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Abstract

It has been reported recently that the cystic fibrosis transmembrane conductance regulator (CFTR) besides transcellular
chloride transport, also controls the paracellular permeability of bronchial epithelium. The aim of this study was to test
whether overexpressing wtCFTR solely regulates paracellular permeability of cell monolayers. To answer this question we
used a CFBE41o– cell line transfected with wtCFTR or mutant F508del-CFTR and compered them with parental line and
healthy 16HBE14o– cells. Transepithelial electrical resistance (TER) and paracellular fluorescein flux were measured under
control and CFTR-stimulating conditions. CFTR stimulation significant decreased TER in 16HBE14o– and also in CFBE41o–

cells transfected with wtCFTR. In contrast, TER increased upon stimulation in CFBE41o– cells and CFBE41o– cells transfected
with F508del-CFTR. Under non-stimulated conditions, all four cell lines had similar paracellular fluorescein flux. Stimulation
increased only the paracellular permeability of the 16HBE14o– cell monolayers. We observed that 16HBE14o– cells were
significantly smaller and showed a different structure of cell-cell contacts than CFBE41o– and its overexpressing clones.
Consequently, 16HBE14o– cells have about 80% more cell-cell contacts through which electrical current and solutes can
leak. Also tight junction protein composition is different in ‘healthy’ 16HBE14o– cells compared to ‘cystic fibrosis’ CFBE41o–

cells. We found that claudin-3 expression was considerably stronger in 16HBE14o– cells than in the three CFBE41o– cell
clones and thus independent of the presence of functional CFTR. Together, CFBE41o– cell line transfection with wtCFTR
modifies transcellular conductance, but not the paracellular permeability. We conclude that CFTR overexpression is not
sufficient to fully reconstitute transport in CF bronchial epithelium. Hence, it is not recommended to use those cell lines to
study CFTR-dependent epithelial transport.
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Introduction

In the apical and basolateral membrane, embedded ion

channels and transporters together provide for epithelial (transcel-

lular) transport. The active transport is directly or indirectly ATP-

dependent, while the passive one is driven by electrochemical

gradients maintained by active transporters [1]. It is likely that the

paracellular pathway is regulated in parallel with the transcellular

pathway because both routes determine net transport and must

work in concert as they are functionally matched to meet the

transport requirements of a specific tissue [2]. On the apical

membrane of epithelial cells localized cystic fibrosis transmem-

brane conductance regulator (CFTR) is a cyclic adenosine

monophosphate (cAMP)-regulated channel, which is found in

various organs like lung, pancreas, intestine, testes, and others

[3,4]. CFTR is a limiting factor of the airway epithelial fluid

secretion and defect of this protein results in the impaired

epithelial salt and water transport, causing stasis of mucus, chronic

inflammation and infection in lung. Meanwhile, over 1,900

mutations of this protein are known (http://www.genet.sickkids.

on.ca) and the most common mutation causing cystic fibrosis (CF)

is the deletion of phenylalanine at position 508 (F508del) [5]. The

CF phenotype is the consequence of CFTR insufficiency not only

in terms of its chloride conductance but also concerning its

regulatory function on other ion channels and intracellular

interaction partners [6–8]. In this line, CFTR is assumed to be

involved in the regulation of paracellular permeability [9–12].

Paracellular transport of solutes and water is driven by the

transepithelial electrochemical gradient [13] and modulated by

tight junctions (TJ), a multi-protein complex, which acts as a

permeability barrier [14,15]. Tight junctions allow paracellular

permeation through at least two parallel pathways: i) a pore

pathway - a system of charge-selective small pores (4 Å exclusion

radius) and ii) a leak pathway - larger discontinuities in barrier,

which lack charge and size discrimination [16]. The pore pathway

has a high capacity and is responsible for the flux of specific ions

and small uncharged solutes. However, through the leak pathway

only a small amount of larger molecules can pass [17].
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In the presented study, we compared polarized human

bronchial epithelial cell line CFBE41o– transfected with wild type

CFTR (wtCFTR) and mutant F508del-CFTR [18] to 16HBE14o–

and CFBE41o– cell lines, to investigate the influence of CFTR and

F508del-CFTR on paracellular permeability. The commonly used

16HBE14o– and CFBE41o– cell lines have the disadvantage that

they do not originate from the same donor and therefore they have

a different genetic background. This potential problem can be

solved by the overexpression of wtCFTRwtCFTR and F508del-

CFTR in the CFBE41o– cell line, which should mimic healthy and

CF airway epithelia [18]. The aim of this study was to test if

expression of wtCFTR in CF cells restores epithelial function, not

only in terms of chloride conductance, but also regarding CFTR

dependent regulation of paracellular permeability. Limiting for

fluorescein flux (as a measure of paracellular solute transport)

across epithelia is the protein structure and composition of TJ.

Tight junction barrier function and charge selectivity are

determined by claudins, a large family of integral tight junction

transmembrane proteins [17]. Claudins and other TJ proteins are

organized in a continuous network of parallel and interconnected

strands at the lateral membranes of adjacent cells. However,

permeability depends not only on microstructure regulated by

molecular sieves formed by intermeshing TJ strands on the

extracellular surface of opposing membranes but also on cell size

[19]. Monolayers formed by small cells show more junctional

length per area than large cells. Large junctional length per area

means more paracellular shunts and subsequently, a higher

transport capacity of these pathways. Together the transport

capacity of the paracellular pathway is determined by TJ

composition and cell morphology within a monolayer or a tissue.

This was particularly considered in this study.

Methods

Materials
Unless specified otherwise, all chemicals were obtained from

Sigma-Aldrich (Deisenhofen, Germany).

Cell Culture
The cell line 16HBE14o– was generated by the transformation

of normal bronchial epithelial cells with SV40 large T-antigen

[20]. The 16HBE14o– cells retain differentiated epithelial

morphology by forming polarized layers with microvilli and cilia

[21]; [22]. The CFBE41o– cell line was generated by transforma-

tion of cystic fibrosis (CF) tracheo-bronchial cells with SV40 and is

homozygous for the F508del-CFTR mutation [23]. CFBE41o– cell

line was corrected with a plasmid containing either full-length

(6.2kb) wild type wtCFTR (CFBE-WT) or F508del-CFTR (4.7 kb)

(CFBE-delF) cDNA [18]. All cell lines were kind gifts from Dr.

Dieter C. Gruenert, California Pacific Medical Center Research

Institute, San Francisco, CA, USA. Cell lines were grown in

Eagle’s Minimal Essential Medium (Invitrogen, Karlsruhe,

Germany) and supplemented with 10% Fetal Bovine Serum

(PAA Laboratories, Pasching, Austria), 2 mM L-glutamine, 50 U/

ml penicillin and 50 mg/ml streptomycin. Additionally for

CFBE41o– cell lines transfected with plasmids 300 mg/ml Hygro-

mycin B (InvivoGen, San Diego, CA, USA) was added as selective

agent. All cell lines were cultured in a 5% CO2-95% air incubator

at 37uC. The cell culture medium was changed three times per

week. The confluent cells were trypsinized and 1.66105 cells were

seeded on a ThinCert cell culture inserts (12-well plate, Greiner

Bio-One, Germany). The flasks and inserts were coated with a

solution containing collagen type I from calf skin and human

plasma fibronectin (Invitrogen, Karlsruhe, Germany). In our

experiments the numbers of subcultures (P) were P4.78 for

CFBE41o–, P4.77.48 for CFBE-WT, P4.77.34 for CFBE-delF and

P4.46 for 16HBE14o– cells. The absolute number of passages (P)

as denoted by ‘‘(passages after primary isolation).(passages after

immortalization).(passages after CFTR transfection).

Stimulation of Epithelial Cells
In order to activate CFTR related epithelial transport, cells

were treated with 8-(4-chlorophenylthio) adenosine 39, 59cyclic

monophosphate sodium salt (8cpt-cAMP) in final concentration of

100 mM.

Continues Transepithelial Electric Resistance (cTER)
Measurements

Determination of cTER were performed as described previously

[12]. Briefly, we used a cover lid for 12 well ThinCert plates

equipped with 8 sets of six titanium electrodes (4 to inject current

and two to measure voltage) creating a homogenous electrical field

(Fig. 1). Electrical current pulses with a frequency of 125 Hz were

applied at a given time interval for 1 s. The electrical resistance of

cell-free ThinCert inserts (128 V?cm2) was subtracted from TER

raw data. Data acquisition and processing was performed with a 2-

channel PowerLab system (26 Series, ADInstruments GmbH,

Germany).

Ussing Chamber Experiments
For Ussing chamber experiments, 16HBE14o– and CFBE41o–

cells were seeded on filter supports (Millicell-PCF, 0.4 mm pore

size, Millipore) and grown to confluence within 7 days. Confluent

cells layers on filter supports were directly mounted in conven-

tional Ussing- chambers and both hemi-chambers were filled with

10 ml standard bath solution (in mM: 140 Na+, 123.8 Cl2,

5.4 K+, 1.2 Ca2+, 1.2 Mg2+, 2.4 HPO4
22, 0.6 H2PO4

2,

21 HCO3
2, 10 D(+)-glucose, pH 7.4 when equilibrated with 5%

CO2 in O2 at 37uC). Flux measurements were carried out with

and without applying voltage-clamp. After equilibration, flux

tracers (fluorescein sodium salt, final concentration 100 mM) were

added to the apical side and 300 ml aliquots were collected from

the receiving side every 10 min and immediately replaced by fresh

standard bath solution. Duplicates of fluorescein-containing

samples were pipetted onto 96-well plates (140 ml/well) together

with defined dilutions of fluorescein in standard bath saline for

calibration and fluorescence was quantified using a plate reader

(TECAN, infinite M200). Flux was calculated as increase in tracer

quantity (corrected for dilution) per time unit and filter area

(0.6 cm2).

Immunostaining and Image Analysis
16HBE14o–, CFBE41o– and CFBE41o– cell lines transfected

with wtCFTR or F508del-CFTR were grown to confluence on

ThinCert inserts, fixed in 3,7% PFA at RT for 15 min, and then

permeabilized with 0.1% Triton X-100 for 5 min. After blocking

with 5% goat serum in PBS for 30 min, cells were incubated for

1 h with a mouse monoclonal antibody mouse-anti-ZO-1 (zonula

occludens-1) (BD Transduction Laboratories, NJ, USA), mouse-

anti claudin-4 and -5 or rabbit-anti caudin-3 and -7 (1:200,

Zymed/Invitrogen, San Francisco, CA) followed by labeled

secondary antibody Alexa-FlourTM 488 goat anti-mouse (Molec-

ular Probes, Inc., OR, USA) Cy2 goat anti-mouse or Cy5 goat

anti-rabbit (1:1000, Jackson Immuno Research, Newmarket, UK)

and DAPI 1:10000 (Invitrogen, OR, USA). Imaging was

performed using a Zeiss 510 Meta laser scanning microscopy

with a 63x oil objective or a Zeiss Observer Z fluorescence
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microscope with 40x and 100x oil objectives. Fluorescence

micrographs were acquired using an EMCCD camera (iXon

EM+ DU-888, Andor Technology, Belfast, Ireland) and Meta-

Morph (Molecular Devices, Inc., CA; USA).

The length and structure of the intercellular junction of

monolayers were determined after staining of cells with antibodies

against ZO-1 using ImageJ image analysis software (Rasband

W.S., ImageJ, National Institutes of Health, Bethesda, Maryland,

USA, http://rsb.info.nih.gov/ij/, 1997–2004).

Measurement of Fluorescein Flux
The transport of the fluorescein sodium salt (fluorescein) was

determined to investigate the paracellular permeability of cell

monolayers grown on 12 well ThinCert inserts (all cell lines).

Integrity of the monolayer was checked prior to the experiment by

determination of TER. The cell monolayers were rinsed gently

twice with MEM medium without phenol-red indicator and left

for 1–2 hours to equilibrate in the same medium. The TER of the

monolayers was measured again. A stock solution of fluorescein

was mixed with fresh MEM and added to the apical compartment

(end concentration 10 mM). Samples (100 ml) were withdrawn

immediately and after 1 h from the apical and basolateral

compartment. The flux of fluorescein across the cell layer was

calculated from the net increase of the fluorescence in the

basolateral compartment measured with a fluorescent microplate

reader (Labsystem Fluoroskan II, GMI, Inc., USA) (Ex = 485 nm,

Em = 538 nm). Data are presented as the fluorescein flux (nmol

h21 cm22).

Western Blot
ProteoExtract Transmembrane Protein Extraction Kit (Calbio-

chem) was used for protein isolation according to the manufac-

tures protocol ‘Extraction of Membrane Proteins from Adherent

Tissue Culture Cells’. Protein concentration was determined by

Pierce BCA assay and 10 mg protein per lane was loaded on

12.5% polyacrylamid gels. Subsequent to SDS gel electrophoresis,

proteins were blotted onto polyscreen PVDF transfer membranes

(Perkin Elmer, Waltham, MA). Blots were blocked in 5% BSA

before overnight incubation with primary antibodies (mouse-anti

claudin-4 and -5 or rabbit-anti caudin-3, -7 and -18, all Zymed/

Invitrogen, 1:1000). Peroxidase-conjugated AffiniPure F(ab9)2
fragment goat anti-mouse/2rabbit (1:10000, Jackson ImmunoR-

esearch) were used as secondary antibodies and Lumi-LightPLUS

Western Blotting Kit (Roche, Grenzach-Wyhlen, Germany) was

used for visualizationin a Fusion FX 7 image acquisition system

(Vilber Lourmat, Eberhardzell, Germany).

RNA Extraction
All cell lines were grown on coated culture dishes. RNA was

extracted from confluent cells using the RNeasy mini kit (Qiagen

Hilden, Germany). The RNA was DNase treated (Deoxyribonu-

clease I, Invitrogen, Karlsruhe, Germany). The total RNA

concentration and quantity were assessed by the absorbance at

260 nm using a Bio Photometer (Eppendorf, Hamburg, Ger-

many). 1 mg of total RNA was reverse-transcribed to cDNA using

SuperScript III Reverse Transcriptase (Invitrogen, Karlsruhe,

Germany). For each cell line three cDNA samples from separate

RNA extractions and reverse transcription reactions were

employed.

Real-time PCR
Quantitative analysis of the DNA and RNA was performed in

20 ml with 1 mM each of predesigned TaqMan Gene Expression

Assays (Applied Biosystems, Foster City, CA, USA) in Eppendorf

Mastercycler ep realplex4 PCR thermal cycler (Eppendorf,

Hamburg, Germany). The assay ID numbers of the validated

genes are as follows: Hs00357011-m1 for CFTR and

Hs02758991-g1 for GAPDH (Applied Biosystems, Foster City,

CA, USA). The amplification was performed as follows: an initial

step at 95uC for 10 min, followed by 45 cycles of 95uC for 15 sec

and 60uC for 60 sec. All samples were run in triplicate. The

22DDCT method was used to calculate the amount of gene

expression [24]. CFTR mRNA expression was normalized to the

parallel measured endogenous controls GADPH in each cell line.

CFTR expression value of 16HBE14o– cells was defined as 1 and

CFTR expression of all other cells were normalized to this value.

Statistics
Median values 6 quartiles or mean 6 SD are reported here.

The Mann–Whitney–Wilcoxon (MWW) tests, One-way Anova

analysis or Student t test were performed, respectively, to test for

statistical significance. A p-value of ,0.05 was accepted to indicate

significant differences.

Figure 1. Scheme of the continuous transepithelial resistance measurement device (cTER). The ThinCert culture plate contains eight filter
inserts with cell monolayers. The upper plate (lid) has six titanium electrodes for each insert, four electrodes to inject the current and two to measures
the voltage. Electrodes are arranged in a way that resulted in a fairly homogenous electrical field.
doi:10.1371/journal.pone.0100621.g001
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Results

Continous Transepithelial Electrical Resistance (cTER)
Epithelial cell monolayers can be characterised by cTER, which

is determined primarily by the electrical resistance of the apical

and basolateral cell membrane and the paracellular resistant,

generated by the TJ complex [25]. A high TER value suggests a

low permeability to ionic movement. TER values of 24 to 33

independent experiments showed rather large variations. There-

fore, data are expressed as median [first quartile; third quartile].

Median electrical resistances of monolayers after 8–11 days in

culture was 703 [854; 651] V*cm2 for 16HBE14o– and 528 [616;

504] V*cm2 for CFBE41o– after correction for the background

contributed by the ThinCert insert and medium (Fig. 2).

16HBE14o– showed statistically significant higher TER than

CFBE41o–. The TER of CFBE-delF cell (470 [534; 407] V*cm2)

and CFBE-WT cell monolayers (431 [514; 387] V*cm2) were

comparable to TER of the parental CFBE41o– cell line (no

statistical significance).

Stimulation of CFTR with cAMP resulted in a breakdown of

resistance in all wtCFTR expressing cell monolayers. TER of

16HBE14o– cells decreased by 60% within 5 minutes (Fig. 3A) and

also CFBE-WT cell monolayer shows a clear but weaker response

upon CFTR stimulation (decrease of TER by 30% within 5

minutes, Fig. 3B). By contrast, TER of all F508del-CFTR

expressing cells rose transiently. CFBE41o– increased by 30%

and CFBE-delF by 10% respectively after stimulation with cAMP

(Fig. 3A, B).

Fluorescein Flux
To distinguish between the transcellular und paracellular

permeability we measured the flux of the tracer molecule

fluorescein, which indicates the movement exclusively through

the paracellular pathway [26]. Under control conditions fluores-

cein flux was comparable in all tested cell lines: 0.114 [0.191;

0.103] nmol *cm22 h21 for 16HB14o–, 0.118 [0.167; 0.098] nmol

*cm22 h21 for CFBE41o–, 0.105 [0.185; 0.066] nmol *cm22 h21

for CFBE-WT and 0.125 [0.147; 0.094] nmol *cm22 h21 for

CFBE-delF (Fig. 4A, B). Stimulation of CFTR with cAMP

significantly increased fluorescein flux across the 16HBE14o–

monolayers (0.317 [0.348; 0.311] nmol *cm22 h21) but did not

affect flux across CFBE41o– (0.125 [0.158; 0.091] nmol

*cm22 h21) (Fig. 4A), CFBE-WT (0.091 [0.128; 0.062] nmol

*cm22 h21) and CFBE-delF (0.103 [0.203; 0.081] nmol

*cm22 h21) monolayers (Fig. 4B). These results indicate that

stimulation of CFTR affects only paracellular permeability of

healthy epithelia (16HBE14o–).

Because fluorescein is a negatively charged molecule, we tested

if the transepithelial potential difference influenced the para-

cellular flux of fluorescein. First, there was no preferential

direction of fluorescein transport across 16HBE14o– cell mono-

layers (apical to basolateral or vice-versa). Second, there was no

difference in fluorescein transport in Ussing-chamber experiments

when transepithelial potential difference was clamped to zero by

injecting short-circuit current. The permeability to fluorescein in

16HBE14o– cell monolayers exposed to voltage clamp shows no

statistically significant difference to 16HBE14o– cells without

voltage clamp (n = 13). We observed the same effects for

CFBE41o– cells (data not shown).

Cell Morphology
The paracellular flux depends not only on TJ structure and

composition but also on junctional length (cell-cell contact length)

per area. Monolayers formed by small cells show usually more

junctional length per area than large cells. But junctional length

depends not only on cell size but also on microstructure of cell-cell

contacts (wrinkles, folds, grooves, etc.). More junctional length per

area means higher transport capacity due to more paracellular

shunts per area (assuming a comparable TJ protein composition).

In summary the transport capacity of the paracellular pathway is

determined by TJ composition and cell morphology within a

monolayer or a tissue.

Morphology of TJ pathway plays an important role in

paracellular permeability. TJ length per area was derived from

monolayers immunolabeled for a marker of tight junctions (ZO-1)

(Fig. 5A) and analysed by imaging software ImageJ. Length of

16HBE14o– TJ per mm2 is about 30% higher compared to

CFBE41o– and its transfected clones (Fig. 5C), so they have more

junctional length per unit area through which electrical current

and solutes can pass. 16HBE14o– cells have also more branched

cell borders than the other cell lines. The ratio of persistent length

to contour length is about 1.4. In contrast CFBE41o– cells show a

ratio of about 1.1 (Fig. 5B). Considering these ratios allow

calculating the TJ length per mm2 for each cell line. As a result,

16HBE14o– cells show about 80% higher length of cell-cell

contact per area than CFBE41o– and its transfected clones

(Fig. 5C). Assuming the same TJ composition, a monolayer with

smaller cells should have lower TER and higher solute flux [16].

However we observed that 16HBE14o– monolayers show

significantly higher TER values than CFBE41o– and CFBE41o–

clones transfected with wtCFTR or F508del-CFTR. Epithelial

permeability to fluorescein, a measure of passive leakage across the

epithelium was correlated to the TJ length per area (Fig. 6A, B).

All cell lines show statistically indistinguishable fluorescein flux

under control conditions.

Claudin Expression
Based on these results it is likely that the TJ composition differs

between the investigated cell lines. Both Western blot and

immuno-stainings demonstrated that 16HBE14o– and CFBE41o–

cells expressed claudins-3, -4, -5 and -7 that had previously been

Figure 2. Continuous Transepithelial electrical resistance
measurement (cTER). All cell monolayer were grown on ThinCert
supports. cTER was monitored in all cell lines after they had reached
confluence. 16HBE14o– cells exhibit significantly higher TER values in
comparison to CFBE41o– and its transfected clones. Data are presented
as a box-plots showing raw data (circles), median (horizontal line), 25
and 75 percentile (box) and SD (whiskers) (n = 24–33, p,0.05).
doi:10.1371/journal.pone.0100621.g002
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described to be highly expressed in alveolar epithelial cells (Fig. 7,

for rev. see [27]). No specific staining for claudin-18 could be

detected (date not shown). Whereas expression for claudin-4, -5

and -7 was comparable for 16HBE14o– and all CFBE41o– cell

clones, claudin-3 expression was considerably stronger in

16HBE14o– cells than in the CFBE41o– cell line and its clones,

and thus independent of the presence of functional CFTR.

Claudin-3 has a tightening effect on the paracellular pathway [28].

Results demonstrated that the TJ composition of 16HBE14o– and

CFBE41o– cells is clearly different whereas CFBE41o– exhibits a

claudin expression, which is comparable to its clones transfected

with wtCFTR or F508del-CFTR.

Figure 3. Changes in transepithelial electrical resistance (cTER) upon cAMP. A) 16HBE14o– (triangles) and CFBE41o– (circles) monolayer
were grown on ThinCert supports. After 8–11 days in culture they obtained 800 and 500 V*cm2 resistance respectively. After 5 min 8cpt-cAMP was
added, causing dramatic TER decrease in 16HBE14o– cells (red triangles) and an increase of TER for CFBE41o– (green circles). Addition of the same
amount of medium to control cells (open circles and triangles) did not show any effect. B) CFBE-WT monolayer (blue triangles) and CFBE-delF
monolayer (brown circles) were grown on ThinCert supports. After 8–11 days in culture both clones obtained 500–600 V*cm2 resistance. Stimulation
with 8cpt-cAMP caused a decrease of TER in CFBE-WT cells (blue triangles) and an increase for CFBE-delF (brown circles). Addition of the same
amount of medium to control cells (open circles and triangles) did not show any effect. Results are presented as mean 6 SD (n = 3–6, p,0.05).
doi:10.1371/journal.pone.0100621.g003
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Analysis of CFTR mRNA Expression by Real-time PCR
The levels of CFTR mRNA in all cell lines were quantified by

real-time PCR. CFTR expression value of 16HBE14o– cells was

defined as 1 and CFTR expression of all other cells were

normalized to this value. CFTR mRNA levels of the other cell

lines were displayed as a fold change relative to16HBE14o– (Fig. 8).

Vector-driven wtCFTR mRNA level in the complemented

CFBE41o- clone (CFBE-WT) was 1,864 fold and not significantly

higher compared to native CFTR mRNA in 16HBE14o- cells.

CFBE-delF cells show an even lower mRNA expression (20,37

fold, Fig. 8). Lowest expression of CFTR mRNA was found in

CFBE41o- cells.

Discussion

We previously compared paracellular permeability of

16HBE14o– and CFBE41o– cell lines [12]. Both of them represent

Figure 4. Paracellular permeability to fluorescein. A) Under
control conditions 16HBE14o– (red) and CFBE41o– (green) cell lines
showed a comparable fluorescein flux. Addition of cAMP significantly
increased fluorescein flux of 16HB14o– (red hatched box) but it did not
affect CFBE41o– cells (green hatched box). B) CFBE-WT cells (blue) and
CFBE-delF (brown) do not show statistically significant differences in
fluorescein flux neither under resting conditions nor upon stimulation
with cAMP (hatched boxes). Data are presented as a box-plot showing
raw data (circles), median (horizontal line) 25 and 75 percentile (box)
and SD (whiskers) (n = 7–13, p,0.05).
doi:10.1371/journal.pone.0100621.g004

Figure 5. Differences in TJ length. A) Upper image show
immunostaining of ZO-1 (green) and nuclei staining (blue). Lower

Paracellular Transport in Bronchial Epithelium
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widely used models of the human healthy and CF bronchial

epithelium. We could not completely exclude that the differences

between those two cell lines originated from the fact that they

came from different donors instead of different CFTR expression

in cell membrane. Thus, we tested if the same relationships of

TER and fluorescein flux could be observed between the CFBE-

WT and CFBE-delF cells. Those clones are new models of healthy

and CF epithelium, created by transfection with wtCFTR or

F508del-CFTR in the parental CFBE41o– cell line [18]. Under

control conditions 16HBE14o– showed significantly higher TER

values than CFBE41o– and its clones (CFBE-WT and CFBE-

delF). TER of both clones is indistinguishable but significantly

lower that TER of their parental cell line (CFBE41o–) (Fig. 2).

These results are consistent with the observations of Nilsson et al.,

who found that CFTR overexpression in CFBE41o– cells (CFBE-

WT) cells reduces TER [29]. However, it was also reported that

transient and stable CFTR expression in CFBE41o– cells

increased TER [30]. Furthermore, Illek et al. demonstrated by

Ussing chambers experiments that monolayers of parental

CFBE41o– and both transfected clones showed similar, moder-

ately ‘‘tight’’ transepithelial resistance [18]. Though, the method-

ology, used by these research groups was not consistent. LeSimple

et al. used chop stick electrodes with an epithelial voltmeter

(EVOM) [30] and Nilsson et al. an ENDOHM-6 Chamber with

an EVOM [29]. Chop-stick electrodes are known for spatial

constrains showing an unequal distribution of current flow through

the epithelium. It is conceivable that the divergence of results is a

consequence of different methods. To overcome this difficulty, we

developed a six-electrode system creating a homogenous electrical

field (Fig. 1) and applied electrical current pulses with a frequency

of 125 Hz.

Stimulation of CFTR with cAMP resulted in the decrease of

TER in both wtCFTR expressing cell lines (Fig. 3A, B). The

decrease of TER by 60% and 30% in 16HBE14o– and CFBE-WT

cells, respectively, after CFTR stimulation was most likely caused

by the increase of membrane permeability due to the activation of

the CFTR chloride channel and other CFTR dependent

membrane conductance [31]. In CFBE41o– and CFBE-delF cells

application of cAMP showed an opposite effect, TER increased by

30% and 10%, respectively (Fig. 3A, B). Also Nilsson et al.

observed the same acute effect on TER by 16HBE14o– and

CFBE-WT cells treated with cAMP raising agents: forskolin or

IBMX [29]. Obviously the second messenger cAMP induced a

change in TER. Even if the mechanism is unclear, the effect on

TER is linked to the presence of functional CFTR. The responses

of CFBE-WT and CFBE-delF cells were clearly weaker than by

16HBE14o– and CFBE41o–, respectively. Illek et al. suggested

that CFTR expression from the transgene is not as effective at

generating working channels as the CFTR endogenously ex-

pressed in 16HBE14o– cells. This way they explained why cells

overexpressing CFTR at mRNA level were not showing same

response to CFTR stimulation as 16HBE14o– cells [18]. Illek et al.

generated the cell lines CFBE-WT and CFBE-delF and measured

their CFTR mRNA levels shortly after stable transfection

(p4.77.05–p4.77.12). The expression of CFTR mRNA in the

complemented cell lines was 14 to 27-fold higher (determined

relative to 16HBE14o–). In contrast we showed that CFBE-WT do

not have significantly higher CFTR expression than 16HBE14o2

cells (Fig. 8). Additionally in CFBE-delF mRNA expression was

significantly lower than in 16HBE14o– cells. One explanation

could be that phenotypic stability is threatened by genetic and

epigenetic changes, cell aging, and differentiation [32]. As a

consequence, protein of interest expression can be reduced with

time. In our experiments the numbers of subcultures (P) were

P4.77.48 for CFBE-WT and P4.77.34 for CFBE-delF cells.

Younger clones (lower number of P) are not available. Even Illek

et al. performed measurements of transepithelial resistance and

ion transport in Ussing chambers using cells p4.77.47 to p4.77.52

for CFBE-WT and p4.72.44 to p4.72.49 for CFBE-delF.

Obviously the vector-driven CFTR expression in the available

complemented cell lines (CFBE-WT and CFBE-delF) is not

image shows magnifications of representative cell borders. B) Ratio of
persistent length to contour length of all tested cell monolayers.
16HBE14o– shows a cell-cell contact enlargement by 40% while
CFBE41o– cells and its transfected clones exhibit only a tiny
enlargement by 10%. C) TJ lengths per area in mm per mm2. 16HBE14o–

cells show 80% longer TJ lengths per area than CFBE41o– cells.
Furthermore, there is no difference in TJ lengths per area between
CFBE41o– cells and its transfected clones. Results are presented as mean
6 SD (n = 7–8, p,0.05).
doi:10.1371/journal.pone.0100621.g005

Figure 6. Fluorescein flux per TJ length. A) Calculation of flux per
TJ length revealed a significant lower value for 16HBE14o– cells under
resting conditions (red box) compared to CFBE41o– cells (green box).
Stimulation with cAMP caused a 3 fold increase for 16HBE14o– cells (red
hatched box) while CFBE41o– cells do not respond to stimulation (green
hatched box). B) CFBE-WT cells (blue) and CFBE-delF (brown) do not
show statistically significant differences in fluorescein flux per TJ length
neither under resting conditions nor upon stimulation with cAMP
(hatched boxes). Data are presented as a box-plot showing raw data
(circles), median (horizontal line) 25 and 75 percentile (box) and SD
(whiskers (n = 7–13, p,0.05).
doi:10.1371/journal.pone.0100621.g006
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Figure 7. Detection of tight junction proteins. Presence of tight junction proteins known to be expressed in alveolar epithelial cells (claudin-3, -
4, -5, -7) and their junctional localization in 16HBE14o–, CFBE41o– cells and its transfected clones was verified by Western blot (A) and confocal laser
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sufficient to mimic CFTR function in epithelial transport. CFTR

is a key molecule for transepithelial transport which is not only

determined by transcellular, but also by paracellular permeabilities

and both permeabilities have to be functionally matched to comply

with transport requirements of airway epithelia [2]. In a previous

work, we showed with 14C-mannitol flux that stimulation of

16HBE14o– cells (endogenously expressing wtCFTR) with cAMP

increase their paracellular permeability [12]. Here, we tested the

paracellular permeability of 16HBE14o–, CFBE41o– and its

transfected clones with the marker molecule fluorescein. Fluores-

cein sodium salt is a fluorescent, low molecular weight compound

(radius 4.5 Å) and it can be used as a marker of paracellular

permeability. We performed Ussing-chamber experiments with or

without applying short-circuit current to eliminate electrical

potential across the epithelium. Although fluorescein has negative

charge, there was no change in permeability to fluorescein from

apical side to basolateral side or vice-versa. From these data, we

assume that the transepithelial potential difference does not

influence fluorescein flux. This is consistent with results of

Koljonen et al, who used fluorescein as an alternative marker

molecule for mannitol in the studies of paracellular absorption and

leakage in the apical – basolateral direction in Caco-2 cell

monolayers [26]. Sodium fluorescein seems to be transported

actively when a pH gradient is applied between the apical and the

basolateral compartment [33,34]. Therefore, we carried out all

experiments under iso-pH conditions of pH 7.4 on both sides of

the cell monolayer. We found that under control conditions, the

fluorescein permeability of 16HBE14o–, CFBE41o–, CFBE-WT

and CFBE-delF was statistically indistinguishable (Fig. 4A, B).

cAMP stimulation significantly enhanced the paracellular perme-

ability of 16HBE14o– cell monolayers, but no changes in

fluorescein flux were observed in CFBE41o–, CFBE-WT and

CFBE-delF cells. These data demonstrate that expression of

wtCFTR in CFBE41o– is not sufficient to restore CFTR’s

regulatory function on paracellular transport.

To explain those discrepancies we investigated structure and

morphology of cell-cell contacts. The length of cell-cell contacts

per area reflects the density of paracellular pathways within a cell

monolayer. Immunostaining of the TJ protein ZO-1 revealed that

16HBE14o– cells are considerably smaller than CFBE41o–,

CFBE-WT and CFBE-delF cells. Transfection with wtCFTR

(CFBE-WT) or F508del-CFTR (CFBE-delF) did not influence the

morphology of the cells. The smaller 16HBE14o– cells show

clearly longer cell-cell contacts per area than the larger CFBE41o–

cells and its transfected clones (Fig. 5C). Furthermore, the

microstructure of 16HBE14o– cell-cell contacts shows wrinkles

and ruffles, while CFBE41o– and its transfected clones have

smooth and wrinkle-free cell borders. This structural difference

could be expressed as a ratio of persistent length over contour

length. Contour length is roughly the circumference of the cell

while persistent length describes the real length of cell-cell

contacts, enlarged by wrinkles and ruffles. A ratio of persistent

length over contour length of one means that there is no

enlargement of cell-cell contacts and ratio over one indicate an

enlargement of cell-cell contact length by infoldings and grooves.

Figure 5B shows clearly the enlargement of cell-cell contact length

for 16HBE14o– cell monolayers (about 40%). In contrast, the ratio

for CFBE41o– and its transfected clones is close to one. Together,

difference of TJ length per area is further increased by the

microstructure of cell-cell contacts and is two-fold larger for

16HBE14o– cell monolayers than for CFBE41o– and its trans-

fected clones (Fig. 5A). If the protein composition of TJ were

comparable in all four tested cell lines, 16HBE14o– cells should

show lowest TER and highest paracellular permeability under

control conditions. Actually, the TER of 16HBE14o– cells was

significantly higher than those of CFBE41o– and its transfected

clones (Fig. 2). We could show that fluorescein flux of all cell lines

was statistically indistinguishable under control conditions (Fig. 4).

However, when taking into consideration the difference in TJ

length, fluorescein flux per unit of 16HBE14o– cells was

significantly lower under control conditions and significantly

higher under CFTR-stimulated conditions (Fig. 6A). The fluores-

cein flux of CFBE41o– was not influenced by cAMP and did not

show differences to those of CFBE-WT and CFBE-delF (Fig. 6A,

B).

In addition to difference in size and subsequently cell-cell

contact length per area, we also demonstrated differences in TJ

composition between 16HBE14o– cells and CFBE41o– and

CFBE41o– clones transfected with wtCFTR or F508del-CFTR.

TJ consist of many membrane and scaffolding proteins and

paracellular permeability of cells depends mostly on the claudin

profile. There are 27 claudins known in mammals and differences

in their expression are responsible for changes in the electrolyte

and solute permeability in cells layers [35]. Even subtle changes in

the structure of the TJ could profoundly affect the overall

permeability or the ion selectivity of an epithelium [36] [2]. We

discovered significantly higher membrane expression levels of the

claudin-3 in 16HBE14o– in comparison with other cells (Fig.7).

This could explain the observed leak tightness of this cell line. In

agreement with our results, elevating claudin-3 expression of

MDCK cells caused strong increased in the paracellular resistance

scanning microscopy (B). For densitometric evaluation of Western blots (C), all signals were normalized to b-actin. All values are expressed relative to
the respective value detected in 16HBE14o– cell layers. One-way Anova analysis revealed that claudin-3 expression differed (p,0.05) in 16HBE14o–

and CFBE41o– clones, whereas claudin-4, -5 and -7 expression was not significantly different (n = 4). No claudin-18 expression was detected (not
shown).
doi:10.1371/journal.pone.0100621.g007

Figure 8. Expression of CFTR mRNA. The relative quantity of CFTR
gene expression was calculated by the 22DDCt method, using GAPDH as
the internal reference. CFTR mRNA expression value of 16HBE14o– cells
was defined as 1 and expression of all other cells were normalized to
this value. CFTR mRNA levels of the other cell lines were displayed as a
fold change relative to16HBE14o–. Results are presented as mean 6
SEM (n = 9–12, p,0.001).
doi:10.1371/journal.pone.0100621.g008
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[28]. Recently, Lin et al. demonstrated that knockdown of the

expression of either claudin 3 or 4 in ovarian carcinoma cells

increased cell size and resulted in flattened morphology [37]. Cell

lines investigated in this work show the same effect, since claudin 3

expression correlates with cell morphology (Fig. 5A, Fig. 7).

Nilsson et al. demonstrated that TJ integrity of 16HBE14o–,

CFBE41o– and CFBE transfected with wtCFTR cells was reduced

upon CFTR stimulation with forskolin and IBMX [29]. This

suggests a possible interaction between CFTR and the TJ protein

complex, probably via the cytoskeleton. Also LeSimple [30] found

that CFTR trafficking but not CFTR channel function is required

for proper function and organization of TJs. We observed that

increasing the intracellular concentration of cAMP increases

paracelluar flux of fluorescein in the 16HBE14o– cells. This effect

depends not solely on CFTR because even transfection with

wtCFTR could not restore the ability of CFBE41o– cells to

regulate paracellular permeability (Fig. 6A, B). Obviously, it is not

only the missing CFTR chloride conductance which distinguishes

a healthy from a CF epithelial cell.

In summary, we found that 16HBE14o– cells have about 80%

more junctional length per area than CFBE41o– and its

transfected clones and two-fold higher claudin 3 expression. This

alone is enough to explain differences in paracellular transport

between 16HBE14o– and CFBE41o– clones. We observed that

transfection with wtCFTR in CFBE41o– cell line restores

transcellular, but not the paracellular conductance. We concluded

that transfection with wtCFTR in CFBE41o– cells (CFBE-WT)

does not reconstitute healthy epithelium. Additionally this

transfection is not as stable as originally reported [18]. Hence,

cell lines investigated in this work are not suitable to study CFTR

dependent epithelial transport.
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