in the PBAFB group (Figure 6). Localization, single-

organism process, and to a lesser extent signaling and cellular

component organization or biogenesis GO terms occurred at

higher proportions in the AFB and PBAFB groups. Increased GO

associations with the ‘‘multi-organism process’’ term were

observed in only the PBAFB group. Including transcripts from

MAT2A and MDM2, 27.8% of significant DE transcripts in

PBAFB were annotated to genes with known roles in cancer or

apoptosis. Greater up-regulation was observed in the PBAFB

group than in the AFB group for many significant transcripts

involved in carcinogenesis or lipid regulation (CIDEC, CDK

inhibitor CIP1 (CIP1), MDM2, Table 3; APOA4, phosphoenolpyr-

uvate carboxykinase 1 (PCK1), Table 4).

Inter-treatment Comparisons
Additional inter-treatment comparisons (PBAFB vs. AFB and

PBAFB vs. PB) identified 565 transcripts with significant DE

(Table S3). Most (353) of the 448 transcripts with significant DE in

PBAFB vs. PB were up-regulated (Figure 2B; Figure 5B). Highly

up-regulated transcripts from MAT2A, CIP1, and MDM2 also had

some of the highest significance values. Nearly 60% of significant

DE transcripts in the PBAFB group compared to the AFB group

were also up-regulated, but the transcripts with the highest

significance were down-regulated and could not be BLAST

annotated (Figure S7D). Comparison of the AFB1-treated groups

(PBAFB vs. AFB) also found larger decreases in expression than

observed in PBAFB vs. PB (Figure 5B, Figure S6B). Gene

expression in the PBAFB group more closely resembled the AFB

group, with 152,132 shared transcripts. A smaller number of

transcripts (151,010) were shared between the PBAFB and PB

groups. Together these suggest that the combined treatment

(PBAFB) is more similar to treatment with AFB1 than probiotics.

Exposure to AFB1 (AFB and PBAFB groups) initiated expres-

sion of cancer-associated transcripts (such as MAT2A) not observed

in the CNTL or PB groups. Fourteen transcripts, including

expressed sequences from collagen, type II, alpha 1 (COL2A1) and

Figure 2. Liver transcripts with significant DE in each
comparison between treatment groups. Numbers in each section
indicate predicted transcripts with significant differential expression
(DE) (q-value #0.05) that are shared between or unique to each
comparison. Up-regulated transcripts are shown in red and down-
regulated are shown in green. The total number of significant
transcripts for each comparison is shown beside the corresponding
circle. (A) Transcripts with significant DE when compared to the control
(CNTL) group. (B) Transcripts with significant DE in inter-treatment
comparisons (i.e. the probiotic + aflatoxin B1 (PBAFB) group compared
to the aflatoxin B1 (AFB) or probiotic mixture (PB) group).
doi:10.1371/journal.pone.0100930.g002

Figure 3. Relationship between mean expression and log2 FC in
the AFB to CNTL comparison. Log2 fold change (FC) was plotted
against the mean normalized read counts for each predicted transcript
with non-zero expression values in both the control (CNTL) and
aflatoxin B1 (AFB) treatments. As determined in DESeq [27], transcripts
with significant differential expression (DE) (q-values #0.05) are
highlighted in red.
doi:10.1371/journal.pone.0100930.g003
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BAG family molecular chaperone regulator 4 (BAG4), were

significantly up-regulated in PBAFB in comparisons to both AFB

and to PB indicating a synergistic effect. ‘‘Metabolic process’’ was

most commonly associated GO term for significant DE transcripts

in the PBAFB verses AFB comparison (Figure S8). For example, a

transcript from CYP51A1 was significantly up-regulated in the

PBAFB group compared to the AFB group (Table S3). A higher

proportion of associations to the GO terms developmental process,

multicellular organismal process, and response to stimulus was

identified when comparing AFB1-treated groups (PBAFB vs. AFB)

than probiotic-treated (PBAFB vs. PB). When comparing the

probiotic treated groups, the GO terms biological regulation,

cellular component organization or biogenesis, localization, and

signaling occurred more frequently, illustrating the impact of AFB1

exposure on apoptotic, cell cycle and other regulatory genes.

Further investigation of the hepatic functions and pathways of

these significant transcripts in the domestic turkey will be

necessary to determine molecular mechanism by which AFB1

initiates carcinogenesis and lipid misregulation in poultry.

Discussion

Along with providing a first characterization of the turkey liver

transcriptome, this study identified several genes potentially

affected by exposure to AFB1 and probiotics. Despite their known

role in AFBO production [11], expression of CYP1A5 and

CYP3A37 did not change in the AFB1-treated groups. However,

probiotics influenced expression of transcripts from other CYP

gene family members. AFB1 exposure also had no significant

impact on expression of GSTA genes. Domestic turkey hepatic

GSTAs are unable to conjugate AFBO in vivo, yet these enzymes

have activity when heterologously expressed in E. coli [9,10].

Hence, gene silencing mechanisms or post-transcriptional modi-

fications are likely responsible for this dysfunction [9], either of

which is consistent with the absence of significant DE in GSTA

transcripts. Invariable expression in these CYP and GSTA genes

means that the transcriptional response to AFB1 is mediated

through genes not previously linked to aflatoxicosis in the domestic

turkey.

Changes in transcript abundance were quantified through

RNA-seq and novel genes in the liver transcriptome were

associated with exposure to AFB1 and/or probiotics. Functional

analysis of the significantly affected transcripts identified three

major impacts: effects of AFB1 on genes linked to cancer, effects of

AFB1 on genes involved in lipid metabolism, and opposing effects

of PB and the combined PBAFB treatment.

AFB1 and Cancer
The carcinogenic nature of AFB1 in mammals is well

established and chronic exposure is an established risk factor for

hepatocellular carcinoma in humans [2,8]. In poultry, both acute

and chronic AFB1 consumption cause lesions in the liver,

including necrotic hepatocellular loci, focal hemorrhages, and

fatty vacuolation of hepatocytes [5,6,34,35]. Dietary AFB1 is also

mutagenic in chickens, turkeys and other poultry, first generating

biliary hyperplasia, followed by fibrosis and nodular tissue

regeneration during long-term exposure [5,6,34,35]. Histological

analysis on liver sections from the AFB group identified, on

average, 5–30% necrotic hepatocytes and moderate biliary

hyperplasia [18]. Adverse effects on the liver from AFB1 exposure

are likely driven by genes associated with the cycle cell and

apoptosis.

Differential expression analysis of the turkey liver transcriptome

identified a large number of transcripts derived from genes with

known links to liver cancer in mammals. The strongest down-

regulation was observed in transcripts from A2M, which encodes a

proteinase inhibitor. A2M has been associated with human and rat

Figure 4. Comparative expression of select transcripts across four treatment groups. Heat maps were generated from variance stabilized
and normalized read counts using DESeq [27] across the control (CNTL), aflatoxin B1 (AFB), probiotic mixture (PB), and probiotic + aflatoxin B1 (PBAFB)
groups. Expression level for each transcript is represented by a color range from green (low expression) to red (high expression). (A) 50 transcripts
with the highest expression across all treatments. (B) 50 transcripts with the most highly significant differential expression (DE) in pair-wise
comparisons to the CNTL.
doi:10.1371/journal.pone.0100930.g004
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hepatocellular carcinoma (HCC), but reports conflict on whether

its expression is up- or down-regulated [36,37,38]. AFB1 has also

been shown to decrease A2M secretion from rat hepatocytes [39].

However, it is unlikely that A2M is a driver of AFB1 toxicity in the

turkey, since A2M transcripts were down-regulated in all three

treatments, including the PB group.

Most transcripts with significant DE in the AFB group were up-

regulated. Large increases in expression were observed for MDM2,

which encodes an E3 ubiquitin-protein ligase that acts on p53,

causing its degradation by the proteosome. In human lung cells

expressing P450s, AFB1 has been shown to cause a concentration-

dependent increase in MDM2 expression [40]. Overexpression

and polymorphisms in MDM2 have been linked to human HCC

[41,42,43]. Up-regulation of MDM2 was also observed in response

to AFB1 exposure in swine [19] and this may be a conserved

response to AFB1 exposure across diverse species, including

poultry. Misregulation of MDM2 could play a role in hyperplasia

and other liver remodeling processes by over-inhibiting tumor

suppressors and apoptotic pathways and decreasing control of the

cell cycle.

Another gene up-regulated in hepatic responses to AFB1 was

osteopontin (OPN), which encodes an extracellular matrix glyco-

protein produced by both immune cells and tumor cells. In

mammalian liver, OPN acts as a signaling molecule and has been

linked to inflammation, leukocyte infiltration, fibrosis, and

carcinogenesis [44,45]. Unlike the turkey, OPN expression was

down-regulated in the chicken liver after AFB1 exposure [13]. This

difference may be a result of the increased sensitivity of turkeys to

AFB1 toxicity [3,5]. AFB1 can also turn on expression of genes not

found in untreated birds (i.e. the CNTL group). MAT2A was

expressed only in the AFB and PBAFB treatment groups. In

humans, two genes, MAT1A and MAT2A, encode interchangeable

synthase subunits that produce S-adenosylmethionine, which is

involved in hepatocyte growth and apoptosis [46]. In normal

mammalian hepatocytes, only MAT1A is expressed, while devel-

opment of HCC turns on MAT2A expression in place of MAT1A.

MAT1A has been shown to be down-regulated after AFB1

consumption in pigs [19]. Up-regulation of MDM2, OPN and

MAT2A in the turkey appears to participate in the proliferative

phenotype in the liver after AFB1 exposure.

AFB1 and Lipids
AFB1 exposure also changes lipid metabolism and causes

steatosis in the liver. In turkeys and chickens, increased lipid

content often causes liver pigmentation to become pale or

yellowed [5,35,47]. This change arises from an increase in lipid-

containing vacuoles in hepatocytes [5,6,35]. Pale livers were

observed in turkeys from the AFB group [18] and significant DE

was identified for multiple genes involved in lipid regulation. LPL

and MID1IP1 were significantly down-regulated only in the AFB

Figure 5. Magnitude of expression changes in transcripts with significant DE in each comparison between treatments. The number of
significantly up- or down-regulated transcripts in each range of log2 fold change (FC) is illustrated for each pair-wise comparison. (A) Transcripts with
significant differential expression (DE) in the aflatoxin B1 (AFB), probiotic mixture (PB) and probiotic + aflatoxin B1 (PBAFB) groups compared to the
control (CNTL) group. (B) Transcripts with significant DE in PBAFB compared to AFB and PB.
doi:10.1371/journal.pone.0100930.g005
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group. A similar decrease in LPL expression was observed in the

liver of chickens exposed to AFB1 [13]. As a lipase, LPL is involved

in the breakdown of triglycerides in lipoproteins and essential to

lipid metabolism and storage. High hepatic LPL activity and

mRNA expression have been linked to liver steatosis in humans

and mice [48,49]. Lower plasma LPL activity and increased

hepatic expression have also been correlated with higher lipid

storage in livers from certain breeds of geese [50,51]. AFB1 has an

opposite effect on LPL expression, but still induces fatty change in

hepatocytes. AFB1 impacts on LPL activity in the liver and

periphery and the mechanism of lipid accumulation in the liver

need to be elucidated. In mammals, MID1IP1 is a regulator of

lipogenesis that turns on fatty acid synthesis through activation of

acetyl-coA carboxylase [52,53]. Down-regulation of this lipogenic

protein in the turkey could be a hepatic response to the increased

retention of lipids in the liver.

Impact of Probiotics
Previous research has identified many beneficial probiotics

useful as feed additives in poultry, including strains of Lactobacillus,

Bifidobacteria and Propionibacteria [54,55,56]. In this challenge study,

probiotic treatment significantly decreased expression of many

transcripts. Reduced expression of genes involved in metabolic

processes, such as A2M, ENDOU, and serine racemase (SRR),

could limit the biosynthetic capabilities of the liver. Examining the

liver transcriptome of the PBAFB group allows for evaluation of

the efficacy of the PB treatment in reducing aflatoxicosis. PBAFB

treatment decreased the number of transcripts with significant DE

compared to AFB1 treatment alone and led to normal liver weights

and weight gains [18]. However, the levels of hepatocyte necrosis

and biliary hyperplasia were not reduced [18]. Most transcripts

with significant DE in both the AFB and PBAFB groups had a

higher log2 fold change in the PBAFB group, suggesting a

synergistic effect. Additionally, approximately 70 transcripts had

significant DE only in the PBAFB group, further suggesting an

interaction between these treatments. Therefore, the addition of

PB does modulate the effects of AFB1, but expression levels for

many transcripts do not resemble the CNTL group. Although full

mitigation of AFB1 toxicity was not expected, treatment with

probiotics was not as protective as might be predicted. Further

experiments would be needed to determine if higher concentra-

tions or different compositions of dietary probiotics can reduce

hepatic lesions and gene expression changes caused by AFB1.

Conclusions

General characterization of liver transcriptome dynamics in

response to toxicological challenge with AFB1 was achieved by

RNA-seq in the turkey. Transcriptome analysis identified genes

involved in responses to AFB1, genes that were misregulated as a

result of toxicity, and genes modulated by the probiotics. These

genes provide a list of targets for further investigation of AFB1

toxicity in the turkey liver. MDM2, OPN and other genes linked to

cancer provide evidence for the apoptotic and cell cycle regulatory

pathways that are likely the molecular mechanisms of inflamma-

tion, proliferation and liver damage in aflatoxicosis. Further

investigation of these pathways at the cellular level would be

beneficial to both basic understanding of aflatoxicosis and

applications to reduce toxic processes. Regulatory and signaling

genes like OPN could be useful for direct modulation of responses

to toxicity. Genes such as LPL, MAT2A, and MDM2 could be

utilized as biomarkers for AFB1 exposure and aflatoxicosis in flocks

and in efficacy testing for potential toxicity reduction strategies.

Figure 6. Biological process GO terms associated with significant DE transcripts in treatments compared to CNTL. For each pair-wise
comparison to the control (CNTL) group, level 2 biological process Gene Ontology (GO) terms were matched to transcripts with significant differential
expression (DE) using BLAST2GO [32]. The distribution of associated GO terms for significant transcripts in the aflatoxin B1 (AFB), probiotic mixture
(PB), and probiotic + aflatoxin B1 (PBAFB) groups was plotted as the percent of total associations.
doi:10.1371/journal.pone.0100930.g006
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Investigating aflatoxicosis through transcriptome sequencing

provides a powerful approach for research aiming to reduce

poultry susceptibility to AFB1. In this context, RNA-seq would be

an effective tool for future toxicity studies. By examining the

transcriptomes of the spleen, kidney, muscle and other tissues, the

systemic effects of AFB1 exposure could be further elucidated.

Comparative analysis of other galliform species could also

distinguish differences in AFB1 response, beyond the known

variation in liver bioprocessing [57,58]. Characterizing variation

in transcriptome responses to AFB1 and to other mycotoxins and

dietary contaminants could allow for the identification of

protective alleles with the potential to mitigate the effects of

aflatoxicosis.

Supporting Information

Figure S1 Average quality scores per read for RNA-seq
datasets after filtering and trimming. Quality scores were

averaged and the number of reads totaled by score with FastQC

[22]. Quality scores were plotted against read counts for the

cumulative liver data (black), as well as each treatment dataset.

The control (CNTL) (green) and aflatoxin B1 (AFB) (blue) samples

were run on flow cell 1, while the probiotic mixture (PB) (red) and

probiotic + aflatoxin B1 (PBAFB) (purple) were run on flow cell 2.

(TIF)

Figure S2 Quality scores at each base position for RNA-
seq datasets after filtering and trimming. Box-plots were

generated using FastQC [22]. The red line represents the median

and the blue line the mean at each base. (A) Control (CNTL). (B)

Aflatoxin B1 (AFB). (C) Probiotic mixture (PB). (D) Probiotic +
aflatoxin B1 (PBAFB).

(TIF)

Figure S3 Depth of coverage on predicted transcripts
for each treatment group. The number of transcripts was

plotted for each level of read coverage for the control (CNTL)

(green), aflatoxin B1 (AFB) (blue), probiotic (PB) (red) and probiotic

+ aflatoxin B1 (PBAFB) (purple) groups. A threshold of 0.1 read/

million mapped was used to filter transcripts for coverage. The

minimum read depth to meet this threshold varied most between

treatments on flow cell 1 (long dash) and flow cell 2 (short dash)

due to different library sizes.

(TIF)

Figure S4 Histogram of de novo assembled transcript
lengths after coverage threshold filtering. Each bin

represents the number of filtered transcripts with a length less

than or equal to the bin value, but greater than the previous bin.

(TIF)

Figure S5 Pair-wise comparisons of mean expression
and log2 FC between treatments. Each plot shows log2 fold

change (FC) against mean normalized expression for predicted

transcripts with non-zero expression values in both treatments

generated in DESeq [27]. Transcripts with significant differential

expression (DE) (q-values #0.05) are highlighted in red. (A).

Probiotic mixture (PB) to control (CNTL). (B) Probiotic + aflatoxin

B1 (PBAFB) to CNTL. (C) PBAFB to aflatoxin B1 (AFB). (D)

PBAFB to PB.

(TIF)

Figure S6 Box-plots of log2 FC for transcripts with
significant DE in each pair-wise comparison. Each plot

shows the distribution of log2 fold change (FC) for transcripts with

significant differential expression (DE) (q- value #0.05) between

treatments and with non-zero normalized expression values in
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both treatments. Treatments with significantly different mean log2

FC (p-value #0.05) are indicated by an *. Outliers are illustrated

by open circles. (A) Log2 FC for significant transcripts in each

treatment compared to the control (CNTL). (B) Log2 FC for

significant transcripts in the probiotic + aflatoxin B1 (PBAFB)

group compared to the aflatoxin B1 (AFB) or probiotic mixture

(PB) group.

(TIF)

Figure S7 Relationship between log2 FC and signifi-
cance level for each pair-wise comparison. Each volcano

plot shows –log10 p-value against log2 fold change (FC) for

predicted transcripts expressed in both treatments. Transcripts

with significant differential expression (DE) (q-value #0.05) are

highlighted in red. (A) Aflatoxin B1 (AFB) to control (CNTL). (B)

Probiotic mixture (PB) to CNTL. (C) Probiotic + aflatoxin B1

(PBAFB) to CNTL. (D) PBAFB to AFB. (E) PBAFB to PB.

(TIF)

Figure S8 Biological process GO terms associated with
significant DE transcripts in PBAFB inter-treatment
comparisons. Using BLAST2GO [32], level 2 biological

process Gene Ontology (GO) terms were identified for transcripts

with significant differential expression (DE) in the probiotic +
aflatoxin B1 (PBAFB) group when compared to the aflatoxin B1

(AFB) or probiotic mixture (PB) group. The distribution of

associated GO terms for these significant transcripts was plotted

as the percent of total associations.

(TIF)

Table S1 Results of filtering predicted liver transcripts
by a coverage threshold (0.1 read/million).
(DOCX)

Table S2 Distribution of filtered transcripts across the
turkey genome (build UMD 2.01).

(DOCX)

Table S3 Characterization of predicted transcripts with
significant DE identified using DESeq. Results of differen-

tial expression (DE) analysis in DESeq [27] were compiled with

read counts from HTSeq [26], BLAST annotations, and Gene

Ontology (GO) terms from BLAST2GO [32]. Each tab represents

a pair-wise comparison between treatment groups. Raw and

normalized expression values, fold change (FC), log2 FC, p-values,

q-values (FDR-adjusted p-values), top BLAST hits for the turkey,

chicken, Swiss-Prot and non-redundant (NR) databases, and GO

terms are shown for each significant transcript.

(XLSX)

Checklist S1 ARRIVE Checklist.

(DOC)
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21. Gratz S, Täubel M, Juvonen RO, Viluksela M, Turner PC, et al. (2006)

Lactobacillus rhamnosus strain GG modulates intestinal absorption, fecal excretion

and toxicity of aflatoxin B1 in rats. Appl Environ Microbiol 72: 7398–7400.

22. Andrews S (2010) FastQC: A quality control tool for high throughput sequence

data. Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Accessed 2011 October 6.

23. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly

using de Bruijn graphs. Genome Res 18: 821–829.

24. Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo

RNA-seq assembly across the dynamic range of expression levels. Bioinformatics

28: 1086–1092.

25. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-

Wheeler Transform. Bioinformatics 25: 1754–1760.

26. Anders S (2010) HTSeq: Analysing high-throughput sequencing data with

Python. Available: http://www-huber.embl.de/users/anders/HTSeq/. Ac-

cessed 2011 September.

27. Anders S, Huber W (2010) Differential expression analysis for sequence count

data. Genome Biol 11: R106.

28. Hulsen T, de Vlieg J, Alkema W (2008) BioVenn - a web application for the

comparison and visualization of biological lists using area-proportional Venn

diagrams. BMC Genomics 9: 488.

29. Oliveros JC (2007) VENNY: An interactive tool for comparing lists with Venn

Diagrams. Available: http://bioinfogp.cnb.csic.es/tools/venny/. Accessed 2013

August 14.

30. Chen H, Boutros PC (2011) VennDiagram: a package for the generation of

highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12:35.

Turkey Hepatic Transcriptome Response to AFB1

PLOS ONE | www.plosone.org 12 June 2014 | Volume 9 | Issue 6 | e100930

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www-huber.embl.de/users/anders/HTSeq/
http://bioinfogp.cnb.csic.es/tools/venny/


31. Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment

program for mRNA and EST sequences. Bioinformatics 21: 1859–1875.
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