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Abstract

Currently, reliable biomarkers that can be used to distinguish rheumatoid arthritis (RA) from other inflammatory diseases are
unavailable. To find possible distinctive metabolic patterns and biomarker candidates for RA, we performed global
metabolite profiling of synovial fluid samples. Synovial fluid samples from 38 patients with RA, ankylosing spondylitis,
Behçet’s disease, and gout were analyzed by gas chromatography/time-of-flight mass spectrometry (GC/TOF MS).
Orthogonal partial least-squares discriminant and hierarchical clustering analyses were performed for the discrimination of
RA and non-RA groups. Variable importance for projection values were determined, and the Wilcoxon-Mann-Whitney test
and the breakdown and one-way analysis of variance were conducted to identify potential biomarkers for RA. A total of 105
metabolites were identified from synovial fluid samples. The score plot of orthogonal partial least squares discriminant
analysis showed significant discrimination between the RA and non-RA groups. The 20 metabolites, including citrulline,
succinate, glutamine, octadecanol, isopalmitic acid, and glycerol, were identified as potential biomarkers for RA. These
metabolites were found to be associated with the urea and TCA cycles as well as fatty acid and amino acid metabolism. The
metabolomic analysis results demonstrated that global metabolite profiling by GC/TOF MS might be a useful tool for the
effective diagnosis and further understanding of RA.
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Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease

characterized by synovial proliferation and damage of the

affected joints. In spite of current treatment advances including

the use of tumor necrosis factor-a (TNF-a) inhibitors, early

diagnosis of RA using reliable biomarkers is important for early

intervention. Rheumatoid factor (RF), a well-known biomarker

for RA, is not useful for specific diagnosis of RA because RF is

also detected in various other rheumatic (other than RA) and

nonrheumatic disorders such as infection and malignancy, and

even in normal individuals [1,2]. Anti-citrullinated protein

antibodies (ACPA) have recently received much attention as a

valuable tool to differentiate RA from other kinds of arthritis in

the 2010 American College of Rheumatology/European League

Against Rheumatism (ACR/EULAR) classification criteria [3,4].

However, not all RA patients are seropositive for ACPA, and

the 2010 ACR/EULAR classification criteria does not satisfac-

torily rule in RA for patients with seronegative arthritis,

especially involving only one joint. Therefore, more reliable

biomarkers with diagnostic capabilities are still needed for RA.

Recently, omics technologies such as genomics, transcrip-

tomics, proteomics, and metabolomics have been increasingly

exploited for the discovery of disease biomarkers, including

those for RA. Genomics has clearly revealed differences

between ACPA-positive and ACPA-negative diseases [5]. In

addition, transcriptomics has been used to discover immunity

and defense-related genes in RA patients and to predict the

efficacy of the anti-TNF-a biologic agent, infliximab, in RA

patients [6,7]. Metabolomics, which is a non-targeted analysis of

global changes of the complete set of metabolites in organisms

[8], has shown its potential in the discovery in disease

biomarkers [9–12]. Because metabolite profile changes can be

indicative of a disease state [13–15], metabolomics may be a

powerful tool for discovering new biomarkers for diseases.

Recently, the application of metabolomics to plasma samples

was successful in finding metabolic discrimination and potential

biomarkers for RA by using nuclear magnetic resonance

spectroscopy (NMR) [16], gas chromatography/mass spectrom-

etry (GC/MS), and liquid chromatography/mass spectrometry

(LC/MS) [17]. However, to date, reliable biomarkers of RA

that discriminate RA from other inflammatory arthritis have not

been identified using metabolomics.

Synovial fluid is a body fluid that provides nutrition and

lubrication to the articular cartilage. In the pathological joint, the
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amount of synovial fluid is higher than normal, and a high number

of inflammatory cytokines and immune cells are present in the

synovial fluid [7]. Thus far, although synovial fluid is the direct

medium for the pathological products of RA, no study has

examined the changes in metabolism of RA synovial fluid, and

biomarkers for RA have not been discovered using synovial fluid.

In the present study, in order to find potential biomarkers for RA,

discriminating from other kinds of inflammatory arthritis except

for septic arthritis (i.e., ankylosing spondylitis (AS), Behçet’s disease

(BD), and gout), metabolite profiling of synovial fluid from the

patients with inflammatory arthritis was performed using gas

chromatography/time-of-flight mass spectrometry (GC/TOF

MS). These biomarker candidates were verified by multivariate

statistical analyses in comparison with other kinds of inflammatory

arthritis.

Materials and Methods

Human synovial fluid collection and patients
Among patients visiting the rheumatology clinic at the

Samsung Medical Center in Seoul, Korea between July 2000

and September 2007, 77 patients who received arthrocentesis

were retrospectively screened. Patients with osteoarthritis or a

septic condition were excluded from the screening, and thus 38

patients who were diagnosed with RA, ankylosing spondylitis

(AS), Behçet’s disease (BD), and gout were enrolled in our

study. Medical records of the 38 patients were reviewed for age,

gender, duration of disease, and laboratory data along with the

disease category such as RF, ACPA, fluorescent anti-nuclear

antibody, and human leukocyte antigen B27 (HLA-B27).

Fulfillment of the above criteria was assessed following the

1987 ACR and 2010 ACR/EULAR classification criteria for

RA, the 1984 modified New York criteria, the Assessment of

SpondyloArthritis international Society (ASAS) classification

criteria for axial spondyloarthritis, and the criteria of the 1990

International Study Group for BD. For gout, the presence of

monosodium urate (MSU) crystals was examined in joint fluid.

Radiographic findings for the involvement of sacroiliac joints in

AS and BD were evaluated, and bony erosion with overhanging

edges was checked for gout patients. Following disease

categorization, treatment data were obtained for previous uses

of non-steroidal anti-inflammatory drugs (NSAIDs) and disease-

modifying anti-rheumatic drugs (DMARDs) or uric acid

lowering treatment (ULT). In addition, the history of intraarti-

cular steroid injection was investigated.

Synovial fluid samples were obtained from arthrocentesis for the

sake of the clinical diagnosis of arthritis. This aspirated synovial

fluid was routinely analyzed by examining the white blood cell

count, polarizing microscopy, the Gram staining and culture,

fungus culture, and acid-fast bacteria staining and culture. The

final diagnosis was made by experienced rheumatologists. Synovial

fluid samples were collected and stored at 280uC. To identify

presumed biomarkers for RA, samples were divided into 2 groups:

RA versus non-RA including AS, BD, and gout. The study was

carried out in accordance with the Helsinki Declaration and

approved by the Institutional Review Board of Samsung Medical

Center, Seoul, Korea. All subjects were provided with written

informed consent prior to study enrollment.

Patient characteristics
Synovial fluid samples from 38 patients with inflammatory

arthritis were analyzed as RA (13 samples), AS (7 samples), BD

(5 samples), and gout (13 samples), and their baseline

characteristics are summarized in Table 1. The ages of patients

with RA (44.2610.7) and non-RA (42.1610.3) did not

significantly differ at a significance level of 0.05. Among them,

10 samples were obtained through diagnostic arthrocentesis,

whereas other samples were obtained for therapeutic purposes.

None of the diagnostic samples were positive for microbial

culture. Sacroiliac joints were affected in all AS patients. Five

patients with gout had typical erosive lesions as determined

from the radiographs, and MSU crystals were confirmed in

synovial fluid samples of 7 patients. All RA patients had a

history of receiving DMARDs except one patient who was

enrolled during the initial presentation of RA. Five of 7 AS

patients and 2 of 5 BD patients were prescribed DMARDs

before arthrocentesis. Of the 13 patients with gout, 9 had ULT

and 10 had received colchicines before enrollment.

Metabolite sample preparation
Metabolite extraction from synovial fluid was conducted using

80% (v/v) methanol at 220uC according to a previously described

procedure with a slight modification [18]. Synovial fluid samples

were thawed on ice for 3 min and then centrifuged at 5006g at

4uC for 5 min to remove cells and debris. The supernatant from

the centrifuged synovial fluid was mixed with 80% (v/v) methanol

at 220uC for metabolite extraction, and this mixture was vortexed

for 3 min and then centrifuged at 161006g for 5 min at 4uC. The

supernatant was then completely dried in a vacuum concentrator

(Labconco, Kansas City, MO). To eliminate lipids and waxes, the

metabolite extract was re-extracted with 500 mL of an aqueous

acetonitrile solution (acetonitrile:water = 1:1, v/v) at 0uC. After

centrifugation at 161006g for 5 min, the supernatant was collected

and concentrated to dryness. The dried metabolite was derivatized

with 5 mL of methoxyamine hydrochloride in pyridine (40 mg/

mL; Pierce, Rockford, IL) for 90 min at 30uC and 45 mL of N-

methyl-N-(trimethylsilyl) trifluoroacetamide (Fluka, Buchs, Swit-

zerland) was added for 30 min and 37uC. Subsequently, a mixture

of fatty acid methyl esters as retention index markers was added to

the derivatized sample.

Metabolite analysis
An Agilent 7890A GC (Hewlett-Packard, Atlanta, GA)

coupled to a Pegasus HT TOF MS (Leco, St. Joseph, MI) was

used for the analysis of derivatized metabolite samples. The

derivatized extract (1 mL) was injected into the GC in splitless

mode. An RTX-5Sil MS capillary column (30 m length, 25 mm

inner diameter, and 0.25 mm film thickness; Restek, Bellefonte,

PA) and an additional 10-m long integrated guard column were

used for GC separation. The sample was initially held at a

constant temperature of 50uC for 1 min, after which it was

ramped to 330uC at 20uC/min and then finally held for 5 min.

The transfer line temperature was set at 280uC. Mass spectra

were acquired in a scanning range of 85–500 m/z at an

acquisition rate of 10 spectra/sec. The ionization mode was

subjected to electron impact at 70 eV with an ion source

temperature set at 250uC. GC/TOF MS data were preprocessed

by Leco ChromaTOF software (version 3.34; Leco) by using

automated peak detection and mass spectral deconvolution.

Preprocessed MS data were processed using BinBase, an in-house

programmed database for the identification of metabolites, as

described previously [19,20]. The abundance of each identified

metabolite was obtained by normalizing the peak intensity of

each metabolite using the median of sums of peak intensities of

all the identified metabolites in each sample [21,22].

Metabolomics of Rheumatoid Arthritis Using Synovial Fluid
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Statistical analyses and validation
As the statistical analyses of metabolite profiles of synovial

fluid from the RA and non-RA (AS, BD, and gout) groups,

univariate analysis [19,20,23], orthogonal partial least squares

discriminant analysis (OPLS-DA), hierarchical clustering analysis

(HCA) [24], and receiver operating characteristic (ROC) curve

analysis were performed. To obtain maximal covariance

between the measured data and the response variable, OPLS-

DA was performed using SIMCA-P+ (version 12.0; Umetric

AB, Umea, Sweden). Seven-fold internal cross validation and

external validation were also conducted using SIMCA-P+. For

the external validation, RA patients and non-RA patients were

randomly collected from another cohort. The mean age of 6

RA patients (five female and one male) was 66.5 years, and that

of 11 non-RA patients (one female and ten male) consisting of 4

AS patients, 4 BD patients and 3 gout patients was 32.5 years.

Hierarchical clustering analysis (HCA) was performed using

MultiExperiment Viewer for visualization and organization of

metabolite profiles [24]. Statistica (version 7.1; StatSoft, Tulsa,

OK) was used for univariate analysis [19,20,23]. A further

diagnostic property was deduced by receiver operating charac-

teristic (ROC) curve analysis using MedCalc software (Broek-

straat, Mariakerke, Belgium).

Results

Metabolite profiles of RA and non-RA groups
A total of 38 synovial fluid samples of inflammatory arthritis

including RA, AS, BD, and gout were analyzed by GC/TOF MS.

After deconvolution, 105 metabolites were identified across the

synovial fluid samples of 38 patients, which were classified into the

following chemical classes: sugars and sugar alcohols (25%), amino

acids (21%), fatty acids (16%), organic acids (16%), amines (9%),

phosphates (8%), and miscellaneous (Table S1).

Since principal component analysis (PCA) showed only slight

discrimination between RA and non-RA groups (R2X = 0.34,

Q2 = 0.20) in a preliminary study (data not shown), OPLS-DA

was employed in this study. OPLS-DA successfully minimized

the possible contribution of intergroup variability and further

increased the discrimination between the RA and non-RA

groups compared to the results obtained by the PCA. As shown

in Figure 1a, metabolite profiles of the RA and non-RA groups

were distinctively separated on the score plot of OPLS-DA. The

OPLS-DA model established with one predictive component

and two orthogonal components generated the explained

variation values: 0.36 of R2X and 0.99 of R2Y and the

predictive capability: Q2 of 0.97. These high value parameters

indicated the excellence in modeling and prediction with good

discrimination between the RA and non-RA groups since

OPLS-DA models with the parameters higher than 0.5 are

considered to be satisfactory in explanatory and predictive

capabilities [25]. To validate the OPLS-DA model, the PLS-DA

model with the same number of components was used. All

permuted R2 values to the left were lower than the original

point to the right, and the Q2 regression line had a negative

intercept (Figure S1-a). These results strongly indicated that the

OPLS-DA models were statistically validated without overfitting

of the original model since the intercept of Q2 was less than

0.05. In addition, 6 RA patients and 11 non-RA patients

collected from another cohort were predicted to be in correct

classes (Figure S1-b).

A total of 105 identified metabolites were clustered and

visualized by the HCA using the Euclidean distance and the

average linkage method to determine possible variations in the

metabolite profiling of the RA and non-RA groups. The

normalized peak intensity of each metabolite was transformed

by unit variance scaling and loaded into a clustered heat map

(Figure 2). The higher the abundance of the metabolites, the more

Table 1. Baseline characteristics of RA and non-RA groups.

RA (n = 13) Non-RA (n = 25)

AS (n = 7) BD (n = 5) Gout (n = 13)

Age, mean 6 SD years 44.2610.7 35.4610.7 41.6612.5 45.967.9

Female, no. (%) 13 (100) 3 (42.9) 2 (40.0) 0 (0.0)

Disease duration, years 6.566.3 3.163.3 6.367.9 7.962.7

RF, no. of positive/tested (%) 13 (100) 0/5 (0.0) 1/3 (33.3) 0/7 (0.0)

ACPA, no. of positive/tested (%) 3/3 (100) n.a. n.a. n.a.

FANA, no. of positive/tested (%) n.a. 0/3 (0.0) 0/2 (0.0) 0/2 (0.0)

HLA-B27, no. of positive/tested (%) n.a. 6/6 (100.0) n.a. n.a.

Fulfillment of criteria, no. of positive/tested (%)

1987 ACR 12/13 (92.3) n.a. n.a. n.a.

1984 modified NY n.a. 7/7 (100.0) 1/5 (20.0) n.a.

2010 ACR/EULAR 13/13 (100.0) n.a. n.a. n.a.

ASAS axial n.a. 7/7 (100.0) n.a. n.a.

Previous NSAID, no. of positive/tested (%) 12/13 (92.3) 22/25 (88.0) 2/5 (40.0) 13/13 (100.0)

Previous intraarticular steroid injection, no. or no. of positive/tested (%) 10/13 (76.9) 4/7 (57.1) 3/5 (60.0) 3/13 (23.1)

ACPA, anti-CCP antibody; ACR, The American College of Rheumatology classification criteria of RA; ACR/EULAR, The American College of Rheumatology/European
League Against Rheumatism classification criteria for RA; AS, ankylosing spondylitis; ASAS axial, Assessment of SpondyloArthritis international Society classification
criteria for axial spondyloarthritis; BD, Behçet’s disease; FANA, fluorescent anti-nuclear antibody; HLA-B27, human leukocyte antigen B27; modified NY, Modified New
York criteria for the diagnosis of AS; n.a, not applicable; non-RA, non-rheumatoid arthritis including ankylosing spondylitis, Behçet’s disease, and gout; Previous NSAID,
previously use of non-steroidal anti-inflammatory drug; RA, rheumatoid arthritis; RF, rheumatoid factor.
doi:10.1371/journal.pone.0097501.t001
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yellow in the heat map, and the lower the abundance of the

metabolites, the more blue in the heat map. Clustering of the

metabolites led to good separation between the RA and non-RA

groups. The discrimination of metabolite profiles between the two

groups was mainly caused by certain metabolites as shown in

Figure 2.

Identification of biomarkers for RA
Identification of potential biomarker candidates that account

for the differentiation of diseases is a necessary step not only for

diagnosis but also for better understanding of the functional

metabolism in clinical diseases. To screen putative biomarkers

for RA, the variable importance for projection (VIP) values

from the OPLS-DA model were obtained. Then, the nonpara-

metric Wilcoxon-Mann-Whitney test and the breakdown and

one-way analysis of variance (ANOVA) with post hoc Tukey’s

honestly significant difference (HSD) test led to further testing of

the selected metabolites with high VIP values as biomarker

candidates for RA.

VIP values were used to rank the contribution of metabolites to

the discrimination between the RA and non-RA groups, which are

based on weighted coefficients of the OPLS-DA model [25]. Using

the p(corr) and VIP values of the 105 metabolites in synovial fluid,

a V-plot was constructed (Figure 1b). VIP values and correlation

coefficients (i.e., p(corr)) of each metabolites were shown in the V-

plot. Metabolites in both terminals of V represented a high

contribution to the discrimination of the RA and non-RA groups.

In a VIP analysis, VIP values above 1 are considered important

since the influence of variables with a VIP .1.0 on the

explanation of the Y matrix is above average [25]. In this study,

33 metabolites were found to have VIP values higher than 1, of

which 23 metabolites were higher in the RA group, whereas 10

metabolites were higher in the non-RA group.

Next, the Wilcoxon-Mann-Whitney test was employed to

evaluate significant differences (p,0.01) of metabolite candidates

and to eliminate variables without significant differences between

the two groups. Because the abundance of ornithine between the

RA and non-RA groups was not significantly different at the 99%

significance level, ornithine was ruled out from the 33 biomarker

candidates. Among the 32 metabolites that passed the Wilcoxon-

Mann-Whitney test, the abundances of 22 metabolites, including

succinate, octadecanol, asparagine, and terephthalate, were higher

in the RA group than in the non-RA group. Meanwhile, the

abundances of 10 metabolites, including isopalmitic acid, glycerol,

myristic acid, and palmitoleic acid, were lower in the RA group

than in the non-RA group.

One-way ANOVA was conducted to select putative biomarkers

for the RA group only in comparison with the non-RA group

representing other inflammatory arthritis including AS, BD, and

gout. A post-hoc Tukey’s HSD test at the 99% significance level

was then performed to compare the mean values between groups.

The following metabolites did not significantly differ in abundance

between the RA group and each disease group of AS, BD, and

gout in ANOVA and HSD tests: adipate, asparagine dehydrated,

2,5-dihydroxypyrazine NIST, lanosterol, lignoceric acid, N-

methylalanine, palmitic acid, phosphoric acid, proline, pyrophos-

phate, serine, and stearic acid. All of these metabolites were

eliminated from the putative biomarkers for RA.

The fold changes of the 20 metabolites selected as potential

biomarkers to discriminate RA from non-RA are shown in

Figure S2. The abundances of succinate, octadecanol, aspara-

gine, terephthalate, salicylaldehyde, glutamine, citrulline, tyro-

sine, uracil, lysine, ribitol, tryptophan, xylose, and ribose were

higher in the RA group than those in the non-RA group.

However, the abundances of isopalmitic acid, glycerol, myristic

acid, palmitoleic acid, hydroxylamine, and ethanolamine were

lower in the RA group than those in the non-RA group.

Notably, the fold change of succinate was highest in the RA

group, and the fold changes of salicylaldehyde and glutamine

were much higher than those of other metabolites in the RA

group. The fold changes of the metabolite abundances increased

in the RA group ranged from 1.7 to 73.6.

ROC analysis
Twenty putative biomarkers of the RA group were selected

after employing multiple statistical analyses as described earlier.

Prior to clinical utility of the 20 putative biomarkers, validation

of the biomarkers is needed. For disease diagnosis, the ROC

curve and the area under the ROC curve (AUC) provide a

numerical value of the relationship between the specificity and

sensitivity of a biomarker. These sensitivity and specificity

indicate the probably tests for correctly identifying patients with

the disease and without the disease, respectively [26]. An AUC

value of 0.5 or less for a biomarker indicates no information

and discrimination within the test, thus implying no diagnostic

utility of the biomarker, whereas an AUC value of 1.0 indicates

perfect prediction of the diagnostic test [27-29]. Figure 3 shows

the ROC curve analysis for the predictive power of the 20

Figure 1. OPLS-DA of the metabolite profiles of RA and non-RA
groups. (a) Score plot of the OPLS-DA model for RA and non-RA
groups (t[1]P, score of the non-orthogonal component; t[2]O, score of
the orthogonal component). (b) V-plot with p(corr) and VIP values of
105 metabolites. The metabolites with p(corr) ,0 were those decreased
in RA groups while the metabolites with p(corr) .0 were those
increased in RA groups.
doi:10.1371/journal.pone.0097501.g001
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combined biomarkers of the RA group to discriminate RA from

non-RA. A sensitivity of 92.3% and a specificity of 68.0% were

obtained from the ROC curve, and the value of AUC was

0.812. Since the 20 putative biomarkers showed the AUC value

of greater than 0.8, they were selected as biomarkers of RA

(Table 2).

Discussion

Recently, the importance of metabolomics for the study of

disease biomarkers and metabolism is rapidly increasing [30–32].

Zahi et al. reported the branched-chain amino acids to histidine

ratio as a novel serum biomarker of osteoarthritis using a

metabolomics approach [33]. However, only a few studies have

performed non-targeted metabolite profiling of RA on a global

scale by using plasma or synovial fluid [16,17,34]. Especially,

reliable biomarkers of RA distinguished from other inflammatory

arthritis such as AS, BD, and gout have not been identified using

metabolite profiling in synovial fluids, which is the direct medium

showing the state of disease. For example, in a previous study of

metabolite profiling of synovial fluid from RA, AS, and gout

patients using 1H-NMR identifying 35 metabolites, no differences

Figure 2. HCA of 105 metabolites from synovial fluid samples of RA and non-RA patients. Each column and row represents a disease and
an individual metabolite, respectively.
doi:10.1371/journal.pone.0097501.g002
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in metabolite profiles were shown between those diseases [34]. In

this study, GC/TOF MS was used to find possible biomarkers

among metabolites in the synovial fluid of patients with

inflammatory arthritis in order to differentiate RA from other

– inflammatory arthritis such as AS, BD, and gout by using

metabolomics. The metabolite profiles of synovial fluid obtained

from RA patients were distinguishable from those of other

inflammatory arthritis, in which 20 metabolites were selected and

validated as potential biomarkers with the capability of discrim-

inating RA from the non-RA diseases like AS, BD, and gout with

92.3% sensitivity and 68.0% specificity. This is the first report of

the discovery of potential biomarkers for RA, which discriminate

RA from other inflammatory arthritis, by GC/TOF MS-based

metabolomic analysis of synovial fluid.

In the present study, 105 metabolites classified into various

chemical classes such as amines, amino acids, fatty acids,

organic acids, phosphates, and sugars and sugar alcohols were

identified by an in-house library. These metabolites are major

intermediates of various metabolic pathways, including glycol-

ysis, the TCA cycle, as well as pathways involving amino acid

and fatty acid metabolism. The number of metabolites identified

from synovial fluid of RA in this study was much higher than

that in previous studies [34]. In this study, the metabolite

profiles of synovial fluid from RA and non-RA groups were

considerably discriminated by OPLS-DA. Following various

statistical analyses, 20 metabolites of synovial fluid, including

succinate, octadecanol, asparagine, terephthalate, salicylalde-

hyde, glutamine, citrulline, tyrosine, uracil, lysine, ribitol,

tryptophan, xylose, ribose, isopalmitic acid, glycerol, myristic

acid, palmitoleic acid, hydroxylamine, and ethanolamine were

selected and validated as putative biomarkers for RA, which

discriminated from non-RA diseases such as AS, BD, and gout.

Figure 3. ROC analysis of the predictive power of the 20
combined biomarkers for distinguishing RA and non-RA
groups. A sensitivity and specificity were 92.3% and 68.0%,
respectively, and the value of AUC was 0.812.
doi:10.1371/journal.pone.0097501.g003

Table 2. VIP and AUC values of the metabolites that significantly contribute to the discrimination between the RA and non-RA
groups.

Metabolite VIP value (rank) p-valuea AUCb

Metabolites with higher abundances in the RA group than in the non-RA group

succinate 2.09 (1) ,0.0001 1.000

octadecanol 2.07 (2) ,0.0001 1.000

asparagine 1.98 (3) ,0.0001 1.000

terephthalate 1.94 (4) ,0.0001 1.000

salicylaldehyde 1.93 (5) ,0.0001 1.000

glutamine 1.92 (6) ,0.0001 0.997

citrulline 1.91 (7) ,0.0001 1.000

tyrosine 1.89 (8) ,0.0001 1.000

uracil 1.87 (9) ,0.0001 0.997

lysine 1.86 (10) ,0.0001 0.994

ribitol 1.72 (12) ,0.0001 0.985

tryptophan 1.59 (17) ,0.0001 0.883

xylose 1.54 (18) ,0.0001 0.92

ribose 1.51 (19) ,0.0001 0.969

Metabolites with lower abundances in the RA group than in the non-RA group

isopalmitic acid 1.82 (11) ,0.0001 0.994

glycerol 1.68 (13) ,0.0001 1.000

myristic acid 1.68 (14) ,0.0001 0.985

palmitoleic acid 1.66 (15) ,0.0001 1.000

hydroxylamine 1.65 (16) ,0.0001 1.000

ethanolamine 1.46 (20) ,0.0001 0.963

ap-values were determined using the Wilcoxon-Mann-Whitney test.
bArea under the receiver operator characteristics curve.
doi:10.1371/journal.pone.0097501.t002
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These metabolites are the major intermediates of the TCA

cycle, urea cycle, and fatty acid and amino acid metabolism

(Figure 4).

In particular, citrulline synthesized from ornithine and

carbamoyl phosphate is a key intermediate of the urea cycle.

It is also generated by posttranslational modification of arginine

residues by peptidylarginine deiminase [35]. Because citrulline is

a major antigenic determinant recognized by RA, ACPAs have

been used for the diagnosis of RA and have been established as

a useful tool to discriminate RA from other arthritic diseases

[36]. Moreover, in this study, the abundances of citrulline and

ornithine were significantly higher in the RA group than those

in the non-RA group. In the TCA cycle, a-ketoglutarate is a

precursor to such amino acids as glutamate, glutamine, proline,

and arginine. Oxaloacetate, which is converted from succinate,

fumarate, and malate, is also a precursor to such amino acids as

asparagine, methionine, threonine, isoleucine, and lysine [37].

The abundances of asparagine, glutamine, tyrosine, lysine, and

tryptophan were higher in the RA group than those in non-RA

group. Although a-ketoglutarate and oxaloacetate from the

TCA cycle were not identified as metabolites in the present

study, the abundances of succinate and fumarate in the TCA

cycle were higher in the RA group, as were their derivative

amino acids asparagine, lysine, and glutamine. These results

indicate that the urea and TCA cycles as well as amino acid

metabolism were highly activated in the RA group compared

with the non-RA group consisting of AS, BD, and gout patients.

In addition to citrulline, succinate, asparagine, glutamine, and

lysine can be considered as major biomarkers for RA diagnosis.

Fatty acids are synthesized from acetyl-CoA and play

important roles in cellular metabolism. RA is known to be

affected by n-3 and n-6 fatty acids. For example, n-3 fatty acids

suppress inflammation by reducing TNF-a and interleukin-1b
levels in RA patients by competitively inhibiting the production

of leukotriene B4 from arachidonic acid [38]. In our study,

arachidonic acid (an n-6 fatty acid) was identified, but the level

of arachidonic acid between the RA and non-RA groups did

not significantly differ at the 99% significance level. Other than

arachidonic acid, major fatty acids such as isopalmitic acid,

myristic acid, and palmitoleic acid were identified as the

significant metabolites in the RA group because their levels

were markedly lower in the RA group. These results indicate

that the fatty acid metabolism was more activated in the non-

RA group than in the RA group.

This study has some limitations in the sample size and gender

ratio. Although the sample size was relatively small here, the

OPLS-DA model was well validated by the permutation test

(Figure S1-a), and the potential biomarkers of RA were also

Figure 4. Schematic comparison of the primary metabolisms of RA vs. non-RA groups (AS, BD, and GO). The box and whisker plots
indicate the intracellular metabolite levels for each disease group (red, increased in RA; green, increased in non-RA). AcCOA, acetyl-CoA; ALA, alanine;
ARG, arginine; ARG-SUC, arginine-succinate; ASN, asparagine; ASP, aspartate; CIT, citrate; CITR, citrulline; CMP, carbamoyl phosphate; FAs, fatty acids;
FUM, fumarate; GLC, glucose; GLN, glutamine; GLU, glutamate; aKG, a-ketoglutarate; LYS, lysine; MAL, malate; OA, oxalate; ORNT, ornithine; PEP,
phosphoenolpyruvate; PHA, phenylalanine; PRO, proline; SER, serine; SUCC, succinate; TRP, tryptophan; TYR, tyrosine.
doi:10.1371/journal.pone.0097501.g004
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verified by external validation (Figure S1-b) and AUC (Table 2).

The gender ratio was not controlled in each group in this study,

but among the 20 biomarkers of RA found from 13 RA and 25

non-RA patients without gender ratio control, 14 metabolites

reappeared as the biomarkers of RA from 13 RA and 5 non-

RA patients with gender ratio control (Table S2). These results

agreed with previous reports that the metabolic profiles of RA

did not significantly affected by gender [16,39].

In conclusion, this is the first report on the identification of

potential biomarkers for RA using human synovial fluid of RA and

non-RA patients by metabolomics for the diagnosis of RA

distinguished from other inflammatory arthritis such as AS, BD,

and gout. We also demonstrated that metabolic profiling may be a

useful tool to discover biomarkers, and envision a holistic view of

metabolism for diseases.

Supporting Information

Figure S1 OPLS model of the metabolite profiles of RA
and non-RA groups. (a) Validation of the OPLS-DA
model using 100 permutation test. Y-axis intercept of R2

and Q2 were 0.514 and 20.231, respectively. (b) Y-predicted

scatter plot of the OPLS-DA model validated with RA and non-

RA patients from another cohort. Red, RA patients; Blue, non-RA

patients; Orange, RA and non-RA patients from another cohort.

(TIF)

Figure S2 Fold changes of abundances of 20 metabolites
in synovial fluid selected as potential biomarkers for
RA. Positive values indicate the increased fold changes in the RA

group and negative values the increased fold changes in the non-

RA group.

(TIF)

Table S1 Metabolites identified from GC/TOF MS and

BinBase analyses of synovial fluid.

(DOC)

Table S2 The potential biomarkers of RA found from

metabolite analysis of synovial fluid with and without controlling

gender ratios of RA and non-RA patients.

(DOC)
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