
HIVE-Hexagon: High-Performance, Parallelized Sequence
Alignment for Next-Generation Sequencing Data
Analysis
Luis Santana-Quintero1, Hayley Dingerdissen1,2, Jean Thierry-Mieg3, Raja Mazumder2*,

Vahan Simonyan1*

1 Center for Biologics Evaluation and Research, US Food and Drug Administration, Rockville, Maryland, United States of America, 2 Department of Biochemistry and

Molecular Biology, George Washington University Medical Center, Washington, DC, United States of America, 3 National Center for Biotechnology Information, U.S.

National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America

Abstract

Due to the size of Next-Generation Sequencing data, the computational challenge of sequence alignment has been vast.
Inexact alignments can take up to 90% of total CPU time in bioinformatics pipelines. High-performance Integrated Virtual
Environment (HIVE), a cloud-based environment optimized for storage and analysis of extra-large data, presents an
algorithmic solution: the HIVE-hexagon DNA sequence aligner. HIVE-hexagon implements novel approaches to exploit both
characteristics of sequence space and CPU, RAM and Input/Output (I/O) architecture to quickly compute accurate
alignments. Key components of HIVE-hexagon include non-redundification and sorting of sequences; floating diagonals of
linearized dynamic programming matrices; and consideration of cross-similarity to minimize computations.

Availability: https://hive.biochemistry.gwu.edu/hive/

Citation: Santana-Quintero L, Dingerdissen H, Thierry-Mieg J, Mazumder R, Simonyan V (2014) HIVE-Hexagon: High-Performance, Parallelized Sequence
Alignment for Next-Generation Sequencing Data Analysis. PLoS ONE 9(6): e99033. doi:10.1371/journal.pone.0099033

Editor: Tom Gilbert, Natural History Museum of Denmark, Denmark

Received February 27, 2014; Accepted May 9, 2014; Published June 11, 2014

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This research was supported in part by the Food and Drug Administration Medical Countermeasures Initiative and in part by Intramural Research
Program of the NIH, National Library of Medicine. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mazumder@gwu.edu (RM); Vahan.Simonyan@fda.hhs.gov (VS)

Introduction

Sequence alignment is the critical first step of sequence analysis

[1,2], after which the alignment results are used as a source of data

for numerous downstream analyses (e.g., the genetic content of

short reads, pathway analysis, and etc). Before proceeding to the

description of the optimized, ultra-fast alignment algorithm

implemented in the High-performance Integrated Virtual Envi-

ronment (HIVE), the following section describes the task of

alignment and conventional methods currently used to solve it.

Given

N There exists a set of ‘‘Reference Genomes’’ numbered

1…r…N with sizes of Gr and cumulative size of R = SGr

bases.

N There exists a set of ‘‘Short Reads’’ from 1…s…S, each one

having a length of L.

Task

N Define an alignment as A(s,r) = (s1r1),…(sirj),… (sAsrAr)
where (siri) signifies the correspondence between i-th letter of

the short sequence and j-th letter of the reference sequence. As
and Ar correspond to the length of the alignment with respect

to the corresponding sequence or reference.

N Define a set of ‘‘Scoring Parameters’’ P defining the benefit

and cost factors for matches, mismatches, insertions and

deletions between bases (siri) of the short read and reference

genomes

N Define an additive ‘‘Score of Alignment’’ as the sum of scoring

factors SA(s,r) = S(Pl) where l is chosen based on the match,

mismatch, insertion or deletion of the sequence positions of s
and r.

Solve

N Find an optimal alignment A(s,r) between short sequence s
and reference genome r such that SA(s,r) is no smaller ($)
than any other SA(s9,r9) where s9 is not equal (?s) to s and/

or r9?r.

(Notice that dynamic programming alignments are only optimal

relative to additive scoring schemes.

If, for example, we considered a triple deletion less costly than

three separate single letter deletions, the Smith Waterman

algorithm, which assumes additive costs, may fail to find the best

solution.).

The simplistic approach of comparing every short read position

to every other genomic position, even without mismatches

allowed, has a complexity of O(S6L6R) in big O notation. Such

PLOS ONE | www.plosone.org 1 June 2014 | Volume 9 | Issue 6 | e99033

https://hive.biochemistry.gwu.edu/hive/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0099033&domain=pdf

an approach has no technical value for realistic sizes of genomes

(in Giga-bases R,109) and high throughput sequence (HTS)-scale

sequence read files (600 Giga-bases S6L.1012) for a single run. A

more realistic approach is to detect highly scoring regions of

candidate positions by finding exact matches of sequence seeds of

length K (K-mers), up to K = 14, either by hashing techniques[3–

5] or by other indexed methods like full-text minute-space (FM)

indexes [6,7] as described below:

N K-mer seed based hash indexes. The reference genome

is precompiled into a hash table where every K-mer’s

occurrence is maintained in the hash container [8]. Candidate

alignment positions are then detected by looping through all

hash elements corresponding to each seed of length K

occurring in the short read.

N FM-index based substring search methods. The

reference genome is compiled into a compressed suffix array

container using the Burrows-Wheeler transform [9]. Lookup

operations are then implemented through backward iterators

searching for the sequence patterns within suffix array [10].

The speed and computational complexity of detecting candidate

positions are comparable for both approaches and either can be

suitable depending on the exact situation. The K-mer hash

compilation stage is usually much faster than FM index building,

but the hash table is also significantly larger in memory than an

FM-index array [11,12]. The result of the first stage of lookups is a

list of exact matches of certain lengths. The next step generally

involves extension of the preliminary matches using a heuristic

extension algorithm (BLAST-like) [13] or a dynamic program-

ming method (Needleman-Wunsch [14] or Smith-Waterman

[15,16]). The key considerations of extending seed alignment to

obtain the optimal alignment include:

N Extension of the seed candidate alignment. The

detected seeds’ exact matches are extended in both directions

with or without mismatches, insertions and deletions. This step

is typically very fast and is of ,O(L) average performance.

N Optimal alignment. Dynamic programming techniques are

usually performed in a rectangular matrix where alternative

trajectories of alignments are considered concurrently. Each

cell represents an alignment between two sequences at a given

position. The best possible trajectory across cells is determined

by cumulative alignment scores from left to right [17]. Such

techniques are generally of ,O(L2) [18,19] performance and,

having square dependent memory footprint, are not cheap

with respect to memory and CPU-clock.

Depending on the approach used, one may impose certain

requirements on alignment algorithms to ensure the reliability of

the computational results: optimality –demands that no better

alignment is possible for the specified region of the supplied

reference genome and short read; fuzziness – a small number of

errors are acceptable within an allowed error density; quantifi-
able – each alignment can be assigned a number and score for the

purpose of comparing two alternative alignments; customizable
– behavior of alignment can be finely controlled by a set of

parameters; robustness – small changes in parameters should

lead to small changes in alignment results; reproducible –

should arrive to the same alignment despite the stochastic nature

of the algorithm’s initial detection of seeds’ exact matches.

The HIVE-hexagon aligner applies modified versions of the

aforementioned approaches in conjunction with a new suffix-

based approach to the removal of duplicate data and strategic

sorting to optimize the alignment process: only the best candidate

alignments undergo the computationally expensive stage of

optimal alignment.

Results

The implementation of novel and traditional approaches to the

alignment task in HIVE-hexagon promotes competitive perfor-

mance when compared to current industry standards. The overall

alignment pipeline employed by HIVE-hexagon can be seen in

Figure 1. Short read data sets are non-redundified such that only a

unique copy of any given read is subjected to the alignment while

appropriate counts and indexes are maintained for all such reads.

Remaining reads are then sorted by sequence similarity for

efficient lookup in later stages, and both reads and reference sets

are distributed among the computational cloud. Parallelized

reference sets are compiled into a bloom/hash table such that

each read thread undergoes K-mer query against each reference,

followed by extended inexact alignments for all identified matches.

If an inexact alignment does not meet score requirements, self-

similarity can be used to filter neighboring reads based on the

implied similarity of proximal data as ensured by earlier sorting.

Thus, the number of actual alignments calculated is drastically

reduced. Finally, the optimal, floating diagonal adaptation of the

Smith-Waterman algorithm is computed for all candidate reads

that score above the specified threshold in the inexact alignment

stage.

This paradigm greatly benefits HIVE-hexagon with respect to

computational speed and sensitivity: the time saved allows HIVE-

hexagon to take on more costly computations to achieve greater

sensitivity without sacrificing overall alignment speed. To support

this claim, we have performed validation and benchmarking

procedures to compare the HIVE-hexagon alignment algorithm to

similar software packages used in the industry. For this paper, we

have chosen Bowtie and BWA for comparison since these two

tools have been readily adopted for high throughput sequence

alignments.

In the first category of tests we only compare algorithms without

considering parallelization, computer stress factors, and perfor-

mance or I/O characteristics of computations. In the second

category we compare the alignment platform as a whole with

competitive applications running in singular and parallel modes

(where possible).

Sample Notation
We have chosen.

a) Influenza (IZ) sample. Multi-segmented RNA virus

which is accurately represented by its H5N1 genome and

the mutations and divergence of the sample were well

categorized from previous Sanger sequencing data;

b) Mycoplasma hyorhinis (MH) sample. Bacterial sample

of known origin with a known set of multiple repeats

determined by Sanger sequencing;

c) Homo sapiens (HS) whole genome sequencing
sample. Eukaryotic DNA-seq sample from Sequence Read

Archive out of which artificial reads were generated from 2

reference segments (chromosomes) X and Y Human Genome

v19 Build 37.3;

d) mixture of 15 viruses (VM) out of which artificial reads

are generated from 2 of the genomes Human adenovirus C

(gi|9626158|ref|NC_001405.1) and Dengue virus 1

(gi|9626685|ref|NC_001477.1);

e) and, similarly, a mixture of 10 bacterial genomes (BM)
from which artificial reads are generated for 2 of the genomes

HIVE-Hexagon: High-Performance Sequence Alignment for NGS Analysis

PLOS ONE | www.plosone.org 2 June 2014 | Volume 9 | Issue 6 | e99033

Shigella dysenteriae Sd197 (gi|82775382|ref|NC_007606.1)

and Streptococcus pneumonia ST556 chromosome

(gi|387787130|ref|NC_017769.1).

Full information regarding mixed samples and concentrations

can be found in Table S1.

Inputs and Arguments
We have generated artificial reads from original reference

sequences with no error (prefix AR0-), 1% error (AR1) and 5%

error (AR5) or taken the original submissions produced by a

sequencing hardware (OR). To define a consistent notation for our

samples within this publication we also signify the number of reads

as a suffix for the sample name. Thus, in this notation the sample

AR5-IZ-1M would mean 1 million reads artificially generated

from the Influenza reference with 5% random errors; similarly

OR-HS-100M indicates a large, original sequence file of human

origin with 100 million reads.

All HIVE-hexagon runs were performed with optimized

advanced parameters including K-mer extension minimal length

percent of 75, K-mer extension mismatch allowance % of 15,

optimal alignment search of only identities and seed K-mer length

of 14. Basic parameters were set to a minimum match length of 36

and 15 percent mismatches allowed, reporting the first match

found to have the highest score of alignment. All Bowtie runs were

performed with additional argument –e 600 both inside and

outside of HIVE. All BWA runs were performed with additional

argument –n 15 both inside and out of HIVE. These parameters

were chosen to mimic the sensitivity of those tools with HIVE-

hexagon as much as possible. Alignment results are reported as the

percentage of unaligned reads. Detailed count information for all

runs can be viewed in Table S2.

Proof of concept. Error free sequence files were artificially

generated using the generateSeqs script (Table S3) with 1 million

reads each generated from sequence data originating from

influenza, mycoplasma and human samples. This test acts as a

proof of concept since we expect to detect 100% of artificial error

free reads when aligned to the appropriate reference. As seen in

Table 1, we fully aligned all error-free reads for influenza and

mycoplasma runs. A very small number of error-free human reads

were left unaligned by all tools: 16 by HIVE-hexagon, 150 by

Bowtie and 147 by BWA. The exclusion of some artificial reads

may be due to the over-optimization of heuristic algorithms with

regard to seed over-representation which can have a degrading

effect on alignments. This can have a drastic impact on low-

complexity read alignments as evidenced by the provided example

alignments for human samples with no noise. Low-complexity

sequences generate thousands of hit candidate positions, making

comprehensive alignment costly and disadvantageous due to the

required increase in computational time without much added

benefit. Additionally, specifying a smaller seed length for the

determination of candidate regions results in a larger number of

positions to be considered for extension. Each one base shortening

of the seed results in four times as many computations in the

candidate discovery stage. Thus, the huge decrease in the amount

of unmapped reads observed for more divergent samples can be

explained by the gain in extra sensitivity provided by shorter seed

specification.

Sensitivity check for single species. Three sets of artificial

reads were generated from the same influenza sample with varying

degrees of error. A higher induced error rate simulates the real-life

scenario of divergent sequences. Thus, this test shows if and how

sensitivity varies in alignments between increasingly divergent

sequences. As expected, an increasing number of alignments are

missed across all tools as error or noise (indicating sequence

divergence) increases. The higher sensitivity of a method for

divergent sequences is critical for detection pipelines where

adventitious agents present in small quantities can have adverse

effects on biological products safety. An inability to detect a

significant amount of sequence hits when the reference sequence is

not well known can render Next-Gen based techniques useless.

HIVE-hexagon has been specifically optimized to improve

Figure 1. Workflow for HIVE-hexagon alignment utility. Overall alignment schema for HIVE-hexagon: short reads are non-redundified (a) and
parallel portions (b) are sent to distributed cloud for computation. Reference genomes are then split into smaller pieces (c) and compiled into bloom/
hash table (d). Every parallel execution thread performs a K-mer lookup against every reference sequence (e) then extends matches via inexact
alignments (f) and performs a subsequent optimal alignment search on remaining candidates (g).
doi:10.1371/journal.pone.0099033.g001

HIVE-Hexagon: High-Performance Sequence Alignment for NGS Analysis

PLOS ONE | www.plosone.org 3 June 2014 | Volume 9 | Issue 6 | e99033

sensitivity and clearly outperforms both Bowtie and BWA in this

respect.

Sensitivity check for samples with many species. As

mentioned above, read sets with variable error rates were

generated from select genomes within viral mixture and bacterial

mixture samples. Alignment of the read files created with zero

error to the entire mixture sample allows us to demonstrate HIVE-

hexagon’s ability to separate multiple references within one

sample. Subsequent comparison to files with error rates tests the

sensitivity with which HIVE-hexagon can separate and map a

query to the correct reference in a mixed file when the query has

an increasing degree of divergence from its reference. Separation

and mapping follows the same principle here as in the single

species check such that it is increasingly difficult (and therefore

more alignments are missed) as divergence increases.

The viral mixture shows HIVE-hexagon once again to surpass

performance of other tools. The bacterial mixture results

demonstrate a more complex mode of alignment, ultimately

showing HIVE-hexagon to be more sensitive for files with or

without divergence. Because the chosen bacterial mixture contains

species having significant numbers of repeats, HIVE-hexagon was

run both with and without a specific argument forcing careful

detection of such repeats. In the repeat and transposition detection

mode, HIVE-hexagon misses significantly fewer alignments while

being only 10–15% slower compared to the non-repeat mode.

Once again, HIVE demonstrated much higher sensitivity than

Bowtie and BWA while being more time-optimal.

Sensitivity check for large genomes. The large genome

sensitivity concept is similar to the mixture approach because of

the nature of eukaryotic (human) genome references as compila-

tions of separate reference files of various segments (chromosomes,

genes, etc.). Thus, HIVE-hexagon’s ability to separate references is

essential to its utility in human mappings. Furthermore, human

genomes and sequence data are much larger, on average, than

bacterial and viral counterparts and the stress to memory and IO

in algorithms is significantly greater. Regardless, results follow the

established trends with HIVE-hexagon missing fewer alignments

than both Bowtie and BWA. This test showcases the viability of

HIVE-hexagon as a faster and more sensitive tool for eukaryotic

contiguous alignments.

Performance/scalability Testing
Performance dependency on the size of the genome. The

hashing of extra-large eukaryotic genomes can be a time

consuming step. An FM index may take 2–3 hours to compile

for BWA and Bowtie on modern x86 CPUs, but once finished,

results can be maintained for application to future computations.

As a native component of the HIVE system, HIVE-hexagon is

required to allow users to subset and superset genomic reference

sequences in an arbitrary manner during alignments and therefore

cannot maintain permanent indexes of precompiled references:

HIVE-hexagon recompiles the reference sequence K-mer hash

tables every time a computation is initiated. Although it takes up to

8 minutes to recompile a eukaryotic size genome, this is considered

an affordable tradeoff between convenience and functionality

given the approximately 1–1.5 hours it takes to perform an

alignment of 100 million sequences on such genomes. For smaller

genomes this step takes only a few seconds and does not play a

significant role in our performance considerations.

As mentioned before, low complexity regions and over-

represented repeated subsequences can strongly diminish align-

ment algorithm performance. Large reference genomes tend to be

more prone to such regions; it takes super-linearly disproportional

Table 1. Validity and Sensitivity Comparison of Alignment Tools in Native Environments.

TEST PURPOSE SAMPLE
HIVE-
HEXAGON BOWTIE BWA

Proof of concept for
single species

Influenza mapping AR0-IZ-1M 0.0000 0.0000 0.0000

Mycoplasma mapping AR0-MH-1M 0.0000 0.0000 0.0000

Human mapping AR0-HS-1M 0.0016 0.0150 0.0147

Sensitivity check for
single species

Proof of concept AR0-IZ-1M 0.0000 0.0000 0.0000

Sensitivity level 1 check AR1-IZ-1M 0.0013 0.5171 0.4930

Sensitivity on more divergent sample AR5-IZ-1M 0.4645 16.7000 21.3228

Sensitivity check for
samples with

Mixture proof of concept for viruses: Capability to separate
different references

AR0-VM-1M 0.0000 0.0000 0.0000

many species: Viral
genomes

Capability to separate different references with greater sensitivity AR1-VM-1M 0.0310 0.4376 0.6207

Capability to separate different/divergent references with great sensitivity AR5-VM-1M 0.6079 16.7687 21.2656

Sensitivity check for
samples with

Mixture proof of concept for bacteria: Capability to separate
different references

AR0-BM-1M 0.0000 0.0000 0.0000

many species:
Bacterial genomes

Capability to separate different references with greater sensitivity AR1-BM-1M 1.1817 0.0002* 0.2963 0.4078

Capability to separate different/divergent references with great sensitivity AR5-BM-1M 7.3305 0.3539* 16.2000 20.3869

Sensitivity check for
large genomes:

Proof of concept for large, human genome AR0-HS-1M 0.0016 0.0150 0.0147

Human data Capability to separate different references with greater sensitivity AR1-HS-1M 5.8383 18.8320 18.4592

Sensitivity on more diverse sample from a large genome AR5-HS-1M 15.3918 62.8203 62.4555

*with repeat and transposition search sub-algorithm on.
doi:10.1371/journal.pone.0099033.t001

HIVE-Hexagon: High-Performance Sequence Alignment for NGS Analysis

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e99033

time to map reads to such genomes compared to compact and

dense genomes. With simple low complexity read filters, low

complexity reference region masking and over-represented seed

masking, the performance of HIVE-hexagon alignment of 100

million reads to human genome can boost from ,1–1.5 hours to

35–40 minutes. The sensitivity of biologically dense sequence

alignments deteriorates only slightly (usually less than 0.1% in real

samples) and only in long, low complexity stretches of the

reference genome.

Thus, the total time consumed by HIVE-hexagon may be from

15 minutes to 1.5 hours for 100 million reads against a 3GB

human genome depending on the set of parameters. Comparable

and still less sensitive runs using BWA and Bowtie take about 1–

1.5 hours assuming the references have been precompiled (2–3

hours).

Performance dependency on the coverage and the

number of reads. Due to its non-redundification feature,

HIVE-hexagon consistently outperforms BWA and Bowtie line-

arly proportional to the coverage. For example: alignment of a real

dataset containing 100 million reads (out of which only 16 million

were unique) to a small influenza genome (12KB) resulted in 6x

time-saving (2–3 min) for HIVE-hexagon when compared to itself

without utilizing the non-redundification algorithm (,15 min).

Similar computation against 25 pico- and entero-viruses using

HIVE-hexagon took around 15–17 minutes (larger cumulative

genome) for a metagenomic poli-virus environmental sample

dataset of the same size where the unique count was roughly

similar to the total sequence count. BWA and Bowtie both take

about 20–25 minutes for the same datasets, although generally

slightly less sensitive.

Performance dependency on the execution

environment. All sequence aligners (HIVE-hexagon, BWA,

Bowtie or others) implemented within HIVE infrastructure run in

a parallel execution environment. The time and benchmarks

compared in the two previous sections were those of the

applications run from within the system. The actual running

times for standalone applications can be significantly longer, and

are roughly linearly proportional to the level of parallelism used to

run. For example, computational alignment of a human genome

of 100 million sequences which takes ,1–1.5 hours from within

HIVE with a level of parallelism of 20 takes roughly 22–30 hours

when run in a standalone, single thread mode on a comparable

computer. HIVE-hexagon, specifically designed for a parallel

execution environment like that provided by HIVE, additionally

benefits from parallel data storage and decreased data mobility,

achieving returns beyond what the algorithm itself provides.

Table S4 lists differential hit counts obtained for both Bowtie

and BWA when run in their native, external environments

compared to results when run inside HIVE’s parallelized

environment.

Follow-up Testing and Benchmarking
It is clear from this preliminary validation and performance

testing that HIVE-hexagon has all the characteristics necessary to

become an industry staple for alignments on any species. HIVE

has already embarked on a number of studies and collaborations

using the HIVE-hexagon aligner and other HIVE-developed tools

and workflows [20–22], so the quality and integrity of the system

and each of its tools are of the highest priority.

A number of the previously mentioned performance-enhancing

ideas have been borrowed from the AceView Magic [23]

alignment algorithm, and further integration of these tools is

intended to continue; we therefore avoided inclusion of AceView

Magic in this direct comparison but will follow-up with full

benchmarking in the next publication. We plan to conduct more

extensive comparisons between HIVE-hexagon and all currently

available, comparable alignment algorithms within the next few

months to better determine HIVE-hexagon’s respective perfor-

mance and to identify any weaknesses or needs for improvement.

Additionally, we intend to continue integrating other external tools

directly into the native HIVE execution environment. Further-

more, we aim to use the underlying HIVE-hexagon algorithm to

implement robust multiple sequence alignment, recombinant and

clone discovery utilities.

Methods

Aligning short reads to reference genomes results in a high

degree of coverage, such that every genetic position is mapped by

a large number of base-calls. It is not unusual to see 10,000–

1,000,0006uniform coverage on shorter genomes like viruses and

bacteria and 5–1006 coverage on eukaryotic genomes with a

lesser degree of uniformity [24]. The ratio of short read count to

the number of reference positions is a heuristic measure of unique

short read redundancy. Errors and noise introduced into short

read sequences by sequencing chemistry or processing pipelines

can reduce the actual redundancy rate by randomly introducing

differences between similar DNA/RNA molecules. However,

given the small systemic error rates produced by present day

technologies [25–27], actual redundancy rates can be tens to

sometimes hundreds or thousands for highly expressed regions of

reference genomes. Innovative identification and usage of

redundancy and cross-similarity between reads can be beneficial

for bioinformatics pipelines, minimizing the storage memory

footprint and bio-analytics complexity by removing repeats, and

therefore allowing a higher rate of vertical compression and

avoiding unnecessary repeated computations of identical/redun-

dant reads.

Bioinformatics pipelines performing alignment and mapping

computations are frequently heuristic in nature and, with memory

access patterns driven by the data itself, often need to access large

memory chunks randomly. For such large datasets, the ‘‘memory

hungry’’ processes with unorganized ‘‘page hits’’ can create a

bottleneck in computations where the vast majority of time is lost

on memory pages caching into the CPU. The HIVE-hexagon

algorithm proposes a novel method of linearized data organization

to minimize memory usage of underlying matrixes and structures

used for programming alignment algorithms, optimize memory

page hits and boost algorithmic performance by taking advantage

of modern CPU architecture.

The overall pipeline for the HIVE-hexagon algorithm proposed

within this publication consists of a few major steps (see Figure 1):

Non-redundification
The non-redundification of the sequence space is accomplished

by building a sequence suffix tree [28] for text with the four letter

alphabet A = a, c, g, t (see Figure 2). The use of a tree-like structure

to solve sorting problems is not new in the field of bioinfor-

matics[29–31]; however, previous efforts have reported problems

related to the prohibitive size of suffix trees when applied to longer

strings in larger quantities, increasing the string universe from

hundreds to thousands or millions.

Our simple tree algorithm minimizes the number of compar-

isons against new sequences base-four logarithmically as they are

added into the tree. Computationally, the average scenario

behaves as a task of ,O(S*log4L) complexity; the worst case

scenario, when all sequences are identical, will require an all-to-all

comparison and therefore will increase processing time to

HIVE-Hexagon: High-Performance Sequence Alignment for NGS Analysis

PLOS ONE | www.plosone.org 5 June 2014 | Volume 9 | Issue 6 | e99033

,O(S*L), but the corresponding storage needs are minimal.

Conversely, a very diverse set of reads is computationally cheaper

but has higher storage demands to accommodate the increased

quantity of unique records.

Redundant sequences are discarded, but counters are associated

with the unique sequences to signify that a similar sequence (in this

case, an exact copy) has already been stored in the tree. Thus, each

sequence in the tree at any given time is unique and, upon

addition of a new sequence to the tree, it is a simple process to

identify whether the sequence is a repeat or whether a new branch

should be created.

The actual implementation of the algorithm has a built-in

parallelization schema such that, depending on the memory

limitations imposed on the algorithm from the execution

environment, a decision is made to split data into 4, 16, or 4K

portions. Each thread will pick up sequences starting with a prefix

which is the 2-na representation of its thread index in K-mer

space. For example, in 16 part execution mode the portions will

include the prefixes: AA…, AC…, AG…, AT…, CA…, CC…,

CG…, CT…, TA…, TC…, TG…, TT… Splitting the tree

parsers in this manner removes the need for a joining step where

trees must be collapsed. Since no overlaps are possible in each

portion and within portions, there is no need to repeat the non-

redundification step and re-sort the sequences.

Another piece of valuable information stored at each sequence

node is the cross-similarity coefficient which shows the degree of

similarity between prefixes of consecutive sequences in the tree.

This is used for explicit cross-similarity optimization of the

alignment algorithm described later in this paper.

Sorted Paths
Once all sequences are digested into the tree, it is easy to

traverse the tree by visiting every node exactly once in a pre-

determined order using a single traversal iteration function which

operates on any given node. The function returns the node itself

(which represents a sequence) or it continues the traversal through

its children nodes from left to right if such nodes exist. This simple

recursive procedure will, in turn, generate a final version of the file

with unique and sorted sequences.

By maintaining an iterator structure on a bound, self-referenced

tree this operation is of constant time access and the whole tree can

be generated within O(S) operations where S is the count of non-

redundant sequences.

K-mer Hashing
HIVE-hexagon compiles a dictionary of K-mer occurrences

(seeds) in the reference set of genomes, where the K-mer is defined

as a shorter subset of r1,…ri,… rK. The compiled result is a

hashed bucket list (Figure 3d) where each bucket represents the

positions of its seed’s occurrences in a reference genome. This step

has a complexity of O(R). In a genomic alphabet of four letters (A,

T, G, C), the K-mer table consists of 4K elements, each occupying

so many integers in memory to hold the list of occurrence positions

and the hash back reference. In a conventional hash-table

implementation, one would need to store backward references to

hash indexes. However, in the HIVE-hexagon implementation,

the K-mers themselves are considered indexes in 2-na represen-

tation of sequence space where each nucleotide is represented by a

2-bit value (A = 00 = 0, C = 01 = 1, G = 10 = 2, T = 11 = 3). By

considering sequences as indexes we remove the need to maintain

the sparse hash table back-references and avoid hash collisions

using an over-exaggerated hash table. There is some penalty for

having to maintain significantly sparse arrays for small genomes,

but the benefit outweighs the cost, especially for larger genomes

where the hash table is almost fully occupied.

Figure 2. Non-redundification. This tree representation of 6 sequences is composed by linking all sequences’ tails (suffixes) to the parent nodes
which represent the longest prefixes common to each branch. The tree contains all information about the 6 sequences, including position and
length, at each node. Once the tree is complete, we can traverse the tree in a left maze order (always taking a left path) to obtain the sorted list of
elements as: S = 4,5,1,3,6,7,2, which refers to the sorted list AGAC, AGACT, AGTAC, CCGGA, GTAGA, GTCTCA, TAGC.
doi:10.1371/journal.pone.0099033.g002

HIVE-Hexagon: High-Performance Sequence Alignment for NGS Analysis

PLOS ONE | www.plosone.org 6 June 2014 | Volume 9 | Issue 6 | e99033

The list of occurrence positions in a bucket list requires at least

26R cells of integers to refer to the index of the reference genome

and to a position on the genome where the particular seed has

occurred. Thus, the memory footprint for a seed-hash table is

roughly in the order of ,4K+,R integers. Contemporary (2013)

computers can realistically hold a dictionary of up to 14-mers

without sacrifice to the execution environment. K-mers larger than

this are typically problematic, causing too great a stress to memory

and, in parallel execution environments, diminishing performance

benefits of hashing by memory swapping. Additionally, long K-

mers require a sacrifice in sensitivity with over 1/K ,7% error.

HIVE-hexagon implements a double-hashing schema where

lookup for K-mers larger than 14 is done by double-lookups of

K-mers with K,14 in consecutive continuous positions.

Lookup Step
For every short read, HIVE-hexagon retrieves the K-mers

sequentially and matches them to a seed-dictionary to obtain the

list of occurrences of each particular K-mer on a reference

sequence as potential candidates of alignment position. A genome

of size R has in average R/4K occurrences of candidates for every

K-mer. Increasing K results in fewer candidate positions where

each has a higher chance of being a true alignment, thus

increasing the speed of computations. However, an increase in K

also has the potential of increasing the footprint of the memory as

,4K+,R. For L positions of the sequence there are L-K (usually

K,, L) positions to be looked up using the dictionary. Thus, the

complexity of lookup step is O(S6L) and the memory footprint

measures as ,R/4K6S6L with proportionality coefficient

dependent on the relatedness of the reference sequence and the

number of successful alignments.

A significant number of hash lookups are misses, and from the

perspective of the CPU the lookup results in a memory page load

on a random access basis and is therefore costly and to be avoided.

HIVE-hexagon maintains a bloom lookup table (Figure 3d) [32]

where each K-mer is represented by only a single bit, signifying the

presence or absence of that K-mer in the table. Due to its more

compact size, the lookups from the bloom table are much less

costly from a paging viewpoint and result in significant time-

saving. The bloom table itself occupies a single bit for each hash

element instead of full size 64 bit integer; therefore, the additional

cost of the bloom implementation is only ,1–2% more memory

compared to the original bloom-less variant of the algorithm.

The HIVE-hexagon implementation of the lookup table ignores

seeds which are overexpressed as defined by a count greater than a

given threshold: overexpressed seeds are usually present in low

complexity regions in eukaryotic genomes and, although not

always, frequently do not represent biological relevance. However,

Figure 3. Optimal alignment search optimization schema. (a) Dynamic programming matrix Needleman-Wunsch or Smith-Waterman
algorithms use a two dimensional rectangular matrix where cells represent the cumulative score of the alignment between short read (horizontal)
and reference genome(vertical). (b) HIVE-hexagon maintains a bloom lookup table where each K-mer is represented only by a single bit signifying the
presence or absence of that K-mer and 2-na hash table where a sequence’s binary numeric representation is used as an index. (c, d) The fuzzy
extension algorithm allows accurate definition of the alignment frame and squeezes the window where the high scoring alignments might be
discovered.
doi:10.1371/journal.pone.0099033.g003

HIVE-Hexagon: High-Performance Sequence Alignment for NGS Analysis

PLOS ONE | www.plosone.org 7 June 2014 | Volume 9 | Issue 6 | e99033

if the actual biological genomic region does have such overex-

pressed seeds adjacent to those with normal level of expression, the

alignment algorithm will be able to capture the exact seed match

in subsequence k-mers and then extend as much as needed

regardless of the seed’s expression level. If the entire region is

made of overexpressed seeds, HIVE-hexagon will exclude

alignments above a certain number of findings.

HIVE-hexagon can maintain seeds of K-mers on every genomic

position, but it can also skip positions based on expression levels

and preset parameters. This decreases the memory required for

bucket list storage and decreases the pool of candidate positions

without a great sacrifice to sensitivity for cases where the reference

is well known. In viruses and bacteria, divergence can achieve

large values and so this technique may decrease the sensitivity due

to the fact that an exactly-matched seed has been skipped. For

eukaryotic genomes, however, the reference tends to be more

stable, so we frequently observe continuous exact matches longer

than that of the K-mer size chosen for HIVE-hexagon.

Bracketing and Fuzzy Extension
Once K-mer seeding has detected a candidate region, HIVE-

hexagon determines the frame of possible alignment windows

around the exact seed match positions. The presence of a short

exact match only hints at the potential alignment: the actual

alignment must be computed by other means. Extension

methodologies (like that in BLAST) do not need an exact

reference frame of alignment, but dynamic programming methods

require a strictly defined matrix where the optimal alignment will

be computed. Underestimation of the frame may result in loss of

sensitivity whereas overestimation may result in vertical extension

(see Figure 3a) of the matrix, slowing down computations by

increasing the absolute size of the matrix, and therefore the

memory and the number of computations to be performed.

HIVE-hexagon implements both double-sided extension of the

seed and a dynamic programming matrix. The fuzzy extension

algorithm is similar to cost-based dynamic programming methods

except that it runs in a very small floating window along the

bidirectional extension front using integer arithmetic. This

approach not only allows more accurate definition of the

alignment frame (Figure 3c), but also filters a significant number

of accidental K-mer hits. The number and the density of

mismatches, insertions and deletions allowed during extension

are customizable and, by default, correlated with relevant

parameters for the optimal alignment algorithm used downstream.

Optimal Alignment
Dynamic programming methods of alignment [33] matrix

evaluation usually include the computation of all alternative

matches, mismatches, insertions and deletions (Figures 3 and 4).

Each cell’s value is computed as the best score from all alternate

trajectories leading to that cell either as a match/mismatch

(diagonal), insertion (vertical) or deletion (horizontal). All possible

cumulative scores are computed across those trajectories and the

highest value SA(s,r) = S(Pk) is reported as a potential alignment

score along with the trajectory A(s,r) leading to it. The usual

strategy involves computing the dynamic matrix values and

backward pointers from the top left corner down to the bottom

right corner. Backward pointers are then propagated in the

opposite direction starting from the maximal score position to re-

identify the trajectory which generated best local or global

alignment.

The first, most obvious level of NW/SW optimization

implemented in HIVE-hexagon is to avoid computation of the

whole matrix and concentrate only on the diagonal region

(Figure 4a) where the expected alignment usually lies because

the extension algorithm applied in HIVE-hexagon ensures the

accuracy of the frame positioning. Using a diagonal of constant

width allows translation of computational complexity of O(L6Gr)
into O(L6w) where w is the constant width of the diagonal and

does not scale with the size of the selected reference segment.

Alignments with multiple insertions or deletions can be

problematic for such optimizations. Although not usually an issue

for short read alignments, a significant number of multiple in-dels

is a critical problem (Figure 4b) for longer contig alignments or

mutual alignments of reference genes. Unlike existing analogues

[34,35], HIVE-hexagon allows the diagonal to float along the two

sides of the highest scoring path (Figure 4c), thus allowing the

generation of longer, multiple in-del-containing alignments to take

advantage of the dynamic matrices diagonalization method.

To even further reduce the amount of computations in memory,

HIVE-hexagon maintains a variable width diagonal (Figure 4d).

Cells located at a greater distance from the optimal diagonal have

an associated cost of insertions and deletions. Thus, alignments

involving these cells will have a limit to the maximum possible

score and minimal number of insertions, deletions and mismatch-

es. Using this information, HIVE-hexagon estimates each

particular cell’s potential to generate a successful alignment within

required thresholds. If the maximum possible score implies no

potential, that position will be ignored and no memory will be

allocated for it nor will computations be performed for trajectories

through that cell. For this reason, the diagonal itself has ‘‘holes’’:

black, ignored spots, hence the association with a particular kind of

Armenian string cheese which looks like a string with variable

thickness along its profile with possible holes on the sides.

Additional significant optimization implemented in HIVE-

hexagon is the linearization of the final dynamic matrix. The

benefit of storing a linear matrix ,w6L instead of the rectangular

matrix L6Gr where memory requirements are tens or hundreds of

times larger is significant. In a real parallel execution environment

where hundreds of processes compete for memory pages, such

optimization has a huge potential of improving the actual

execution speed.

Additional Features Contributing to Competitive HIVE-
hexagon Performance

The alignment further benefits from the consideration and

implementation of the following:

N Alignment of unique sequences only. By aligning every

redundant sequence only once and maintaining the count of

redundancies, HIVE-hexagon already achieves significant

improvements in computational speed without additional

algorithmic modifications. The speed benefit resultant from

non-redundification is above linear due to the decrease in

stress to memory pages, caching and swapping.

N Sorting and implicit cross-similarity. Further lazy

optimization is achieved implicitly due to cross-similarity and

sorting of the short reads computed during non-redundifica-

tion of short read sequences.

Seed lookup involves reading particular locations from the

bloom table, from the hash table, and therefore from the

computer’s memory. Modern CPUs optimize memory-reading

by double-layer caching of memory pages. Random access to

memory is usually slower than sequential access with additional

hits to pages already in the cache.

In an attempt to align the first sequence, the CPU is forced to

load a certain number of pages (containing seeds, reference

HIVE-Hexagon: High-Performance Sequence Alignment for NGS Analysis

PLOS ONE | www.plosone.org 8 June 2014 | Volume 9 | Issue 6 | e99033

genome, etc.) into the cache. If the next sequence is very dissimilar

to the first, the pages loaded are different for each, thus resulting in

cache saturation with potential of dumping memory pages.

However, if the sequences are very similar, the seeds hit the same

set of positions in memory and the CPU does not need to reload

new pages. HIVE-hexagon greatly benefits from the implicit

optimization of short read sorting prior to alignment. We see up to

2-fold improvement of the speed solely due to sorting.

N Explicit cross-similarity. Even deeper optimization can be

achieved explicitly by considering cross-similarity among the

short reads. If two sequences are similar up to a certain

number of characters, the alignments of those to the reference

genome are expected to be similar.

Let us assume the first sequence has hit the K-mer table in a

large number of candidate positions, out of which only a few have

passed the extension step filter (described above) and even fewer

have resulted in a real alignment for a given score threshold. The

following sequence is nearly identical to the first and can therefore

skip all candidate positions where the extension attempt for the

first failed with a wide margin of error. Since HIVE maintains all

self-similarities between consecutive sequences, it is possible to

quantitatively predict if the best potential alignment score between

a sequence and the candidate position is within the required error

threshold. Thus, only a few successful hits or near-successful mis-

hit positions are typically considered for real optimal alignment

search (Figure 5).

The pattern of cross-similarity in non-redundant sequence files

is oscillatory, frequently in a zig-zag pattern where the ‘‘zigs’’

(horizontals) are changes in a base early in the sequence and

‘‘zags’’ (diagonals) are changes at the end of the sequences. Given

the inexact nature of the alignments, each consecutive sequence

has to be considered in more places than assumed by the cross-

similarity, so the efficiency of zig-zag is not a full 100%.

We observe up to 2–4x fold performance boost depending on

the parameters defined in the alignment algorithm, assuming the

choice of the reference is accurate. For these cases we notice

almost no sacrifice to sensitivity (,0.01%), but for cases with

reference sequence further from the subject we saw some

degradation (1–2%) of sensitivity with strong usage of cross-

similarity.

This parameter is optional in HIVE-hexagon and is not

recommended to be used in its current stage for references distant

from the subject, or for references containing multiple repeats and

transpositions. We do recommend using this option to benefit from

Figure 4. Dynamic programing matrix linearization schema. HIVE-hexagon implements a floating diagonal approach where the diagonal of
the computation is maintained along the two sides of the current highest scoring path of the matrix. (a) We assume the optimal alignment will be
along the diagonal. (b) Multiple insertions or deletions can result in the optimal path traversing outside the defined diagonal belt. (c) By defining a
constant width to the diagonal and pre-computing cell scores line by line, the limits of the remaining diagonal matrix can float along with the likely
optimal scoring path. (d) Furthermore, pre-computation of cells in the diagonal line by line allows the exclusion of regions which cannot possibly
contain the highest scoring path. (e) The resulting minimized, dynamic diagonal matrix is linearized to further simplify the process and minimize the
memory footprint required.
doi:10.1371/journal.pone.0099033.g004

HIVE-Hexagon: High-Performance Sequence Alignment for NGS Analysis

PLOS ONE | www.plosone.org 9 June 2014 | Volume 9 | Issue 6 | e99033

significant improvements of the speed for more accurate referenc-

es. We expect further development to take place on this subject.

Discussion

In this article, we have discussed the challenges associated with

NGS data analysis, with special emphasis on alignment, and

provided improvised and novel approaches to overcoming these

challenges. Specifically, we have introduced new and significantly

improved algorithms developed by HIVE which greatly reduce the

memory footprint required by alignment of NGS data and,

therefore, decrease the overall time needed for the alignment

process.

A great quality of these HIVE algorithms is that the decrease in

computational cost, memory requirement and time for processing

is not accompanied by a sacrifice in the quality of the approach or

the results. In fact, being native to the massively parallelized HIVE

environment, the overall speed increase afforded by the infra-

structure alone allows these algorithms to perform at a higher

sensitivity than other industry algorithms of similar functionality

while still outperforming in terms of time required for the

computation.

Experiments have shown HIVE-hexagon is more sensitive and

faster than current industry standard alignment algorithms due to

scalability, high parallelizability, non-redundification, dynamic

matrix linearization and implicit and explicit cross-similarity

usage. There is already a great deal of interest surrounding

HIVE-hexagon, and HIVE plans to continue developing this and

other new tools to further promote the advancement of NGS

technologies and the larger field of genomics.

Supporting Information

Table S1 Genomes, Mixes & Conc. Lists the components and

accession IDs of all sequences used in the validation and testing

section of the paper.

(XLSX)

Table S2 All Run Counts. A detailed spreadsheet containing all

counts of alignments (and unaligned sequences) used to summarize

the validation and testing section.

(XLSX)

Table S3 generateSeqs. Provides the text of a short script written

to generate the random subset of reads used in the validation and

testing.

(XLSX)

Table S4 Externalvs.HIVE Bowtie&BWA. Shows the compared

alignment counts of external tools when run both inside the HIVE

environment and in their native external environments.

(XLSX)

Table S5 Access Data in HIVE. Provides access information

and instruction for reviewers and other interested individuals to

see and replicate the results presented herein.

(XLSX)

Acknowledgments

The authors wish to thank Konstantin Chumakov, PhD, Associate Director

for Research, Office of Vaccines Research and Review, FDA CBER, for

providing a deep insight and great advice regarding the nature and biology

of the next-generation sequencing, in addition to provision of datasets;

Carolyn A. Wilson, PhD, Associate Director for Research, Office of the

Center Director, FDA CBER, for continuous support to the HIVE project

and our research goals; Thomas Maudru FDA CBER, and Cristopher

Kiem FDA CBER for their support for hardware/software and

administrative infrastructure of HIVE project.

Implementation
blueHIVE technology group bluehivescience@gmail.com

Contact us
https://hive.biochemistry.gwu.edu/contact.php

Author Contributions

Conceived and designed the experiments: VS RM JT. Performed the

experiments: VS JT LS. Analyzed the data: VS HD. Contributed

reagents/materials/analysis tools: LS VS JT. Wrote the paper: HD VS.

Figure 5. Cross-similarity decreases the pool of optimal alignment candidates. In this example, the first sequence CATAGTGGACACTG has
generated 5 possible hit candidate positions (blue arrows), but only three of those have failed to extend or align long enough (marked by X). The
next sequence, CATAGTGGACCACA, having a significant length of prefix similar to the prior one, does not need to consider all candidate positions,
and can specifically exclude from consideration those for which the extension attempt failed with a wide margin of error for the prior, similar
sequence.
doi:10.1371/journal.pone.0099033.g005

HIVE-Hexagon: High-Performance Sequence Alignment for NGS Analysis

PLOS ONE | www.plosone.org 10 June 2014 | Volume 9 | Issue 6 | e99033

http://bluehivescience@gmail.com
https://hive.biochemistry.gwu.edu/contact.php

References

1. Torri F, Dinov ID, Zamanyan A, Hobel S, Genco A, et al. (2012) Next

Generation Sequence Analysis and Computational Genomics Using Graphical
Pipeline Workflows. Genes (Basel) 3: 545–575.

2. Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, et al. (2013) A survey of
tools for variant analysis of next-generation genome sequencing data. Brief

Bioinform.

3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local
alignment search tool. J Mol Biol 215: 403–410.

4. Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, et al. (1999)
Alignment of whole genomes. Nucleic Acids Res 27: 2369–2376.

5. Li H, Homer N (2010) A survey of sequence alignment algorithms for next-

generation sequencing. Brief Bioinform 11: 473–483.
6. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol
10: R25.

7. Ferragina PM G (2000) Opportunistic data structures with applications;
Redondo Beach, California. 390–398.

8. Dua S, Chowriappa P (2013) Data Mining for Bioinformatics. Boca Raton, FL

CRC Press. Taylor & Francis Group, LLC.
9. Burrows M, Wheeler DJ (1994) A block-sorting lossless data compression

algorithm.
10. Sun WK (2010) Algorithms in Bioinformatics: A Practical Introduction. Boca

Raton, FL Chapman & Hall/CRC Press. Taylor & Francis Group, LLC.

11. Wang W, Wei Z, Lam TW, Wang J (2011) Next generation sequencing has
lower sequence coverage and poorer SNP-detection capability in the regulatory

regions. Sci Rep 1: 55.
12. Homer N, Merriman B, Nelson SF (2009) BFAST: an alignment tool for large

scale genome resequencing. PLoS One 4: e7767.
13. Schuler GD, Altschul SF, Lipman DJ (1991) A workbench for multiple

alignment construction and analysis. Proteins 9: 180–190.

14. Needleman SB, Wunsch CD (1970) A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol Biol 48: 443–

453.
15. Smith TF, Waterman MS (1981) Identification of common molecular

subsequences. J Mol Biol 147: 195–197.

16. Smith TF, Waterman MS, Fitch WM (1981) Comparative biosequence metrics.
J Mol Evol 18: 38–46.

17. Shen S, Tuszynski JA (2008) Theory and Mathematical Methods for
Bioinformatics. Berlin, Heidelberg: Springer-Verlag.

18. Gotoh O (1982) An improved algorithm for matching biological sequences. J Mol
Biol 162: 705–708.

19. Waterman MS (1984) Efficient sequence alignment algorithms. J Theor Biol

108: 333–337.

20. Karagiannis K, Simonyan V, Mazumder R (2013) SNVDis: a proteome-wide

analysis service for evaluating nsSNVs in protein functional sites and pathways.

Genomics Proteomics Bioinformatics 11: 122–126.

21. Dingerdissen H, Motwani M, Karagiannis K, Simonyan V, Mazumder R (2013)

Proteome-wide analysis of nonsynonymous single-nucleotide variations in active

sites of human proteins. FEBS J 280: 1542–1562.

22. Lam PV, Goldman R, Karagiannis K, Narsule T, Simonyan V, et al. (2013)

Structure-based comparative analysis and prediction of N-linked glycosylation

sites in evolutionarily distant eukaryotes. Genomics Proteomics Bioinformatics

11: 96–104.

23. Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-

supported gene and transcripts annotation. Genome Biol 7 Suppl 1: S12 11–14.

24. Zagordi O, Daumer M, Beisel C, Beerenwinkel N (2012) Read length versus

depth of coverage for viral quasispecies reconstruction. PLoS One 7: e47046.

25. Kircher M, Heyn P, Kelso J (2011) Addressing challenges in the production and

analysis of illumina sequencing data. BMC Genomics 12: 382.

26. Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing:

from basic research to diagnostics. Clin Chem 55: 641–658.

27. McElroy KE, Luciani F, Thomas T (2012) GemSIM: general, error-model

based simulator of next-generation sequencing data. BMC Genomics 13: 74.

28. Bieganski P, Riedl J, Cartis JV, Retzel EF (1994) Generalized suffix trees for

biological sequence data: applications and implementation; Hawaii.

29. Valimaki N, Gerlach W, Dixit K, Makinen V (2007) Compressed suffix tree–a

basis for genome-scale sequence analysis. Bioinformatics 23: 629–630.

30. Soares I, Goios A, Amorim A (2012) Sequence comparison alignment-free

approach based on suffix tree and L-words frequency. ScientificWorldJournal

2012: 450124.

31. Makinen V, Navarro G, Siren J, Valimaki N (2010) Storage and retrieval of

highly repetitive sequence collections. J Comput Biol 17: 281–308.

32. Bloom BH (1970) Space/time trade-offs in hash coding with allowable errors.

Commun ACM 13: 422–426.

33. Holmes I, Durbin R (1998) Dynamic programming alignment accuracy.

J Comput Biol 5: 493–504.

34. Chao KM, Pearson WR, Miller W (1992) Aligning two sequences within a

specified diagonal band. Comput Appl Biosci 8: 481–487.

35. Lopez R, Silventoinen V, Robinson S, Kibria A, Gish W (2003) WU-Blast2

server at the European Bioinformatics Institute. Nucleic Acids Res 31: 3795–

3798.

HIVE-Hexagon: High-Performance Sequence Alignment for NGS Analysis

PLOS ONE | www.plosone.org 11 June 2014 | Volume 9 | Issue 6 | e99033

