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Abstract

Objective: Chronic Fatigue (CF) still remains unclear about its etiology, pathophysiology, nomenclature and diagnostic
criteria in the medical community. Traditional Chinese medicine (TCM) adopts a unique diagnostic method, namely ‘bian
zheng lun zhi’ or syndrome differentiation, to diagnose the CF with a set of syndrome factors, which can be regarded as the
Multi-Label Learning (MLL) problem in the machine learning literature. To obtain an effective and reliable diagnostic tool,
we use Conformal Predictor (CP), Random Forest (RF) and Problem Transformation method (PT) for the syndrome
differentiation of CF.

Methods and Materials: In this work, using PT method, CP-RF is extended to handle MLL problem. CP-RF applies RF to
measure the confidence level (p-value) of each label being the true label, and then selects multiple labels whose p-values
are larger than the pre-defined significance level as the region prediction. In this paper, we compare the proposed CP-RF
with typical CP-NBC(Naı̈ve Bayes Classifier), CP-KNN(K-Nearest Neighbors) and ML-KNN on CF dataset, which consists of 736
cases. Specifically, 95 symptoms are used to identify CF, and four syndrome factors are employed in the syndrome
differentiation, including ‘spleen deficiency’, ‘heart deficiency’, ‘liver stagnation’ and ‘qi deficiency’.

The Results: CP-RF demonstrates an outstanding performance beyond CP-NBC, CP-KNN and ML-KNN under the general
metrics of subset accuracy, hamming loss, one-error, coverage, ranking loss and average precision. Furthermore, the
performance of CP-RF remains steady at the large scale of confidence levels from 80% to 100%, which indicates its
robustness to the threshold determination. In addition, the confidence evaluation provided by CP is valid and well-
calibrated.

Conclusion: CP-RF not only offers outstanding performance but also provides valid confidence evaluation for the CF
syndrome differentiation. It would be well applicable to TCM practitioners and facilitate the utilities of objective, effective
and reliable computer-based diagnosis tool.
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Background

Chronic Fatigue (CF) is a sub-health status, pathologically

characterized by nonspecific extreme fatigue (including physical

fatigue and mental fatigue) over six months [1]. In the past, CF is a

widespread illness which prevails among the people who lives

under a fast-paced and stressful life. Thus far, the etiology,

pathophysiology, nomenclature and diagnostic criteria of CF are

still underexplored in Western medicine [2,3]. Alternatively,

Traditional Chinese Medicine (TCM) has provided an effective

approach for personalized diagnosis and treatment of CF, and has

paid increasing attention as a complementary medicine by the

medical researchers [4,5]. Unfortunately, TCM diagnosis still

causes skepticism and criticism because TCM practitioners

diagnose the patient only based on their subjective observation,

knowledge, and clinical experience, which lacks objective test and

cannot be scientifically proven by clinical trials [6]. Under the

circumstances, it is desired to establish an objective and

standardized diagnosis system for CF in TCM. Recently,

researchers have found that machine learning technologies are

able to figure out the inherent mechanism of TCM diagnosis and

provide corrective predictions for patients [7,8]. Therefore, a

computer-aided system aiming at providing objective and reliable

diagnosis is highly desired for the better understanding of the

TCM diagnosis of chronic fatigue.

Differing from the western medicine, TCM adopts a unique

diagnostic method, namely ‘bian zheng lun zhi’ or syndrome

differentiation [9–11], to practically diagnose the CF. According to
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the theory of TCM, the syndrome or zheng is a comprehensive

description of the pathology of a disease in the body. Actually, the

syndrome consists of a set of syndrome factors. Each factor is

defined in terms of the location and condition of the body. The term

location in TCM is similar to that of the Western medicine, such as

heart, liver, spleen, lung, kidney and stomach. However, the term

condition in TCM is totally different from the Western medicine,

which reflects the disharmony in the body, such as the deficiency

or excess of qi, blood, yin and yang. In the viewpoint of TCM, the

body struggles to maintain a dynamic equilibrium between its

internal conditions and the external environment. Several

syndrome factors of the body will express simultaneously when a

pathogenic disease occurs. In general, the total number of

syndrome factors in TCM is about 60, and the related syndrome

factors for a particular disease is a subset of all of the syndrome

factors [12–14]. For example, the syndrome factors that applied

for CF include ‘spleen deficiency’, ‘heart deficiency’, ‘liver

stagnation’ and ‘qi deficiency’. When faced with a patient, TCM

practitioners should first execute the manipulations of ‘inspection’,

‘auscultation-olfaction’, ‘interrogation’ and ‘palpation’ to identify

the symptoms, and then diagnose which syndrome factors have

expressed simultaneously and select them to be the diagnostic

output for CF. Consequently, a corresponding TCM treatment is

proposed based on these diagnosis results.

The above TCM diagnostic process can be seen as a pattern

recognition process. The symptoms in TCM correspond to

features in the machine learning literature, and syndrome factors

serve as classes or labels. In this sense, the particular syndrome

differentiation that diagnoses disease by a set of syndrome factors

falls into the Multi-Label Learning (MLL) in the machine learning

literature [15,16]. Therefore, it is appropriate to design an MLL

model for the diagnosis of chronic fatigue in TCM.

MLL technique addresses the learning setting where an instance

is designated by a set of labels [17–19]. Accordingly, the MLL

classifier would learn a discriminative function to output the region

prediction (a set of labels) for the testing instance, which is different

with the point prediction by traditional classifier. Further, the

learning function can be regarded as the confidence measurement

which measures the confidence of each label to be the true label or

not. Given a pre-defined threshold, the irrelevant labels can be

removed and the remaining ones are used to construct the region

prediction [20]. Though MLL methods have been applied in

various domains, such as image processing, text analysis and

speech recognition, there are limited amount of research that

applied to the syndrome differentiation in TCM. In the literature,

a representative work is the application of ML-KNN (K-Nearest

Neighbor) algorithm, which aims to diagnose the syndrome

differentiation of coronary heart disease (based on 6 syndrome

factors) [21,22]. They computed the posterior probability of each

label as the confidence measurement and selected those labels

whose posterior probability is larger than a pre-defined threshold

to construct the region prediction. The experiments have shown a

promising performance for the syndrome differentiation.

Nevertheless, the reliability of the prediction result in the MLL

framework has not been well studied, which is of crucial

importance to the application of the high-risk medical diagnosis.

That is, the reliable results are very important for the clinical

treatment practically. As for the predictions of MLL model, it

would be highly beneficial if the MLL model could provide a

reliable analysis for the expert practitioners and patients. In

general, the ML-KNN approach constructs the posterior proba-

bility as the confidence measurement for each label, provided that

the proper prior assumption of the dataset distribution can be

obtained [23]. However, it is impossible to properly figure out the

prior knowledge about the dataset distribution because the TCM

datasets are of high-dimensional and nonlinear patterns. Accord-

ingly, the posterior probability always cannot provide valid

confidence measurement for MLL prediction.

Motivated by the above observation, in this paper, we use

Conformal Predictor (CP) and Random Forest (RF) to enhance

the MLL framework, which aims to not only offer outstanding

performance but also provide valid confidence for the syndrome

differentiation of CF in TCM. CP is a recently development in the

machine learning literature, which is virtually a confidence

machine that tails its prediction with a valid confidence evaluation

[24]. It has been proven that CP is calibrated in online learning,

i.e. the accuracy of CP prediction can be hedged by the confidence

level. In the past, CP has demonstrated the reliability on its

prediction in many high-risk applications, such as medical

diagnosis, fault detection and finance analysis [25–27]. CP outputs

region prediction rather than point prediction, which makes it

competent for the multi-label recognition. Meanwhile, RF is a

powerful machine learning algorithm which can deal with dataset

suffering heavily from high-dimensional, noisy, with missing-

values, categorical and highly correlated features [28]. In this

sense, RF is competent for TCM dataset where the descriptions of

the symptom(features) always take categorical or qualitative values

[29,30]. Thus, CP and RF are suitable for modeling of syndrome

differentiation of CF.

The method which combines CP and RF, namely CP-RF, was

firstly proposed to deal with single-label classification problem in

our previous work [36]. Unfortunately, CP-RF cannot be directly

applied to syndrome differentiation of CF for it is a MLL problem.

In this work, using Problem Transformation method, CP-RF is

extended to handle MLL problem. To the best of our
knowledge, it is the first time that CP is applied to
MLL tasks.

The extended CP-RF was compared with two classical CP

models CP-NBC (with Naive Bayes Classifier) and CP-KNN (with

K-Nearest Neighbor) as well as the commonly used MLL

algorithm in TCM, i.e. ML-KNN. Results of predictive effective-

ness as well as some MLL-related evaluation metrics were

reported. Especially, the validity of confidence measurement and

the calibration property of CP-RF have been demonstrated. The

experimental results show that CP-RF performs CP-NBC, CP-

KNN and ML-KNN. In addition, the accuracy of CP-RF is higher

than the confidence level, which reveals that the confidence

evaluation of CP is valid and well-calibrated.

The remaining of this paper is organized as follows: in the

Methods section the construction of the clinic CF dataset is

introduced and the algorithmic process is proposed. In the Results

section, the results of models constructed based on CP-RF, CP-

NBC, CP-KNN and ML-KNN are compared. In the Discussion

section, the reason that CP-RF can significantly improve the

accuracy and provide valid confidence is discussed. The conclusive

remarks followed in the Conclusion section.

Methods

Ethics Statement
N/A

Dataset of Chronic Fatigue in TCM
In past years, we have done a substantial amount of work on the

diagnosis of CF in TCM [31]. As for CF diagnosis in TCM, 80%

of clinical identification were provided by ‘interrogation’ manip-

ulation (inquiry) [21]. Therefore, the standardization inquiry

system shall influence the diagnosis and treatment of CF
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significantly. In the past, we have designed a quantitative inquiry

form to obtain the standardized inquiring items for the identifi-

cation of CF. Accordingly, we have made an epidemiological

investigation among a large number of people that come from the

south of Fujian Province during August 2007 to December 2008.

The participators were further constrained to the doctors, nurses

and the teachers who worked in the colleges, the middle school

and primary school. The participators who has a continuous or

recurring fatigue over six months was accumulated into the CF

dataset and each of them was further clinically identified by

another three clinical manipulations (‘inspection’, ‘auscultation-

olfaction’ and ‘palpation’). As shown in Table 1, 95 symptoms

were finally collected to construct the complete symptom set

(feature set) of CF.

According to the principle of syndrome differentiation in TCM,

each symptom has a certain degree of influence on all of the

syndrome factors. The contributions of each symptom to all of the

syndrome factors differ from the others, which can be referenced

from the lexicon of ‘‘Differentiation standards for symptoms and

signs of Chronic Fatigue Disease in Traditional Chinese Medi-

cine’’. The expression level of a syndrome factor is determined by

the fusion of all statistical frequencies of the related symptoms. In

our previous study, we found that the frequently expressed

syndrome factors of CF are ‘spleen deficiency’, ‘heart deficiency’

‘liver depression’, ‘qi deficiency’ ‘blood deficiency’, ‘kidney

deficiency’, ‘blood stasis’, ‘yang deficiency’, ‘lung deficiency’, and

‘phlegm turbid’. However, from a practical viewpoint, the former

four syndrome factors are widely employed in the clinic diagnosis

of CF and the others remained ambiguous effect to CF [31].

Accordingly, the most frequently occurring syndrome factors in

the clinical practice, i.e., ‘spleen deficiency’, ‘heart deficiency’,

‘liver depression’ and ‘qi deficiency’ are employed to diagnose CF

in TCM. As a result, 736 patients construct the CF dataset for our

experiment. Each case is described by 95 symptoms (features) and

a subset of the four syndrome factors (labels). The dataset is shown

in Dataset S1 and data information is shown in Data information

S1.

Conformal Predictor
CP applies algorithmic randomness level associated with p-value

scheme to measure the confidence of each label, and then selects

the labels whose p-values are larger than a pre-defined significance

level as the region prediction [32,33]. A confidence level which is

mutually complementary with the significance level is used to

Table 1. Set of symptom of CF in TCM.

ID Symptoms

1–5 depression Fatigue after
exercise 24 hours

shortage of qi pale complexion sallow complexion

6–10 darkish complexion bluish lip gloomy complexion fear of cold fear of cold

11–15 vexing heat in the
chest, palms and soles

afternoon fever unsurfaced fever tend to catch cold spontaneous sweating

16–20 night sweating pitting edema cannot concentrate amnesia dim complexion

21–25 like sigh thin head stabbing pain lassitude heavy head

26–30 epilation or loose teeth dry eyes have a sudden blackout
when stand up

black eyes tinnitus or deafness

31–35 dry throat swollen pain in
the throat

discomfort in the throat
like something blockage

lymph node enlargement lymph node tenderness

36–40 aching pain of neck scurrying pain of the
shoulder

stabbing pain of the waist contracture of the back oppression in the chest

41–45 palpitations cough up thick phlegm perennial cough panting stabbing pain in the
chest or abdomen

46–50 distending and scurrying
pain in the chest or
abdomen

stuffiness and
fullness in the chest

abdominal fullness abdominal veins exposed belching and
acid vomiting

51–55 vomiting abdominal distension
in the afternoon
or after eating

numbness or paralysis aching pain distending pain

56–60 heavy body encrusted skin ache and weak in the
waist and knee
or heel pain

poor appetite dry mouth

61–65 dry mouth and want
to drink

dry mouth but
don’t want to drink

bitter taste in the mouth bland taste in the mouth not thirst

66–70 insomnia constipation sloppy stool sticky stool stool sometimes sloppy
and sometimes bound

71–75 reddish urine yellow urine frequent urination copious and clear urine dribbing urination

76–80 poor libido dysmenorrhea intermenstrual bleeding menstrual irregularities pale tongue

81–85 red tongue enlarged tongue or
teeth-marked tongue

spotted tongue less fur white and moist fur

86–90 yellow and slimy fur string-like pulse fine pulse vacuous pulse rough pulse

91–95 sunken pulse relaxed pulse slow pulse rapid pulse slippery pulse

doi:10.1371/journal.pone.0099565.t001
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provide the confidence evaluation for the region prediction. The

novelty of CP can be characterized by the calibration property of

the region prediction, i.e. the accuracies of CP region prediction

can be hedged by the confidence level. According to CP, given the

training data sequence Z(n{1)~(z1,z2,:::,zn{1) and the testing

instance xn, CP assumes all the possible labels fy : y~1,2,:::,Cg
(C is the number of classes) being the candidate label for xn, and

then establish the corresponding testing example zy
n~(xn,y). Thus,

the testing data sequence is constructed by Z(n{1) and each zy
n.

Consequently, there are C test data sequences, i.e

Z(n)y~f(z1,z2,:::,zn{1,zy
n),y~1,2,:::,Cg ð1Þ

Secondly, CP applies algorithmic randomness statistical tests to

test whether a particular testing data sequence Z(n)y conforms to

the independent and identical distribution (i.i.d.) or not. The

algorithmic randomness level of Z(n)y could be quantified by p-

value, noted as py
n. Intuitively, a small p-value means that Z(n)ymay

not be an i.i.d. data sequence. It further implies that the

corresponding candidate label y may not be the true label and

should be discarded from the region prediction.

CP applies a unique method to construct the statistic p-value. CP

designs a function L : Z(n)y?a(n)y, which maps each example zi to

a nonconformity score ai, and thus establishes a one-dimension

nonconformity score sequence:

a(n)y~f(a1,a2,:::,an{1,ay
n),y~1,2,:::,Cg ð2Þ

where ai measures the degree of the nonconformity between zi

and Z(n)y. Based on a(n)y, p-value is defined as follows:

py
n~

Dfi~1,2,:::,n{1 : ai§ay
ngDz1

n
ð3Þ

In the end, the significance level e,which reveals the smallest

threshold of the acceptation of a particular testing data sequence

Z(n)y being the i.i.d. hypothesis, is used to be the threshold. Thus

any testing data sequence Z(n)y whose p-values are larger than the

significance level should be the legal label and can serve as the true

label. So CP outputs region prediction for xn as follows,

t"n~fy : py
nw",y~1,2,:::,Cg ð4Þ

An error occurs when the prediction set t"n does not contain the

true label yn of the testing instance xn. It has been proven that

Figure 1. An illustrative example of calibration property.
doi:10.1371/journal.pone.0099565.g001

Figure 2. An illustrative example of the PT5 method.
doi:10.1371/journal.pone.0099565.g002
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in online learning setting the error rate of CP is not
greater than significance level ", i.e.,

Pfpy
n(z1,z2,:::,zn{1,zy

n)ƒ"gƒ" ð5Þ

The inequality (5) shows that the error rate of CP is bounded by

the significance level. In the view of confidence level which is

mutually complementary with the significance level, the accuracy

of CP is hedged by the confidence level [34]. The relationship

between accuracy and confidence level shows the calibration

property of CP. Given different confidence levels, the performance

of the corresponding CP accuracies is illustrated in Fig. 1. The

abscissa represents the confidence level and the ordinate represents

the corresponding accuracy of CP. In Fig. 1, the diagonal line with

the legend of ‘exact calibration’ indicates that the accuracies of CP

are equal to the corresponding confidence levels, and the accuracy

rate curve hovering over exact calibration line denotes a

conservative calibration property, while the curve lying below

the diagonal line shows a poor calibration. In online setting, CP

possesses exact or conservative calibration property in its region

prediction, which enables it to provide valid confidence evaluation

for its prediction.

According to CP, the computation of the nonconformity score

ai of zi can be obtained generally by traditional machine learning

algorithms, such as Support Vector Machine (SVM), K Nearest

Neighbor (KNN) and Naı̈ve Bayes classifier (NBC) [35]. CP-NBC

plugs Naı̈ve Bayes classifier (NBC) into the framework of CP

which designs the posterior probability of label as the confidence

measure, while CP-KNN designs the nonconformity score of

example based on the Euclidean distances between the testing

instance and its K nearest neighbor [35].

Considering the categorical characteristic of CF data which

present a big challenge for the application of some distance metric-

based algorithms, such as SVM and KNN, we plugged Random

Forest (RF) into the framework of CP to construct CP-RF model

for the syndrome differentiation of CF. RF is one of the most

successful ensemble methods, which uses CART as its meta

classifier [28]. RF repeats to draw bootstrap examples from the

original dataset and then establishes ntree un-pruned CART trees.

At each node of the CART tree, RF chooses randomly mtry

features from the complete set of features to split. Based on the

model of RF, a proximity measure between instances can be

established. If instance xi and xj both land in the same terminal

node of a CART tree, the proximity between them is increased by

one, and the overall proximities, denoted as proxij can be

computed across all the CART trees. The nonconformity score

based RF proximity is designed as follows:

Figure 3. Comparison of subset accuracy with different
thresholds.
doi:10.1371/journal.pone.0099565.g003

Figure 4. Comparison of hamming loss with different thresholds.
doi:10.1371/journal.pone.0099565.g004
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ai~
PK

j~1 prox
{yi
ij

.PK
j~1 prox

yi
ij

,i~1,2,:::,n ð6Þ

where K is the number of nearest neighbors, prox
{yi
ij stands for the

jth largest proximity between instance xi and the instances labelled

differently from yi; prox
yi
ij stands for the jth largest proximity

between instance xiand the instances with the same label yi. The

intuition behind Equation (6) is that, two instances xi and xj with

the same label will tend to have a large proximity value and the

two with different labels will have a small one. Thus the

corresponding nonconformity score ai will be rather small, and

vice versa. Therefore, the nonconformity measurement can

exactly reflect the nonconformity of the example [36,37].

Multi-label Learning
In some pattern recognition tasks, the pattern of an instance can

be described by multiple labels simultaneously. An image can be

referred by multiple elements, such as mountain, lake and tree.

The thematic topics of a text can include politic and education

simultaneously [38–42]. Given each label y [Y~fy1,y2,:::,yqg
where Y denotes the label space with q possible class, the task of

MLL is to learn a real valued function f (x,y) which measures the

confidence of y being the proper label of x. Thus given a specified

threshold t(x), the MLL classifier should output the prediction

h(x)~fyDf (x,y)wt(x),y [Yg, where h(x) shows obviously to be a

region prediction.

According to whether the multi-label examples would be

transformed before modeling or not, the MLL algorithms can be

divided into two categories: Problem Transformation methods

(PT) and Algorithm Adaptation methods (AA) [17,19]. PT method

splits the multi-label examples straightforward into single-label

examples and then applies single-label machine learning algo-

rithms to tackle the multi-pattern recognition problem. Generally,

six PT strategies have been reported in this issue. For example, the

commonly used PT4 method transforms the original data set into q

data sets. Each of them constructs a binary dataset which extracts

the training instances relevant to a particular label as positive

examples and the rest to be the negative examples. After applying

the traditional machine learning algorithms to construct classifiers

based on the q binary datasets, there must be a post-process

mapping the traditional single-label outputs to multi-label

prediction [43]. On the other hand, AA method adapts traditional

single-label algorithms, such as KNN, SVM and boosting classifier

to fit the multi-label data. The representative algorithms is ML-

KNN [44]. For the testing instance x, the confidence score of each

label is the posterior probability which is computed based on its K

nearest distances and its conditional probability. Then the labels

whose posterior probability are larger than a specific threshold

(e.g., 0.5) should be selected as the prediction output.

Using Conformal Predictor for Multi-label Learning
The main purpose of this work is to use CP method to construct

an effective and reliable diagnostic tool for CF syndrome

differentiation. CP outputs region prediction rather than point

prediction, which makes it competent for the multi-label

recognition task. However, the traditional machine learning

algorithms which are plugged into the framework of CP to

compute the nonconformity score of each example are always

single-label machine learning algorithms. How to involve the

multi-label examples into the framework of CP, i.e., how to

measure the nonconformity score of each multi-label example and

Figure 5. Comparison of one-error with different thresholds.
doi:10.1371/journal.pone.0099565.g005

Figure 6. Comparison of coverage with different thresholds.
doi:10.1371/journal.pone.0099565.g006

Figure 7. Comparison of ranking loss with different thresholds.
doi:10.1371/journal.pone.0099565.g007
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how to test the confidence level of a multi-label data sequence

conforming to the i.i.d. assumption, has been the critical issue

when using CP for multi-label learning.

In this study, in order to use CP in multi-label learning, we

applied a simple and intuitive method, i.e., PT5 method [17].

Each multi-label instance x with a total l labels reproduces l single-

label examples. As illustrated in Fig. 2, the patient (ID number 1)

who has been diagnosed as (‘spleen deficiency’, ‘liver depression’,

‘qi deficiency’) will reproduce three instances with label ‘spleen

deficiency’, ‘liver depression’ and deficiency’ respectively. With

this method, the original multi-label CF dataset have transformed

to a new single-label dataset which is suitable for single-label

machine learning algorithms, such as NB, KNN and RF. Then

CP-NBC, CP-KNN and CP-RF can be introduced to CF

syndrome differentiation. When to predict a patient, CP-RF

applies RF to measure the confidence level namely p-value of each

label (syndrome factor) being the true label, and then selects

multiple labels whose p-values are larger than the pre-defined

significance level (threshold) as the region prediction. The

confidence level which is mutually complementary with the

significance level serves as the confidence evaluation for the

region prediction.

Using PT5 method for data transformation and RF algorithm

for nonconformity score computation, the algorithmic process of

CP for multi-label learning is described as follows. The R code is

shown in Code S1.

Experimental Design and Evaluation

Experiment Setup
The CP-RF model is compared with two classical CP models

CP-NBC and CP-KNN as well as the commonly used ML-KNN

in TCM. The detailed algorithm and parameter settings of CP-

NBC and CP-KNN can be found in [35] and for MLL-KNN we

refer to [21]. For CP-RF, the parameter ntree of RF is set to 1000

which is large enough, and mtry is t
ffiffiffiffiffiffi
M
p

s where M is the number

of symptoms (features). The number of neighbors, K, which is

required for CP-RF, CP-KNN and ML-KNN, we tried different

values as K = 1, 3, 5, 7, 9,11.

All the algorithms were executed in leave-one-out cross-

validation (LOOCV), which uses every single example of the

Figure 8. Comparison of average precision with different
thresholds.
doi:10.1371/journal.pone.0099565.g008
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original data set as the testing data, and the remaining examples as

the training data in each fold. Compared with commonly used 5-

fold and 10-fold cross-validation method, with LOOCV we can

obtain more testing data to validate the statistical calibration

property of the result on CF dataset.

Evaluation Metric
Considering the particular multi-label learning setting, the

evaluation metrics are different from metrics used in single-label

learning. Given a pre-defined threshold t(x), the MLL classifier

will output the region prediction h(x)~fyDf (x,y)wt(x),y [Yg.
Let the result of label ranking for the testing instance xi denoted as

rankf xi,yð Þ, which is a one-to-one mapping onto Y~f1,2,:::,Cg
such that if f (xi,j1)wf (xi,j2)then rankf (xi,j1)wrankf (xi,j2)

where j1,j2[Y . And the test dataset S~f(xi,Yi)D1ƒiƒpg, where

Yi is the true label set for instance xi and p is the size of test dataset.

Based on the above definition, the MLL-related evaluation metrics

can be defined as follows [17,19].

1) Subset Accuracy: The subset accuracy evaluates the accuracy

of the multi - label classifier, which computes the fraction of

the prediction region being identical to the true label set.

subsetacc~
1

p

Xp

i~1

hi~Yi½ �½ � ð7Þ

2) Hamming Loss: The hamming loss evaluates the fraction of

misclassified instance-label pairs, i.e. a relevant label is missed

or an irrelevant is predicted.

hloss~
1

p

Xp

i~1

Dh(xi)DYi D ð8Þ

where D stands for the symmetric difference between two sets.

3) One-error: The one-error evaluates the fraction of examples

whose top-ranked label is not in the true label set.
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Figure 9. Calibration property of CPs on CF dataset.
doi:10.1371/journal.pone.0099565.g009
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one{error~
1

p

Xp

i~1

½argmaxy[Y f (xi,y)� 6[Yi

� �� �
ð9Þ

4) Coverage: The coverage evaluates how many steps are

needed, on average, to move down the ranked label list so

as to cover all the true labels of the example.

coverage~
1

p

Xp

i~1

maxy[Yi
rankf (xi,y){1 ð10Þ

5) Ranking Loss: The ranking loss evaluates the fraction of

reversely ordered label pairs, i.e., an irrelevant label is ranked

higher than a relevant label.

rloss

~
1

p

Xp

i~1

1

DYi D:D �YY i D
Df((y0,y00)Df (xi,y

0)wf (xi,y
00),(y0,y00)[Yi| �YY i)D

ð11Þ

6) Average Precision: the average precision evaluates the average

fraction of relevant labels ranked higher than a particular

label actually being in the label set.

average precision

~
1

p

Xp

i~1

1

DYi D

X
y[Yi

Dfy0Drankf (xi,y
0)wrankf (xi,y),y0[YigD

rankf (xi,y)

ð12Þ

According to the definition of the above six metrics, the higher the

values of subset accuracy and average precision are preferred

whereas the lower the values of hamming loss, one-error, coverage

and ranking loss are welcome. Among them, subset accuracy and

hamming loss evaluate the predictive effectiveness of the MLL model

and are the most widely-used metrics in the MLL community.

Verification of Reliability
As mentioned in Methods section, the most significant

advantage of CP is the calibration property of its prediction, i.e.,

the error rate is exactly bounded by the predefined significance

level. The calibrated prediction which provides valid confidence to

evaluate the reliability of prediction is highly preferred to medical

practitioners.

Theoretically, CP is well calibrated in the online setting. but

extensive empirical studies have demonstrated that CP still shows

good calibration property in batch learning, where the learning

tasks are conducted by off-line learning [45,46]. A typical example

of this is the medical diagnosis, where only after a period of

treatment can the prognostic information(true label) be obtained

and thus the true label cannot be added timely for on-line

learning. In this study we will empirically investigate the

calibration property of CPs on CF dataset in LOOCV experi-

ments.

Further, in previous studies, the calibration property of CP has

only been tested on a single - label dataset. To the best of our

knowledge, it is the first time that CP is applied to MLL tasks.

Whether the calibration property still holds in MLL remains

unknown in theory. Similar to single-label learning setting, we

define the calibration property of MLL classifiers as follows: The

risk of the true label set not being the subset of the prediction

output is not greater then a specific significance level e, i.e.,

PfYi 65h(xi)gƒ" ð13Þ

Results

For a specified threshold, all the six evaluation metrics were

computed based on the test data to evaluate the predictive

performance of MLL classifiers. Given a series of different

threshold values, the MLL classifiers output different prediction

regions. For CP models, the threshold corresponds to a

significance level while that of ML-KNN corresponds to posterior

Algorithm 1: CP-RF for Multi-Label Learning

Input: 1. Training data sequence Z(n{1)~(z1,z2,:::,zn{1)
where each data zi~(xi,Ci) and Ci is the multi-label
designation of instance xi .

2. A testing instance xn

3. Significance level "
4. The parameters ntree, mtry of RF
5. The parameter K for nonconformity measurement

Output: region prediction t"n

1. Applies problem transformation method(PT5) to get new
training data sequence Z(�)

1) Initiating Z(�) to be an empty set.

2) for each data zi~(xi,Ci)

a) Measuring the size of Ci to be li

b) Reproducing the instance xi to the total of li
instances.

c) Designating each of the labels in Ci to the li instance

correspondingly.

d) Adding the new li single-label examples into the

transformed Z(�).

2. Outputs the region prediction for instance xn base on

Z(�) with the size of which being tn

1) Using Z(�) to construct RF model with the parameter
ntree, mtry

2) Exporting the proximity matrix prox(tnz1)�(tnz1) for

the validating instance fZ(�)|xig.
3) for j~1,2,:::,C with C is the number of multiple

labels

a) Applying equation (6) to obtain a serial of

a1,a2,:::,atn
,aj

n with the parameter K

b) Applying equation (3) to compute the algorithmic

randomness level pj,"
n

4) Applying equation (4) to obtain the region output
t"n
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probability. In this sense, the preferred threshold values of CPs

should be chosen from (0, 0.5) while the values of threshold of ML-

KNN should be chosen from (0.5, 1). For the convenience of

comparison, we use a confidence level (one minus significance

level) as the threshold for CPs. Consequently, for all the

algorithms, the higher the threshold is, the more reliable the

prediction is. And the threshold values should range from 0.5 to 1,

which is highly preferred in TCM practice.

Comparison on Subset Accuracy and Hamming Loss
In this subsection, we compare the most commonly used metric

- subset accuracy and hamming loss. The results of CP-RF, CP-NBC,

CP-KNN and ML-KNN with parameter K = 1 were compared in

Fig. 3–4, with the X axes representing the threshold value and the

Y axes representing the subset accuracy and hamming loss

respectively.

Fig. 3 illustrates the variation of subset accuracy with different

threshold values from 0.5 to 1. From Fig. 3, we can see that the

performances of CP-NBC,CP-KNN and ML-KNN deteriorate

with the increase of the threshold, while the performance of CP-

RF getting better. ML-KNN and CP-RF outperform CP-NBC

and CP-KNN across the region (0.5, 1). CP-RF beats ML-KNN

after the threshold value of 0.75 and CP-RF obtains the highest

value 0.9959 of subset accuracy after the threshold value of 0.82.

The similar result can also be found from Fig. 4. The hamming

loss of CP-NBC, CP-KNN and ML-KNN exhibit an increasing

trend with the increase of a threshold value, while CP-RF gets

lower hamming loss when the threshold value increases. Similarly,

the performances of ML-KNN and CP-RF are significantly better

than CP-NBC and CP-KNN across the region (0.5, 1). CP-RF

outperforms ML-KNN after the threshold value of 0.75 and it

obtains a lowest hamming loss value of 0.01698 after the threshold

value of 0.82.

As discussed above, a higher threshold (higher confidence level

or larger posterior probability) is preferred to medical practition-

ers. In this sense, CP-RF is a more effective and reliable classifier

than ML-KNN and other CP models for CF diagnosis.

Further, in this study, CP-RF gets the same region prediction

(high subset accuracy) at different thresholds ranging from about

0.8 to 1(high confidence level). In this sense, the size of prediction

region, i.e., the number of syndrome factors selected by CP-RF

model, is robust with the threshold determination to some context.

The threshold determination remains an unsolved issue in MLL

literatures [47]. The prior knowledge of the optimal threshold

value has been always unavailable, except that a high confidence

level is more preferred. As an example, we can see from Fig. 3 and

Fig. 4, for ML-KNN, CP-NBC and CP-KNN, the performance

always deteriorates with the increase of the threshold value.

Researchers always have to trade-off between the reliability

(higher threshold values) and effectiveness (performances) of the

MLL classifiers. For example, Li et.al. set the threshold value to be

0.5 empirically [22,48]. However, in this study, CP-RF does not

suffer from this problem. Such merit provides marked significance

for TCM syndrome differentiation.

The Influence of Different K Values on Subset Accuracy
and Hamming Loss

In order to investigate whether the K values will influence the

performances of MLL classifiers, in this subsection we compare the

4 algorithms on subset accuracy and hamming loss with different K

values. Results at three preferred confidence levels of 0.99, 0.9 and

0.8 were shown in Table 2 and Table 3. Limited by space, we only

show the results with K = 5, 9 and 11.

From Table 2, with different K values, CP-RF still performs the

best compared with other algorithms at the specified confidence

levels. The subset accuracy of all the four algorithms varies lightly

with the variation of K values. Among them the fluctuations of CP-

RF shows relatively small. Therefore, the performances of these

algorithms are highly robust to the setting of K. The similar

conclusion can be achieved from Table 3.

Comparison on other Evaluation Metrics
In order to further investigate the reliability and effectiveness of

CP-RF models in the CF diagnosis, performances on other four

evaluation metrics were reported. Fig. 5–8 shows the performance

of four algorithms with parameter K = 1, and the comparative

results with K = 5, 9 and 11 at three interested confidence levels of

0.99, 0.9 and 0.8 were listed in the Table 3–6.

As can be seen from Fig. 5–8, in case of three metrics, i.e., one

error, coverage and ranking loss, which prefer small value, CP-RF

achieve significantly small values which outperform the other three

algorithms. Whereas in case of average precision metric which

prefers high value, the CP-RF can get a significantly high value

close to 1. The similar trend and result have been demonstrated in

Table 4–7, regardless of the difference K values. The results in

Fig. 5–8 and Table 4–7 indicate again that CP-RF would be a

more effective and reliable tool for CF diagnosis.

The Calibration Property of CP Models
In this subsection, we present a preliminary empirical investi-

gation on the calibration property of CP on the CF dataset. Given

different confidence levels, the corresponding accuracies were

reported in Fig.9 for three CP models, i.e., CP-RF, CP-NBC and

CP-KNN with K = 1. The X axis represents a series of different

confidence levels and the Y axis strands for accuracy.

From Fig.9, we can see that the accuracy calibration line of CP-

RF displays significantly beyond the exact calibration line, while

the results of CP-KNN and CP-NBC show poor calibration. In

this sense, CP-RF also outperforms CP-NBC and CP-KNN. The

main reason may lie in the learning setting. Because the

calibration property cannot be guaranteed theoretically in batch

learning mode, in this case different nonconformity measurement

with different algorithms (i.e. RF, KNN, and NBC) has a great

impact on the performance of CP. The superiority of CP-RF will

be explained in the Discussion section.

Discussion

Applicability of CP-RF Model for Chronic Fatigue
Syndrome Differentiation

According to TCM theory, TCM diagnosis by the syndrome

factor set is different from traditional single-pattern classification,

and cannot be addressed by traditional single-label classifier.

Attempts to solve the syndrome differentiation of CF have resulted

in the development of multi-label learning, which can involve the

complex interaction among different syndrome factors. Generally,

the syndrome differentiation of chronic fatigue falls into

multi-label classification setting [21,49,50].

Conformal Predictor (CP) can output region prediction tailed by

valid confidence, which enables it to be a natural solution of multi-

label learning. However, using CP for multi-label learning
has not yet been studied. In this study, we applied it to chronic

fatigue syndrome differentiation and verified its effectiveness and

reliability.

Different CP models were used in this study, such as CP-NBC,

CP-KNN and CP-RF. Among them, CP-RF which applies RF to

compute the nonconformity score, achieved the best performance.

Reliable Learning for Chronic Fatigue in TCM
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The main reason may lie in the merits of the RF model when

facing with CF dataset. RF highlights its superiority on the

categorical CF dataset in TCM. The inferiority of CP-NBC may

lie in the great dependency among the symptoms which

deteriorates the performance of Naı̈ve Bayes classifier, and the

performances of CP-KNN and ML-KNN are affected by the

categorical characteristic of the CF symptom.

The results also show that CP-RF remains steadily outstanding

performance regardless of any threshold value among the region of

(0.8, 1). Consequently, the size of prediction region, i.e., the

number of syndrome factors selected by CP-RF model, is robust to

the user-defined threshold, which remains an unsolved issue in

many multi-label learning methods such as MLL-KNN [51,52].

The robustness of CF syndrome differentiation by CP-RF has

practical significance. Due to the substantially large amount of

people suffer from CF, enormous health care resources tend to be

consumed by patients with CF. However, different with acute

illness that must be taken care of medical physician, CF treatments

are mostly executed outside of the hospital. If the diagnosis of CF

can be offered by the reliable computer-based intelligent tool using

CP-RF, the patient can engage their own health more convenient

and timely. In this sense, CP-RF can be employed as family-

service equipment for the prevention and control for CF, which

can dramatically relieve the burden of health care system.

Further, compared with ML-KNN, CP also offers valid

confidence in the prediction region. The prediction region of CP

is well-calibrated that the accuracy of region prediction is hedged

by the specified confidence level.

Contribution of CP-RF Model for Multi-label Learning
This study also indicated that CP can serve as a reliable MLL

model. In details, the region prediction t"n corresponds to h(x), the

algorithmic randomness level py
n can be used as confidence scores

for each possible label, and the significance level " acts as the

threshold determination. In this manner, the reliability or risk

analysis of the prediction is emphasized, which is often neglected

in MLL literatures.

Secondly, few studies have focused on the use of random forest

in MLL. CP-RF which plugs RF into CP framework achieves

superior performance on CF dataset and provides an alternative

way of using random forest in MLL. In conclusion, CP-RF is a

promising method for the MLL.

Conclusions
Chronic fatigue syndrome differentiation has been formulated

as a multi-label learning task. We plug random forest (RF) into the

framework of conformal predictor (CP) to establish a reliable and

effective diagnostic tool. Combined with PT5 method, CP-RF is

extended to handle multi-label learning tasks. CP-RF outperforms

CP-NBC, CP-KNN and MLL-KNN. Noted that in TCM medical

diagnosis which is always conducted in batch learning mode, CP-

RF still shows conservative calibration and provides valid

confidence evaluation for the CF syndrome differentiation, which

would be preferred to TCM practitioners.
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