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Abstract

Recently, there has been much interest in the community structure or mesoscale organization of complex networks. This
structure is characterised either as a set of sparsely inter-connected modules or as a highly connected core with a sparsely
connected periphery. However, it is often difficult to disambiguate these two types of mesoscale structure or, indeed, to
summarise the full network in terms of the relationships between its mesoscale constituents. Here, we estimate a
community structure with a stochastic blockmodel approach, the Erdős-Rényi Mixture Model, and compare it to the much
more widely used deterministic methods, such as the Louvain and Spectral algorithms. We used the Caenorhabditis elegans
(C. elegans) nervous system (connectome) as a model system in which biological knowledge about each node or neuron can
be used to validate the functional relevance of the communities obtained. The deterministic algorithms derived
communities with 4–5 modules, defined by sparse inter-connectivity between all modules. In contrast, the stochastic Erdős-
Rényi Mixture Model estimated a community with 9 blocks or groups which comprised a similar set of modules but also
included a clearly defined core, made of 2 small groups. We show that the ‘‘core-in-modules’’ decomposition of the worm
brain network, estimated by the Erdős-Rényi Mixture Model, is more compatible with prior biological knowledge about the
C. elegans nervous system than the purely modular decomposition defined deterministically. We also show that the
blockmodel can be used both to generate stochastic realisations (simulations) of the biological connectome, and to
compress network into a small number of super-nodes and their connectivity. We expect that the Erdős-Rényi Mixture
Model may be useful for investigating the complex community structures in other (nervous) systems.
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Introduction

The past thirty years have seen increasing interest in the

systems-level understanding of structures as diverse as the global

economy [1], ecosystems [2], living cells [3], power grids [4] and

more. To obtain deeper insights into the operational mechanisms

governing these systems, the scientific focus has gradually moved

away from the analysis of their isolated components to the ways in

which these components interact to perform the functions that

characterise the system as a whole. In this manner, a wide range of

systems can all be studied as networks, defined through their

elements (vertices or nodes) and the connections (edges) that link

them. A system’s functional properties can then be studied in

terms of the connection structure that is associated with its

network.

In the context of the brain, the same approach can be used to

study how simple elements (e.g., neurons) are organised into

circuits to process information. This allows us to gain greater

insights than the study of a single, isolated element would normally

provide. For example, individual neurons can engage in complex

physiological responses that are triggered by interactions between

larger numbers of neurons locked in circuits. Thus, the knowledge

of such circuits can provide a better understanding of brain activity

[5]. In addition, brain and mind disorders are increasingly thought

of in terms of damage to the connections between brain regions

[6].

Although network analysis has great potential for addressing

some of the key questions in neuroscience, its application at a

cellular scale is only possible for one complete nervous system,

namely that of Caenorhabditis elegans. Indeed, C. elegans is the only

organism whose connectome (or pattern of neuronal connections)

has been mapped extensively at the level of neurons and synapses,

and it has therefore become a gold standard system for brain

connectivity analyses [7–9].

However, even this simple model system consists of close to 300

individual neurons and more than 2,000 edges, making its analysis

non-trivial. Nevertheless, a tractable analysis is possible when it is

considered that networks with high functional requirements tend
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to be organised in terms of homogeneous clusters that define

different levels of functional hierarchy [10,11]. Indeed, decom-

posing such networks into a collection of functionally coherent

clusters, known as mesoscale organisation or community structure,

can serve as a meaningful summary of the overall network’s

structure.

However, one of the underlying difficulties in the inference of a

network’s community structure is that the concept of ‘‘communi-

ty’’ is not precisely defined. This degree of arbitrariness has

generated diverse methodological solutions which can, in a broad

sense, be classified into two groups: deterministic methods based

on heuristic objective functions, and model-based methods that

relate the observable data to unobservable parameters of interest

with a statistical model [12].

Within the framework of deterministic methods, an exhaustive

search over the sample space of all possible community structures

and their corresponding partitions is astronomically large [13].

Nevertheless, various methods are available for particular defini-

tions of community structure. One class of such methods (i.e.,

community detection algorithms) searches for groups of nodes,

called modules, that comprise a high density of links within them

and a lower density of links between them. The popularity of these

algorithms stems from the fact that they are computationally

feasible and, in particular, some of them can determine an optimal

number of modules. We consider two such deterministic methods,

namely the Fast Louvain algorithm [14] and the Spectral

algorithm [15,16], chosen because of their widespread use in the

literature.

In contrast to this, model-based methods use statistical tools to

estimate the community structure in a process which is generally

known as the stochastic blockmodeling. The origins of this

approach can be found in the sociometric literature, dating back

to the work of Lorrain and White [17] and others [12,18,19] who

formulated methods similar to those of modern day network

compression, as well as other articles that developed stochastic

blockmodels [20–22]. Although there are various types of

stochastic blockmodels which differ in terms of parametrisation

and estimation strategies, they share a consistent view of the

community structure in a network. In particular, the observed

network is seen as a random realisation from a sample space of all

possible networks, and community structure is seen as a collection

of blocks; all nodes in a given block share the same probabilities of

connection with other nodes in the network. Formally, this is

known as the stochastic equivalence (see Figure 1). The distinctive

feature of this approach is that it groups nodes together according

to their similarity of connection patterns, in contrast to other

community detection algorithms that groups nodes solely on the

basis of high density of connections. With such approach, we can

recognise a group of densely connected nodes as comprised of

distinct groups, distinguished by their extra-block connections (see

Figure 1 (b), where Block A’s connections to Block C differentiate

it from Block B, despite similar connections within and between

Blocks A & B).

Identifying the best possible decomposition of a network into

such blocks and identifying the associated connectivity rules is an

area of active research in statistics. While the classic stochastic

blockmodel proposed by Nowicki and Snijders [23] can handle

small networks (i.e., v100 nodes), the more recent Erdős-Rényi

Mixture Model (ERMM) proposed by Daudin et al. [24] can

handle networks with several thousand nodes. In the ERMM, each

block is modelled as a small Erdős-Rényi network with a common

probability of internal connections, and the relationship between

each block pair is also modelled as a separate Erdős-Rényi

network specified by a probability of inter-group connections (as in

Figure 1). Fitting the ERMM requires the estimation of the total

number of blocks, the connection probabilities within each block

and between each block pair, as well as the assignment of nodes

into blocks. The output consists of both an estimated community

structure and a simple model for the connectivity between blocks.

In this paper, we compare the quality of the community

structure identified by the ERMM to those found by more

traditional community detection methods. We quantify the results

of all 3 methods using prior data on the neurons (nodes) and

synapses (edges) of the C. elegans connectome. We also illustrate the

ability of the ERMM to capture other forms of mesoscale structure

in the network beyond the presence of modules and to summarise

the structure as a compressed network of super-nodes. In

particular, we show that the ERMM provides a natural framework

for identifying the core-periphery structure, defined as the densely

connected core and sparsely connected periphery [25], a structure

that cannot be identified by the deterministic community detection

algorithms. Furthermore, we show that the ERMM can isolate

biologically coherent groups of neurons and that it also provides a

generative model yielding, for example, a good approximation of

the network’s degree distribution and means to simulate new data.

Data and Methods

Data
The neuronal network of the adult nematode C. elegans was first

described in the publication by White et al. [26] and was recently

revised by Chen et al. [27] and Varshney et al. [28]. It expresses

the regime of connections between the animal’s 282 somatic

neurons and classifies them with respect to their type and direction

(http://www.wormatlas.org/neuronalwiring.html, accessed 15th

June 2013).

In our analysis, we consider a subset of this data where 3

disconnected neurons (VC06, CANL and CANR) are excluded

from the set and we take all connections to be undirected.

Furthermore, while the connections are distinguished in terms of

their type (chemical synapses, gap junctions and neuromuscular

junctions), we treat all connections as binary, that is, we assign

value 1 if some type of connection exist and 0 otherwise. This

yields a 279|279 binary and symmetric adjacency matrix with

2287 edges that defines the C. elegans network.

For an external evaluation of the community estimates, we use

categorical and quantitative characteristics of the neurons (node-wise

features) and quantitative characteristics of the edges (edge-wise

features), as summarised in Table 1.

There is a large body of knowledge on the individual neurons,

producing node-wise features. For example, we use the classifica-

tion of neurons into ten anatomically defined ganglia (‘‘Ganglion

classification’’), the classification of neurons by their circuitry

(‘‘Neuron type’’) defined by four groups (sensory, motor,

interneurons and polymodal neurons), as well as topological and

synaptic division of neurons (‘‘Neuron class’’) defined by 103

groups [28,29]. We also consider ventral nerve cord motor

neurons involved in locomotion, egg-laying and possibly avoidance

(broadly labelled as ‘‘Locomotion circuit’’ in Table 1) which was

described by Haspel et al. [30] using connection data from Chalfie

and White [31], Von Stetina et al. [32], Altun and Hall [33], and

Chen et al. [27]. Explicitly, this circuit is composed of 84 neurons,

of which 74 are motor neurons (excluding VC06) that comprise

eight neuron classes. Four of these classes are connected to ventral

muscles (VA, VD,VB and VC) while the other four classes are

connected to dorsal muscles (AS, DA, DD and DB). The

remaining 10 neurons are interneurons (AVA, AVD and AVE;

AVB and PVC) promoting backward and forward motion.

Stochastic Blockmodeling of C. elegans Connectome

PLOS ONE | www.plosone.org 2 July 2014 | Volume 9 | Issue 7 | e97584

http://www.wormatlas.org/neuronalwiring.html


Although the connection data used in our analysis do not include

neuromuscular connections, the circuit presented by Haspel et al.

[30] provides some invaluable insights that are beneficial to the

evaluation and comparison of the results obtained in our analysis.

The remaining set of the node-wise features includes ‘‘Anatomical

Location’’ (longitudinal and sectional positions) of the cell body

(soma) and the ‘‘Birth Time’’ of each neuron (http://www.

biological-networks.org/?page_id = 25, accessed 15th June 2013)

[34].

Edge-wise features include the ‘‘Anatomical Distance’’ (Euclid-

ean distance between each neuron pair), the ‘‘Birth Time

Difference’’ (for each neuron pair, we take an absolute difference

in their birth times) and the ‘‘Lineage Distance’’ (for each neuron

pair, this is the sum of total divisions to the most recent common

ancestor cell) [35].

Methods
Our analysis consists of two stages. In the first stage, we derive

community structures of the C. elegans neural network using 3

different methods, as described next. In the second stage, we

estimate how well each network decomposition explains the

system’s known prior biological properties. The general techniques

used for this part of the analysis are summarised in Section

‘‘Evaluation Methods’’.

We first fix our general notation, but emphasise that the terms

‘‘network’’ and ‘‘graph’’ are used interchangeably. A graph

G(V ,E) is defined as an object formed by a finite set of vertices

(nodes) V of size n and a list of unordered pairs of vertices E (edge

list) of size m. For a simple graph (i.e., graph without multiple

edges or self connected vertices), the adjacency matrix

A~((Aij))1ƒi,jƒn is symmetric and binary, that is, its elements

Aij take value 1 if there is an edge between vertices Vi and Vj and 0

Figure 1. Network decomposition in terms of stochastic equivalence. (A) Block decomposition of an undirected network on 15 nodes
(numbered from 1 to 15), where the blue circles mark the presence of connection, the empty circles mark the absence of connection and the red lines
demarcate Block A, B and C. (B) Compressed, stochastic representation of Block A in the network’s block decomposition. Block A is defined as a group
of stochastically equivalent nodes, each node having a 50% chance to form an edge with another node in Block A, a 42% chance to form an edge
with another node in block B and a 80% chance to form an edge with another node in Block C.
doi:10.1371/journal.pone.0097584.g001

Table 1. Prior biological features of the C. elegans connectome.

Name Type Node-wise Edge-wise

Ganglion Classification (10 groups) Categorical ! -

Neuron Type (4 groups) Categorical ! -

Neuron Class (103 groups) Categorical ! -

Locomotion Circuit (84 nodes) Categorical ! -

Anatomical Location Quantitative ! -

Anatomical Distance Quantitative - !

Birth Time Quantitative ! -

Birth Time Difference Quantitative - !

Lineage Distance Quantitative - !

doi:10.1371/journal.pone.0097584.t001

Stochastic Blockmodeling of C. elegans Connectome

PLOS ONE | www.plosone.org 3 July 2014 | Volume 9 | Issue 7 | e97584

http://www.biological-networks.org/?page_id=25
http://www.biological-networks.org/?page_id=25


otherwise. The degree of each vertex is r(Vi)~
Pn

j~1 Aij , the

number of edges connected to a vertex, while the set of all degrees

is fr(Vi)gi[1,...,n. Additionally, a graph can be characterised by a

clustering coefficient that measures the tendency of its edges to

form clusters. The clustering coefficient, defined by Newman

[24,36] is

CN~

P
i,j,k

AijAjkAik

2
P

i

P
(jwk)=i AijAik

, ð1Þ

the prevalence of fully connected triplets of nodes among the set of

triplets that have at least two connections.

The Erdős-Rényi Mixture Model (ERMM). The Erdős-

Rényi (ER) model for a graph [37,38] specifies that edges occur

independently with a common probability. Real world graphs are

rarely so homogeneous, and the ER model is generally not useful.

In contrast, the Erdős-Rényi Mixture Model [23,24,39–41] poses

an ER model on subsets of edges within the graph.

In the ERMM, the adjacency matrix is treated as a random

variable denoted by X~((Xij))1ƒi=jƒn and the nodes are

assumed to be allocated into Q unknown (latent) groups or blocks,

indexed by q[f1, . . . ,Qg. We record the group assignment of each

node Vi with a 1|Q dimensional random (classification) vector

Z i~(Zi1, . . . ,ZiQ), whose elements Ziq take value 1 if Vi belongs to

the q-th group and 0 otherwise;
P

q Ziq~1 as each node belongs

to exactly one group. The set Z~fZigi~1,...,n then consists of

independent, identically distributed random variables, each

following a single trial multinomial distribution

Z i*M(1, a), ð2Þ

where a~(a1, . . . ,aQ) is a 1|Q dimensional vector whose

elements satisfy the constraint
PQ

q~1 aq~1. The elements of a

describe the size or prevalence of each group, or, alternatively, can

be interpreted as the probability that a randomly chosen node is

contained in the q-th group. Note that different assumptions about

the distribution of Z are also possible (see, e.g., the recent

publication of Latouche et al. [42] who proposed an overlapping

stochastic blockmodel).

The ERMM specifies that, given the group (block) assignments

of the vertices, the elements of X are conditionally independent

Bernoulli random variables with rates given by their correspond-

ing elements in the connectivity matrix p~((pql))1ƒq,lƒQ. In other

words, if a vertex Vi belongs to group q and a vertex Vj belongs to

group l, then

Xij DZiq~1,Zjl~1*Bernoulli(pql): ð3Þ

As is often the case with mixture models, the likelihood is stated as

an incomplete data problem which is optimised for different values

of Q, that is, Q[f2, . . . ,Qmaxg. In the ERMM, however, such

optimisation is particularly challenging. Nevertheless, the estimat-

ing equations of the model’s parameters (fa, pg~y) can still be

obtained with an approximate variational method [43,44]. With an

additional parameter ti(i.e., the variational parameter for Vi), the

estimating equations proposed in [24] are

âaq~
1

n

Xn

i~1

t̂tiq, p̂pql~

P
i=j

t̂tiqt̂tjlxij

P
i=j

t̂tiqt̂tjl

, ð4Þ

t̂tiq!âaq
i=j l

½p̂pxij
ql (1{p̂pql)

1{xij �t̂tjl , ð5Þ

where we employ the usual statistical convention of lower Roman

variables, xij, to denote the observed version of the random data,

Xij.

For each node, the largest variational parameter estimate

t̂ti~(t̂ti1, . . . ,t̂t1Q) determines the classification vector estimate

Z i~(Zi1, . . . ,ZiQ)

ẐZiq~
1 if q~argmaxq’(t̂tiq’)

0 otherwise:

�
ð6Þ

The estimates just described depend on Q, the total number of

partitions. To compare across different Q, the Integrated Classification

Likelihood (ICL) criterion is used. For a modelMQ with Q groups,

the ICL criterion is

ICL(MQ)~ max
y

log½L(x,ẑzDMQ; y)�

{
1

2

Q(Qz1)

2
log

n(n{1)

2

� �
{

Q{1

2
log½n�,

ð7Þ

where ẑz is an estimate of z and log½L(x,ẑzDMQ; y)�is the complete

data log likelihood,

log½L(x,ẑzDMQ; y)�~log½L(xD̂zz,MQ; p)�zlog½L(ẑzDMQ; a)�: ð8Þ

The details of each likelihood term as well as the derivation of the

ICL criterion are presented in the Supplementary Text in File SI.

Intuitively, the ICL criterion considers the evidence for the

clustered data (i.e., log½L(x,ẑzDMQ; y)�), and, at the same time, it

uses the term ({ 1
2

Q(Qz1)
2

log½n(n{1)
2
�{ Q{1

2
log½n�) to penalise the

model’s complexity and, therefore, preserve the simplicity and

parsimony of the selected model. Hence, it is generally harder to

select a model with a larger number of groups.

Using a Poisson approximation for a binomial distribution, the

ERMM models the degree distribution as a mixture of Poisson

distributions,

P(r(Vi)~k)~
XQ

q

aq

e{lqlk
q

k!
, ð9Þ

where lq is the Poisson rate for the q-th group,

lq~(n{1)
PQ

l~1 alpql .

Finally, Daudin, Picard and Robin in [24] proposed that the

fitted ERMM can be used to estimate the Newman clustering

coefficients (see Eq. (1)) as

ĈCDPR~

P
q,l,s

âaqâal âasp̂pql p̂pqsp̂pls

P
q,l,s

âaqâal âasp̂pql p̂pqs

: ð10Þ

For further mathematical details on the ERMM, see Supplemen-

tary Text in File S1.

The Spectral and Fast Louvain Algorithms. In contrast to

the ERMM, the Spectral and Fast Louvain algorithms are

deterministic methods that assess the goodness of a graph partition

with an objective function known as modularity [45]. Central to the

Stochastic Blockmodeling of C. elegans Connectome
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definition of modularity is the difference between the observed

edge (Aij) and the expected number of edges (
r(Vi)r(Vj )

2m
) in an

equivalent graph with m edges and with randomly connected

vertices [46–48]. Modularity is defined as

fmod~
1

2m

X
i,j

(Aij{
r(Vi)r(Vj)

2m
)d(ci,cj), ð11Þ

where ci and cj represent the groups of vertices Vi and Vj, and

d(ci,cj)~1 if Vi and Vj are located in the same module and 0

otherwise.

The Spectral Algorithm. The Spectral algorithm [15,49]

optimises modularity (Eq. (11)) by utilising the eigenvalues and

eigenvectors associated with the modularity matrix D with

elements defined as

Dij~Aij{
r(Vi)r(Vj)

2m
: ð12Þ

The graph is split into two modules by setting an indicator vector

s such that si~1 if the vertex Vi is located in the module and

si~{1 otherwise. Hence, the modularity can be expressed as

fmod~
1

4m
sT Ds~

1

4m

X
i

(uT
i s)2bi, ð13Þ

where bi is the eigenvalue of D corresponding to the eigenvector

ui. Observe that, for a given ui and a s consisting only of 1’s or

21’s, the inner product vector uT
i s is maximised by s~sign(ui). This

creates two groups, of not necessarily equal size, and each group is

in turn split with the additional contribution to modularity Dfmod

being defined as

Dfmod~
1

4m

X
i,j[g

½Dij{dij

X
k[g

Dik�sisj~
1

4m
sT D(g)s, ð14Þ

where D(g) is ng|ng (for a group g of size ng) whose elements are:

D
(g)
ij ~Dij{dij

P
k[g Dik. When no more positive eigenvalues are

found, the algorithm stops. More details on the Spectral Algorithm

can be found in Supplementary Text in File S1.

The Fast Louvain Algorithm. The Fast Louvain algorithm

[14] optimises modularity (Eq. (11)) in two stages that are repeated

iteratively. The algorithm is initialised by assigning each vertex to

its own module and, hence, the initial number of groups is equal to

the number of vertices. In the first stage, for each vertex Vi, the

algorithm considers each of its neighbours and computes the gain

of modularity that would have been obtained if the vertex Vi was

placed in the same module as its neighbour Vj. The vertex Vi is

assigned to the module for which this gain is the largest or, in the

case of no positive gain, the vertex stays in its initial module. This

process is applied sequentially, cycling through every vertex until

no individual move can improve the modularity at which point the

first stage stops.

In the second stage, the algorithm builds a new network whose

vertices are identified as the modules found in the first stage. This

gives a simplified community structure that is used as the

initialisation for the next pass of the first stage. These two stages

are repeated until the maximal modularity is attained.

Practical Aspects. Community estimation methods are

notoriously sensitive to the initial starting conditions (see e.g.,

[50]). Each method begins with some sort of random initialisation

that typically will lead to a local optimum of the objective function

(i.e., ICL or modularity). Thus, for all three methods considered,

we use multiple random restarts of the algorithm and take the

solution that provides the greatest value of the objective function.

Evaluation Methods
To measure the similarity between a partition (i.e., complete

segmentation of a graph into a set of groups) and some known

biological classifications, we use the Adjusted Rand Index (ARI)

[51,52]. This measure is a modification of the Rand Index (RI)

[53], that is expressed as the fraction of vertex pairs that are

consistent: a vertex pair is consistent between two partitions if

either (a) the vertex pair is within the same group in both

partitions, or (b) the vertex pair is split between two groups in both

partitions. The interpretation of the RI depends on the number of

groups [54], whereas the ARI is adjusted for chance agreement

and number of groups [52]. It is defined as

ARI~
RI{E(RI)

max(RI){E(RI)
, ð15Þ

where the expectation is computed assuming a hypergeometric

distribution of the counts of consistent vertex pairs. ARI scores

range from 0 to 1, and indicate the proportion of overlap; for

example, if two partitions have an ARI score of 0.6, this means

that 60% of the nodes are classified in the same groups.

To assess the quality of a partition with respect to quantitative

biological features, we use the Intra-class Correlation Coefficient

(ICC). The ICC measures the variance that a partition explains in

a continuous variable. As per best practice, we estimate the ICC

with a mixed effects model [55]. For a node-wise measure, if we

denote qi as the measure on the i-th neuron in the q-th group, the

mixed effects model is

Yqi~mzaqzEqi, ð16Þ

where aq is the random effect of the q-th group, Eqi is the random

error term and m is the population mean. The random terms aq

and Eqi are mutually independent and each are independently and

identically distributed normal random variables: aq*N (0,s2
a)and

Eqi*N (0,s2
E ). The ICC is defined as the proportion of total

variance explained by the between group variance,

ICC~
Var(aq)

Var(Yqi)
~

s2
a

s2
azs2

E
: ð17Þ

In other words, the ICC tells us how homogeneous the biological

feature is within the partitions of a proposed network decompo-

sition. Note that, here, we defined the ICC for node-wise measures

(e.g., anatomical location of neuron), but it can be also defined for

edge-wise measures (e.g., Euclidean distance between neurons).

While edge-wise measures may violate the independence assump-

tion of the mixed effect model, the ICC will still be a useful metric

to compare biological validity of different partitions.

Ideally, we would conduct a hypothesis test on the difference in

fit between different community estimates. However, because the

implied models are not nested, a traditional hypothesis test cannot

be employed. Nevertheless, we are able to use model selection

metrics, such as the Akaike Information Criterion (AIC) [56]. The

AIC can be viewed as a measure of distances between a fitted

model (i.e., an estimated partition) and the unknown true model

(i.e., the true partition). Denoting wh to be the model under

consideration (i.e., one of the ERMM, Spectral or Louvain

Stochastic Blockmodeling of C. elegans Connectome
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methods), the AIC score is defined as

AIC(wh)~{2 log½L(wh; y)�z2p ð18Þ

where log½L(wh; y)� is the log likelihood of the corresponding

mixed effect model (Eq. (16)) and p is the number of parameters in

the model (here, p = 3). The preferred model is the one with the

smallest AIC score (AICmin). While the AIC is not an absolute

measure, the differences in the AIC scores provide a way to

compute approximate probabilities. In particular, the relative

likelihood of the model wh compared to the model that minimises

the AIC is given as

exp({
(AIC(wh){AICmin)

2
), ð19Þ

and represents the relative strength of evidence for this model.

Equivalently, this tells us how probable it is that the model wh

minimises the distance from the true model. As a general rule of

guidance, it has been suggested [57] that, if the likelihood value

§0:37(or, equivalently AIC(wh){AICminƒ2), there is a substan-

tial evidence that this model is equally useful; if the value is

contained in the interval ½0:03,0:14� (4ƒAIC(wh){AICminƒ7),

then, there is considerably less evidence; and, finally, for values

that are strictly smaller than 6|10{3 (AIC(wh){AICminw10),

there is essentially no evidence that this model is useful.

Software
We fitted the ERMM with the R package ‘‘Mixer’’ [24,39–41].

The ‘‘mixer’’ function specifies default values for the maximum

number of iterations, and we found improved performance by

increasing these (nbiter=80 up from 10, fpnbiter=40 up from

5). We found 1,000 random restarts was sufficient to visit the

optimal solution multiple times, but, to be exhaustive, we also

considered up to 100,000 random restarts.

The Fast Louvain and Spectral algorithms were carried out

using the Matlab ‘‘Brain Connectivity Toolbox’’ (http://www.

brain-connectivity-toolbox.net/, accessed 15th June 2013) [49].

For the Fast Louvain algorithm, we used the function ‘‘modular-

ity_louvain_und’’, using 20,000restarts. For the Spectral algo-

rithm, we used the function ‘‘modularity_und’’. This function is

initiated on a randomly permuted adjacency matrix and although,

in theory, all permutations of the adjacency matrix should provide

the same result, some numerical discrepancies may occur during

the spectral decomposition, subsequently leading to slightly

different modularity fits. Specifically, the variability in the fits is

driven by numerical errors in the estimation of the elements of ui,

which can erroneously change the sign of its element. For

example, if the true value of an element of ui is 5|10{20 and the

error is {1|10{19, the estimated value would be {5|10{20.

Indeed, this has an immediate impact on the vector s which will

classify the corresponding node in the wrong group. To be

exhaustive, we have therefore used 20,000 restarts.

To calculate the ARI scores, we used the function ‘‘adjuste-

dRandIndex’’ in R software [58,59] and, for the ICC and AIC, we

use the R function ‘‘lmer’’ [60] that employs a Restricted

Maximum Likelihood procedure [61] to obtain estimates of s2
a,

s2
E and AIC.

Results

We first detail the estimated mesoscale structure of the C. elegans

brain network found by the Erdős-Rényi Mixture Model, and then

we proceed to compare these results with the ones obtained by the

Fast Louvain and Spectral algorithms. The final part considers the

generative properties of the Erdős-Rényi Mixture Model with

respect to the network’s degree distribution and clustering

coefficient.

Erdős-Rényi Mixture Model estimate of mesoscale
structure in C. elegans brain network

The optimal Erdős-Rényi Mixture Model fit of the C. elegans

brain network consists of 9 blocks, each of which is listed in

Figure 2. In addition, the anatomical locations of neurons in each

Block are given in Figure 3. Broadly speaking, we found that

approximately 70% of the neurons in Block 1 are head sensory

neurons involved in chemo/thermotaxis or chemo/thermosensa-

tion which modulate body movement. In contrast, most head

sensory neurons (around 25%) in Block 2 are involved in more

direct, reflex like and deterministic effects on body movement such

as escape or avoidance behaviour, while almost 60% of the

remaining neurons are ring interneurons (ADA, AIB, AVK, RIA,

RIB, RIC, RIG, RIS, RMG, URX), about half of which have

unknown function. Nevertheless, we characterised this block as

‘‘escape/avoidance’’ even though its function or perhaps func-

tional homogeneity is not entirely clear. Next, more than half of

neurons in Block 3 (55%) consists of mid-body and posterior

ventral cord motor neurons, while almost all of the remaining

neurons are posteriorly located sensory neurons (PDE, PHA, PHB,

PHC, PLM, PVD, PVM), known to have quite a direct effect on

motor neurons (e.g., PHA and PHB control extent of reversals in

chemo-repulsion). We have labeled this group ‘‘motor (posterior)’’,

but we will revisit the possible causes for their inclusion. Similarly,

close to 90% of neurons in Block 4 are made up of anteriorly

located ventral cord motor neurons (AS, DA, DB, VA, VB, VD)

which is therefore labeled as ‘‘motor (anterior)’’ group. The next

two Blocks (5 & 6) are among the smallest in size, each with only 6

neurons. In particular, 4 neurons in Block 5 are command

interneurons for (backward) locomotion (AVD, AVE), while the

remaining 2 neurons are DVA (mechanosensory integration) and

PVR (unknown function); whereas all 6 neurons in Block 6 are

locomotion command interneurons. Next, Block 7 is mostly (about

65%) composed of neurons with unknown function, however, as

15% of the neurons seem to be involved in egg-laying and

defecation, we have labeled it as ‘‘unknown/egg-laying/defeca-

tion’’ group. The largest number of neurons is found in Block 8

which appears to be predominantly (about 60%) composed of

head motor neurons and nose touch mechanoreceptors (mainly

located in the head), as well as, a numerous ring motor neurons.

Many of these neurons are involved in both local search behaviour

(RIV, SMDD, SMDV) and avoidance or aversive head with-

drawal (ALN, IL1D, IL1V, OLQD, OLQV, RMD). We labeled

this block ‘‘nose-touch/head motor’’, but it may be interesting to

further investigate whether this block could be subdivided into

more specialised subunits. The remaining Block 9 is composed

entirely (100%) of anterior ventral cord motor neurons of class DB,

DD, VB, VC and VD - as previously discussed, Block 4 contains

the remaining of anterior ventral cord motor neurons of type AS,

DA, DB, VA, VB, VD.

Overall, these observations indicate that the ERMM based

partition highlights functionally meaningful features of the system’s

mesoscale organization.

In Figure 4 (a), we show the optimal ERMM fit as a reorganised

adjacency matrix. Note that the ERMM fit demonstrates the

dense connections between - as well as within - certain groups.

This is in stark contrast to traditional community detection

methods that seek to find modules with dense intra-modular
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connectivity and sparse connections between modules. Instead, the

ERMM classifies neurons into separate groups according to their

individual connectivity profile to other groups, regardless of where

connectivity happens to be dense. For example, Block 6 (AVA,

AVB, PVC) comprises neurons with maximal interconnections

(i.e., clique), which are, however, also fairly densely connected to

the rest of the network. Note that Blocks 5 (AVE, AVD) and 6

(AVA, AVB, PVC) are separate groups because of differing

internal connection rates (i.e., p55~40% vs. p66~100%) and

external connection rates (e.g., p54~30% vs. p64~45%). Also,

consider Blocks 1 (chemo/thermosensation or chemo/thermo-

taxsis) and 2 (escape/avoidance) whose rates of internal and

external block connections seem very similar, until it is noted that

Block 1 has virtually no connections with Block 8 (nose touch

mechanoreceptors and head motor neurons), while Block 2 is

densely connected to Block 8.

A concomitant advantage of the ERMM approach to commu-

nity estimation is its ability to provide a compressed view of the

original C. elegans network. As shown in Figure 5, this compressed

view serves as a summary of the network’s mesoscopic structure

and reveals diverse patterns of connectivity between the blocks.

Here, some blocks, such as Blocks 1, 6 and 8, appear to fit the

standard definition of a ‘‘module’’ with high internal connectivity

and sparse external connectivity. However, other structures which

are characterised by strong communications between blocks are

also present in the network; for example, Blocks 5 & 6 and Blocks

6 & 7, which may suggest that these are involved in the same

functional circuit. In particular, Block 6 (command interneurons) -

previously identified as a clique - maintains relatively strong ties

with the Block 3 and 4 (motor neurons) whose internal

connections, however, are sparse. This structure is known as the

core-periphery and has been shown to be a functionally significant

organisational structure in various real-world networks such as

social networks or power grids [25,62].

For further qualitative evaluation of the ERMM community

estimate, we use the Locomotion circuit, as described in the

accompanying text of Table 1. Figure 6 (a) shows a simplified

diagram of this circuit (originally presented by Haspel et al. [30])

with the neuron block membership indicated by colour. The

ERMM isolated the command interneurons into Blocks 5 and 6;

while Blocks 4, 3 and 9 are fairly uniformly spread over all motor

neurons. The distinction between these three blocks of motor

neurons appears to be, at least partially, anatomically motivated,

with the neurons in Block 3 being more posterior while the

Figure 2. Classification of neurons for each Block of the ERMM fit. The corresponding neuron labels are colour coordinated according to
their ganglion type.
doi:10.1371/journal.pone.0097584.g002
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neurons in Blocks 4 and 9 are mainly found in the mid-section and

anterior parts of the animal. Another noteworthy point is that the

neurons VC04 and VC05, both implicated in egg-laying, are

assigned separately to Blocks 4 and 7. The principal justification of

this separation can be traced back to the network data used in this

analysis where, for example, VC04 maintains connections to

locomotion neurons AVB and AVH, while VC05 does not and,

moreover, VC05 maintains connections to egg-laying neurons

AVFL, AVFR, HSNR and PVT (Block 7), while VC04 does not.

Given such differences in connection profiles between these two

neurons, it is not surprising that they are separated. Relating to

this, it is also worth mentioning that our network data excludes

neuromuscular connections to the vulval muscles, made by both

VC04 and VC05 which are the primary reason why these neurons

are implicated in egg-laying behaviour.

Comparison of the Erdős-Rényi Mixture Model fit with
estimates from the Fast Louvain and Spectral algorithms

The Spectral and Fast Louvain algorithms decompose the C.

elegans network into 4 and 5 modules with the maximal modularity

scores of 0.402 and 0.411, respectively (Eq. (13) and (11)),

indicating that both algorithms detect a prominent modular

structure. As shown in the adjacency matrices in Figure 4 (b) and

(c), both the Spectral and Louvain algorithms produced partitions

with strong within-group connections and relatively sparse inter-

group connections, as expected by definition.

In order to compare the community structures obtained via all

three methods, we plot an alluvial diagram (see Figure 7 (a) and

(b)) showing each block of the ERMM method (on the left) and

how these merge and split in order to make up the modules of the

Louvain and Spectral partition. Strands of the alluvial diagram are

coloured according to the block decomposition of the ERMM.

The first thing to note when observing this diagram is that the

blocks obtained in the ERMM often roughly correspond to

modules obtained via the other methods, with the Louvain and

Spectral algorithm merging progressively more blocks into fewer

modules. Secondly, we note that Blocks 3,4,5,6 and 9 (mainly

ventral cord motor neurons and interneurons controlling locomo-

tion) are fairly well separated from Blocks 1,2,7 and 8 by all

algorithms, so we will discuss these two subsets separately below.

Most nodes in Block 1 (chemo/thermo sensation) are also

classed together in the other two algorithms, although they are also

merged with some nodes from Blocks 2 (escape/avoidance) and 7

(mainly unknown function) in Module 1 of the Louvain algorithm.

In contrast, the nodes in Block 2 are fairly dispersed in the Louvain

Figure 3. Anatomical locations of neurons (cell body) in the ERMM fit. Each Block is shown on an approximate template, obtained from
http://www.wormatlas.org/, last accessed 9th October 2013.
doi:10.1371/journal.pone.0097584.g003
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algorithm (equally distributed between Modules 1,2 and 3), while

they are split between Module 1 and 4 (mainly amphid neurons)

by the Spectral algorithm. As noted earlier, neurons in Blocks 1

(chemo/thermo sensation) and 2 (escape/avoidance) are also

tightly interconnected and they only fall as separate blocks because

of their differential connectivity to nodes in Block 8 (nose-touch/

head motor). The functional relevance of this finding is yet unclear

but this pattern is biologically plausible and is a particularly

striking aspect of the ERMM result (as shown in Figure 4 (a)). We

also note that, while Block 8 seems to lump together many of the

non-sensory neurons in the head, these neurons are also all

grouped together by both the Spectral (Module 1) and the Louvain

algorithm (Module 3). Nevertheless, it may be interesting to

further investigate whether this block could be subdivided into

more specialised subunits. One such approach could be to include

in the analysis virtual nodes for the various external cues (chemical

attractants, olfactory cues, temperature, touch, osmolarity, etc) or

to include virtual nodes for the various muscle groups controlled

by motor neurons, as this information has recently been shown to

be useful in understanding the connectivity of motor neurons in

the Locomotor system [63].

Looking at Block 7, we note that it corresponds quite well to

Module 3 in the Spectral algorithm, but it is split between all

modules (and mainly Modules 1 and 4) in the Louvain algorithm.

From Figure 4 (a), it is clear that Block 7 has a very specific

connectivity pattern. We therefore predict that this is likely to

correspond to a biologically relevant functional grouping. This is

particularly interesting because many of the neurons in this block

have unknown functions and because these neurons are not

anatomically co-located. Thus, in investigating the functional

relevance of this block, it will be important to consider its

particularly strong relationships to Blocks 2 and 6.

Now, turning our attention to Blocks 3,4,5,6 and 9, we note the

following observations. Block 4 is made up almost entirely of

anteriorly located ventral cord motor neurons (AS, DA, DB, VA,

VB, VD), while Block 9 is composed entirely of anterior ventral

cord motor neurons (DB, DD, VB, VC and VD). These two blocks

are merged by both the Spectral and Louvain algorithms, and

looking at Figure 4 (a), their separation into two different blocks

does not seem to be a strong feature of the ERMM method either.

It seems to be based by a differential connectivity to Block 7, but

the effect is not very strong.

As previously mentioned, Block 3 is composed mostly of mid-

body and posterior ventral cord motor neurons and almost all of

the remaining neurons are posteriorly located sensory neurons

(PDE, PHA, PHB, PHC, PLM, PVD, PVM). Almost all neurons

in this block (including the posteriorly located sensory neurons

listed) are also grouped together in Module 4 of the Louvain

Figure 4. Reorganised adjacency matrices for each method. The groups are ordered arbitrarily; within each group, the neuron labels are
sorted in alphabetical order. (A) The ERMM fit demonstrates the dense connections between - as well as within - certain blocks. This is in stark
contrast to traditional community detection methods (B) and (C), that seek to find modules with dense intra-modular connectivity and sparse
connections between modules. In addition, the ERMM fit defines blocks according to their internal and external connections. Thus, although Block 1
and 2 have similar within block connections, they are split because of their different connectivity with Block 8.
doi:10.1371/journal.pone.0097584.g004
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algorithm and almost all of them are in Module 2 of the Spectral

algorithm. We however note that, in the Spectral (but not

Louvain) partition, these neurons are also grouped together with

the anterior ventral cord motor neurons of Blocks 4 and 9. While

the roughly anatomical split between ventral cord motor neurons

in the ERMM and Louvain method may not lead to new

biological insights, it is certainly driven by a strong lack of

connectivity between Blocks 4 (anterior) and 3 (posterior) which is

a true feature of the data. It is worth noting that the connectivity

data for C. elegans are known to be partial or missing for 39 of 302

neurons, including 21 of the 75 locomotor motoneurons [63] and

the data for the posterior parts of the nerve cords are especially

sparse and uncertain. It is therefore unclear whether this split

between Blocks 3,4 and 9 contains biological information or

whether a more complete mapping of connections in the posterior

part of the ventral cord would alter these results. Note, for

example, that the split does not correspond to a division between

neurons involved in forward and backward locomotion [30].

Finally, Blocks 5 and 6 are also merged with ventral cord motor

neurons from Blocks 3 in both Louvain and Spectral algorithms.

This is driven by the dense inter-connectivity between these nodes,

however, the separation of Blocks 5 and 6 from the rest of the

networks is one of the key features of the ERMM decomposition.

Indeed, these blocks correspond almost exactly to the rich-club

(core-periphery structure) whose functional importance has

recently been confirmed [9].

It is also worth noting that compressed views of the network -

see the ERMM fit in Figure 5 - are not available for the Fast

Louvain and Spectral algorithms since these, by definition,

decompose the network into modules with minimal connectivity

between them.

Figure 6 (b) and (c) show the Locomotion circuit and the

partitions found by the Spectral and Fast Louvain algorithms. In

contrast to the ERMM model, both of these algorithms failed to

distinguish the command neurons from the motorneurons. In the

case of the Spectral algorithm, some of the command neurons like

AVEL and AVER are isolated but the rest are mixed with the

motorneurons. This effect may be explained by the rigid definition

of the notion of ‘‘community’’ that is common to both algorithms.

As we can observe, this particular a priori assumption does not

allow the network’s topology to dictate the form of the community

structure, resulting in functionally less meaningful decompositions.

Similar observations can be made about the neurons VC04 and

VC05, which are merged by both algorithms despite their different

connectivity profiles, inherent to the data. As we saw previously,

these neurons are split in the ERMM partition.

Further quantifications of the solutions in terms of the

separation of of L/R (left/right symmetric) neurons of the same

class are presented in Table S1 in File S1. Here, we note that out

of 92 L/R neuron pairs, contained in this data set, the ERMM

and Spectral algorithm partitions assigned 85 such neuron pairs in

the same groups and misclassified 7 pairs, while the Louvain

partitions misclassified 5 pairs. In general, ALM and SAAD are

separated by all methods, while other misclassified neurons appear

to be distinct.

Although the same block neurons in the ERMM partition

appear to be functionally related, this overall partition does not

correspond closely to the anatomical partition of neurons in 10

groups called ganglions (see Figure 2 and Figures S1 & S2 in File

S1). More formal evaluations of this and other metrics, given in

Figure 8 (a), use the ARI (Eq. (15)) scores to measure similarity

between each of the known biological partitions (ganglion, neuron

classes and neuron types) and each of the community estimate

Figure 5. Compressed view of the C. elegans network, in terms of between/within block connection probability rates of the ERMM
fit. The relative size of each circle indicates the number of neurons in that Block. The number inside the circle is the within-block connection
probability in percent. The relative thickness of each line indicates the between-group connection strength, while the number on the edge gives the
connection probability in percent (those less than 7% are omitted). Each Block is broadly characterised by its most representative function. Note how
Blocks 1, 2 and 9 are ‘‘modules’’ with internal connectivity that is greater than external connectivity, while other structures are characterised by strong
inter-block connectivity (e.g., Blocks 5 & 6 and Blocks 6 & 7). In addition, Block 6 (command interneurons) maintains relatively strong ties with the
Block 3 and 4 (motor neurons) whose internal connections, however, are sparse, an example of core-periphery.
doi:10.1371/journal.pone.0097584.g005
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found by the methods. Collectively, the ARI scores are small and

no greater than 0.26 for all 3 comparisons, with ganglion based

partition being matched by the ERMM and Spectral algorithm

with 0.25 ARI units, while the Louvain algorithm scored slightly

lower. Compared to the 103 classes of neurons, the overall

ERMM partition exhibits slightly higher ARI score than the

partitions of the Louvain and Spectral algorithms, but note that

these scores are still generally low. Similar observations hold for

the ARI scores by neuron type, where the Spectral community

estimate seems to be slightly more compatible than the other two

fits, which tend to assign different neuron types to the same

groups. These findings suggest that in general all 3 solutions are

fairly different from the known biological partitions.

However, it has to be noted that although the ARI score can

quantify the level of similarity between partitions of interest, it

cannot infer (i.e., assign a P-value) on whether one partition has

significantly better fit than another partition. This is statistically

challenging as the solutions (fits) are sourced from the 3 different

methods and, therefore, simple validation strategies like the one

presented in Pan et al. [8] would not be appropriate. Nevertheless,

using the ICC and AIC criterion, we can compare qualitatively all

3 estimates. For this, Figure 8 (b) shows the ICC (Eq. (17))

performance of the estimated partitions with respect to six

quantitative biological features. The hypothesis here is that

neurons that are implicated in the same function or behaviour

might be similar in terms of these quantitative features, so

biologically meaningful community structures should be composed

of groups that are relatively homogeneous in terms of these

metrics. We note that the six quantitative biological features were

selected based on the datasets available, but not all are expected to

be equally useful or revealing. For example, although one might

expect lineage distance (LD) to be relevant, in fact neurons of the

same class (typically involved in the same function) develop around

the same time and usually have no immediate common precursors.

This is reflected in low ICC scores in all three methods for lineage

distance. Birth time (or BTD) is therefore expected to be more

representative of function, and this is confirmed by higher ICC

across all methods, with ERMM showing particularly good

performance. Similarly, anatomical location (especially in the

longitudinal direction) is expected to cluster functionally related

neurons close together. This is because neuronal placement tends

to minimise wiring [64] and neurons involved in the same function

therefore benefit by being close together both for efficient inter-

connections between these neurons and because they are likely to

be receiving similar (localised) external cues or controlling similar

(localised) muscle groups. Again, the ERMM shows superior ICC

in all distance related metrics.

Overall, the ERMM partition provides the best ICC scores on

all six biological features. For example, the ERMM partition

explains over 50% of the variance in the sectional anatomical

location (ALS), while the other two methods explain only about

half as much variability. Also, we note that neither the Louvain or

Spectral measures dominate one another on the basis of the ICC

scores.

Finally, we use the AIC score (Eq. (18)) to assess if the

differences between the partitions are significant. Table 2 shows

the AIC score for each method and biological feature, and the

minimum AIC score (AICmin) always corresponds to the ERMM

fit. Using Eq. (19), we compute the relative likelihood to assess how

much more likely it is that the Louvain or Spectral partition

minimises the distance from the true partition versus the ERMM

partition. As we can observe in Table 2, both the Louvain and

Spectral fits fall far away from the bound 6|10{3and, as such,

they pose no evidence that these fits are more significant than the

fit of the ERMM. In short, the AIC analysis unambiguously

favours the ERMM fit as more compatible with the data, for all six

Figure 6. C. elegans locomotion network and estimated community structure for each method. Each subfigure shows the 74 Motor
neurons (shown in rectangles) that support the animal’s motion, which are divided into eight distinct groups. Four of these groups are connected to
the ventral muscles (neuron labels: VA, VD, VB and VC; VC06 is omitted in our analysis), while the remaining four groups are connected to the dorsal
muscles (neuron labels starting AS, DA, DD and DB). The remaining neurons (command neurons; shown in circles) belong to the category of
interneurons; some are primarily required for promoting forward movements (labels starting PVC and AVB), while others promote backward
movements (labels starting AVA, AVD and AVE). The colour of each neuron indicates the group membership from a particular method’s partition. The
ERMM fit (A) isolates the command neurons in Blocks 5 & 6, and distinguishes the posterior (Block 3) from the more anterior motor neurons (Blocks 4
& 9).
doi:10.1371/journal.pone.0097584.g006

Figure 7. Correspondence between the ERMM fit and the estimates of Louvain (A) and Spectral (B) algorithms. The strands of the
alluvial diagram show each block of the ERMM fit (on the left) and how these merge and split to form the modules of the Louvain and Spectral
algorithms (on the right). The functional labels for the ERMM blocks are as follows. Block 1 (chemosensation/thermosensation), Block 7 (unknown/
egg-laying/defecation), Block 8 (nose touch/head/motor), Block 2 (escape/avoidance), Block 3 (motor posterior), Block 9 (motor anterior), Block 4
(motor anterior), Block 5 (command) and Block 6 (command).
doi:10.1371/journal.pone.0097584.g007
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of biological features, than the fits of the Louvain and Spectral

algorithms.

Erdős-Rényi Mixture Model and generative modelling of
the C. elegans brain network

In addition to estimating the mesoscale structure, the ERMM

also provides a generative model of the C. elegans nervous system

which provides estimates of other network characteristics such as

the empirical clustering coefficient (Eq. (1)) and degree distribu-

tion. Figure 9 shows the observed and fitted degree distribution,

demonstrating that the ERMM provides a faithful approximation

of the empirical degree distribution. The fit is based on a Poisson

mixture (Eq. (9)), and Table 3 gives the estimated Poisson means

(l̂l’s) and weights (âa’s). Notably, Block 6 (command neurons) has

the greatest connectivity with an average degree of 74.23.

The model-based clustering coefficient from the ERMM is

ĈCDPR~0:154, which is somewhat less than the empirical

clustering coefficient CN~0:213. The likely explanation for this

difference is that the ERMM specifies each edge as an

independent Bernoulli trial (edges are formed with a given

probability, independently from one another), which may under-

estimate the actual rate at which the triangles occur (two neurons

connected to the same neighbour are also likely to connect to each

other). To assess this, we conducted a small simulation, creating

100 adjacency matrices that followed the ERMM assumptions,

using the C. elegans estimated parameters âa and p̂p as truth. Based

Figure 8. Method comparisons in terms of prior biological features. (A) ARI scores computed between three known biological classifications
- Ganglion, Neuron classes (103 groups) and Neuron type (sensory, motor, interneuron and polymodal) - and the fits of each method. Collectively, the
ARI scores are small and no greater than 0.26 for all 3 methods, suggesting that all 3 solutions are fairly different from the known biological partitions.
(B) ICC scores for the Anatomical location (longitudinal) (ALL), Anatomical location (sectional) (ALS), Anatomical distance (AD), Birth time (BT), Birth
time difference (BTD) and Lineage distance (LD). The ICC results indicate that the ERMM partition explains more biological variance than either of the
other two methods. Compared to each other, ICC scores of Spectral and Louvain fits are largely similar.
doi:10.1371/journal.pone.0097584.g008

Table 2. Individual AIC scores and relative likelihood of the ERMM, Spectral and Louvain partitions obtained on the set of
biological features: Anatomical location (longitudinal) (ALL), Anatomical location (sectional) (ALS), Anatomical distance (AD), Birth
time (BT), Birth time difference (BTD) and Lineage distance (LD).

Biological Feature AIC scores Relative Likelihood

ERMM Louvain Spectral Louvain vs. ERMM Spectral vs. ERMM

ALL 57.47 93.77 163.33 1.3161028 1.03610223

ALS –1478.54 –1408.02 –1410.16 4.84610216 1.41610215

AD 12812.45 18913.31 26723.75 ,16102100 ,16102100

BT 4271.19 4300.52 4293.29 4.2761027 1.5861025

BTD 601475.22 605191.28 604905.85 ,16102100 ,16102100

LD 199676.54 200003.97 200136.19 7.94610272 1.546102100

The strength of evidence is computed to compare the Spectral and Louvain partitions against the ERMM.
doi:10.1371/journal.pone.0097584.t002
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on these 100 realisations, the two clustering coefficients were quite

similar, with ĈCDPR~0:152 (SD 0.005) and CN~0:154 (SD 0.004),

verifying that ĈCDPR is a reasonable estimate of CN when the

ERMM assumptions are satisfied.

Practical considerations
Here, we report the computational times obtained on a

2.7 GHz quad-core Intel Core i7 linux host with 16 GB. The

ERMM, on the default parameters setting (i.e., nbiter=10,

fpnbiter=5) and the range Q[f2, . . . ,50g, took 186 seconds,

while the Louvain and Spectral algorithms took 0.07 and

0.62 seconds, respectively. Both the ERMM and Louvain methods

required multiple restarts to find the optimal model, while restarts

for the Spectral algorithm were needed due to numerical errors

(see Section ‘‘Software’’ for more details). For the ERMM, on

average, 1,000 restarts were needed to visit the optimal model 12

times, while for the Louvain algorithm, over the total of 20,000
restarts, the optimal model was visited only once (for further

details, see Figures S3 & S4 in File S1).

Also, to assess the stability of the ERMM solution across

multiple restarts, we computed the ARI similarity score between

the global optimal solution (see Table S2 in File S1), as well as the

number of times that a solution was obtained out of 100,000

restarts. These results are consistent with the selected model (9

blocks) being the global optimum and, moreover, this solution

occurs frequently over the restarts. Also, it is noteworthy to

observe a considerable gap (of about 0.1 ARI units) between the

optimal solution and the other solutions, which suggests that the

optimal solution is well-identified and, furthermore, nearly optimal

solutions are discernibly different. In the context of the stability of

solutions, we also show the variability of ARI and ICC scores of

each fit obtained from different restarts (Figure S5 in File S1).

Discussion

Our results highlight the advantages in the use of the model-

based Erdős-Rényi Mixture Model over the deterministic com-

munity detection algorithms. The mixture model decomposed the

network into an interpretable set of 9 blocks, comprising 2 small

blocks that correspond to the command interneurons, and 7 larger

blocks that approximately correspond to the modules defined by

the deterministic algorithms. Considering other work which points

to the command interneurons of the C. elegans nervous system as

the topological rich club [9], it seems that the ERMM

decomposition has been able to capture both modular and core-

periphery aspects [25,65] of the mesoscale organization of the

network. This conceptual scope, which can reconcile modular and

core-periphery views of community structure, is a clear advantage

of the ERMM compared to deterministic algorithms which are

limited to an exclusive selection of one form over the other.

The block decomposition of the ERMM was also more

successful at accounting for the prior biological data than either

of the deterministic algorithms. Using the ICC metric to quantify

the percentage of variance in a biological variable that is explained

by any community structure, we found that the ERMM

decomposition accounted for more than 50% of the variance in

anatomical location of the neurons, and more than 20% of the

variance in anatomical distance of connections between neurons

and neuronal birth times. Also, the ERMM explained a greater

proportion of the variance in all biological variables than either of

the deterministic algorithms.

Apart from considering the ICC scores, we subjected the fit of

each method to a more rigorous procedure of model selection

based on the AIC score. Computing the likelihood scores, we

verified that the ERMM fit is significantly more compatible with

the prior biological information than the fits of the Louvain and

Spectral algorithms.

Figure 9. Observed and ERMM-based fit of the degree distribution. (A) Histogram of the empirical distribution with the ERMM fit. (B)
Complementary cumulative distribution function (CDF) (i.e., 1-CDF) of the degrees and ERMM fit on the log-log scale. The ERMM-fitted distribution
captures the large-scale features of the degree distribution extremely well, as well as most of the fine-scale features.
doi:10.1371/journal.pone.0097584.g009
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In addition to its advantages as an estimator, the ERMM also

has technical advantages as a generative model (to simulate the

network) and as a network compression basis to shrink the scale of

a system. For example, we showed that the ERMM generated a

good fit of the degree distribution and clustering coefficients of the

C. elegans connectome. We also illustrated how the ERMM could

be used to compress a graph into a set of super nodes, allowing a

clearer view of the topology with fewer connections. In this sense,

the ERMM provides a compression similar to power graph

analysis methods [66], but it relaxes the condition for grouping

nodes together, which allows for a more efficient and realistic

compression.

We have found some shortcomings of the ERMM. For

example, the mismatch between the empirical and model based

clustering coefficient suggests that the stochastic model does not

exactly match the data generating mechanism represented by the

C. elegans nervous system. The ERMM can be extended by seeing

it as a mixture Exponential Random Graph Model (ERGM) [67]

where, conditional on the partitioning, the ERGM summary

statistics are the edge counts in each of the Q(Qz1)=2 unique

group pairs. Additional summary statistics can then be considered;

for example, the triangle counts in each group pair. However, this

will create a more complicated likelihood and necessitate new and

yet more involved estimation procedures.

Nevertheless, the general practical advantage of the ERMM is

that it leaves room for other distributional characterisations of

edges which appear to be more in agreement with the network’s

specific type. Thus, for example, if this approach is used for the

analysis of the weighted C. elegans network (i.e., the edge weights

correspond to the total number of synaptic connections between a

neuron pair), then the assumption that the edges are following a

Binomial distribution is more appropriate. Furthermore, given

that our study have used only a simple unweighted C. elegans

network, it is interesting to compare our results to the 6 modules

decomposition of the weighted C. elegans network reported by Pan

et al. [8]. The corresponding extended results of this comparison

(Figure S6 & Table S3 in File S1) show that the ERMM

decomposition, again, explained more variance in the prior

biological information, with the exception of the lineage distance

where the ERMM explained 1:5% less than the 6 modules

decomposition (Figure S6 in File S1). However, in terms of AIC

score, the ERMM decomposition is uniformly more significant

across all biological features than the decomposition reported by

Pan et al. [8] (Table S3 in File S1).

Although the ERMM is classified as a stochastic blockmodel, it

should not be confused with the p1 model that was proposed by

Holland and Leinhardt [20]. In particular, the original p1 model

does not aim to infer the connectivity rates of groups, which is why

some authors like Wang and Wong [21] proposed different

extensions. More recently, Karrer and Newman [68] considered

the p1 model, referring to it as the standard stochastic blockmodel,

in the context of undirected multi-graphs. They used heuristic

arguments to derive a new model that corrects for variation in the

degree distribution, named the degree corrected stochastic

blockmodel. This approach treats node degree as a nuisance, to

be discounted when finding groups. With our ERMM fit to C.

elegans, this would not seem to be advantageous as it is the absolute

differences in node degree that help define blocks. For example,

consider Block 5 and 6 which have similar patterns of connections

but their estimated connection rates are distinct (see Figure (5)).

Furthermore, it is interesting to note that Karrer and Newman

[68] found the standard stochastic blockmodel to be a poor fit to

the Zachary karate club data [69], and their degree corrected

model misclassified only one node. In contrast, we found that the

ERMM reliably finds the 2 known groups in that data with zero

errors.

Lastly, we found that the ERMM computational times are

reasonable and depend on the range of blocks, the values of the

internal parameters (nbiter, fpnbiter) and, also, the size of the

network. It has been reported [24] that this approach can handle

networks with several thousands of vertices, which is particularly

impressive given the challenging likelihood optimisation. Howev-

er, the problem of finding the global maximum is heavily

dependent on the initialisation and, hence, we require restarts in

order to carefully search the state space. While we used a cautious

approach of running a large number of restarts (100,000), we

found 1,000 was sufficient to reliably identify the optimal model.

Supporting Information

File S1 Contains Figures S1–S6, Tables S1–S3, and
Supplementary Text.

(PDF)
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