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Abstract

Dental pulp stem cells (DPSCs), precursor cells of odontoblasts, are ideal seed cells for tooth tissue engineering and
regeneration. Our previous study has demonstrated that stem cells exist in dental pulp with deep caries and are called
carious dental pulp stem cells (CDPSCs). The results indicated that CDPSCs had a higher proliferative and stronger
osteogenic differentiation potential than DPSCs. However, the molecular mechanisms responsible for the biological
differences between DPSCs and CDPSCs are poorly understood. The aim of this study was to define the molecular features
of DPSCs and CDPSCs by comparing the proteomic profiles using two-dimensional fluorescence difference gel
electrophoresis (2-D DIGE) in combination with matrix-assisted laser desorption ionization time-of-flight mass spectrometry
(MALDI-TOF MS). Our results revealed that there were 18 protein spots differentially expressed between DPSCs and CDPSCs
in a narrow pH range of 4 to 7. These differently expressed proteins are mostly involved in the regulation of cell
proliferation, differentiation, cell cytoskeleton and motility. In addition, our results suggested that CDPSCs had a higher
expression of antioxidative proteins that might protect CDPSCs from oxidative stress. This study explores some potential
proteins responsible for the biological differences between DPSCs and CDPSCs and expands our understanding on the
molecular mechanisms of mineralization of DPSCs in the formation of the dentin-pulp complex.
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Introduction

Human dental stem cells are generally applied in tissue and

organ regeneration; however, the regenerative application of these

stem cells in dental therapy remains problematic [1]. To date, five

types of human dental stem cells have been isolated and

characterized: dental pulp stem cells (DPSCs) [2], [3], stem cells

from exfoliated deciduous teeth (SHED) [4], stem cells from apical

papilla (SCAP) [5], dental follicle stem cells (DFSCs) [6] and

periodontal ligament stem cells (PDLSCs) [7], [8].

DPSCs, which are ideal seed cells for tooth tissue regeneration,

can differentiate into functional odontoblasts in vivo when the

tooth encounters external mild stimuli such as carious lesion,

attrition and abrasion. The reactionary and reparative dentin

formed by surviving odontoblasts and newly differentiated

odontoblast-like cells protect the pulp from further damage. Our

previous study has indicated that stem cells exist in carious pulp

and are named carious dental pulp stem cells (CDPSCs). CDPSCs

displayed an increased proliferative capacity and enhanced

alkaline phosphatase (ALP) activity, mineralization ability, and

the expression of osteogenesis/dentinogenesis-related genes com-

pared with DPSCs [9]. Though the biological characteristics of

these two stem cells have been well analyzed, the molecular

mechanisms responsible for the biological differences between

CDPSCs and DPSCs are still unclear.

Mass spectroscopy (MS) based proteomics is becoming an

efficient method characterized by systematic large-scale qualitative

and quantitative mapping of the whole proteome of stem cell

phenotypes from different niches, allowing for the rapid under-

standing the mechanisms that control their self-renewal ability,

differentiation potential and regeneration capacity [10], [11].

Previous studies compared the protein expression profiles in

mesenchymal stem cells derived from human periodontal

ligament, dental pulp, dental follicle, and dental papilla to provide

a database for proteins commonly or differentially expressed

among various dental stem cell populations [12], [13], [14].

Recently Pivoriuūnas A et al. analyzed the proteomic profiling of

SHED to reveal the abundantly expressed proteins [15].

In this work, we performed two-dimensional fluorescence

difference gel electrophoresis (2-D DIGE) in combination with

matrix-assisted laser desorption ionization time-of-flight mass

spectrometry (MALDI-TOF MS) to identify the differentially

expressed proteins between DPSCs and CDPSCs and to explore

the candidate molecular markers contributing to the regeneration

of dental structures in stem cell-based tissue engineering protocols.

Materials and Methods

Cell Culture and Identification
All patient-related procedures (patients were 18–20 years of age)

used in this study were approved by the Medical Ethics Committee
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of Nanfang Hospital, and written informed consent was obtained

from all subjects. Normal pulp tissues were collected from freshly

extracted third molars without caries or pulpal diseases (n = 10).

Carious pulp tissues were obtained from wisdom teeth diagnosed

with deep caries (n = 10). The diagnosis of deep caries was

determined by endodontic specialists according to clinical

assessment. Inclusion criteria were the following: carious lesion

depth was 80% or more of the dentine thickness assessed

radiographically and the presence of a clear radiodense area

between the carious lesion and the pulp. The thickness of the

remaining dentin was less than 2 mm. Exclusion criteria were:

prolonged intense pain, spontaneous pain, and/or pain disturbing

a full night’s sleep; apical radiolucency; negative response to

thermal and electric pulp testing. All pulp tissues were minced and

then digested with 3 mg/mL collagenase type I (Invitrogen Life

Technology, Carlsbad, CA, USA) and 4 mg/mL dispase (Sigma,

St Louis, MO, USA) for 1 h at 37uC. Single-cell suspensions were
obtained by passing the digested tissues through a 70-mm cell

strainer (Carrigtwohill Co, Cork, Ireland). The cells were seeded

into 6-well plates (Costar, Cambridge, MA, USA) with Dulbecco’s

modified Eagle medium (Gibco, Life Technologies, Grand Island,

NY, USA) containing 15% fetal bovine serum, 100 units/mL

penicillin, 100 mg/mL streptomycin, and 50 mg/mL ascorbic

acid and then incubated at 37uC in 5% CO2. Stem cells obtained

from normal pulp tissues were called DPSCs, and those from

carious pulp tissues were called CDPSCs. DPCSs and CDPSCs

were enriched by collecting multiple colonies.

Scanning Electron Microscope Study
DPCSs and CDPSCs at passage 3 were used for the study. The

samples were prefixed at 4uC in 2.5% glutaraldehyde overnight

and post-fixed in 1% OsO4 for 2 h at room temperature (RT).

They were dehydrated in gradual increased concentration of

ethanol and then critical point dried. The samples were observed

under a scanning electron microscope (XL 30 ESEM, Philips

Electron Optics, Eindhoven, The Netherlands).

Cell Counting Assay
Following 24 h serum starvation, DPSCs and CDPSCs were

seeded at 26104 in 1 mL medium per well of a 24-well plate for

the cell counting assay. The cell growth medium was replaced

every two days. At the indicated time points, cell proliferation was

analyzed by counting cells using trypan blue for exclusion of dead

cells. The assay was repeated in triplicate.

In vitro Analysis of Multilineage Differentiation of DPSCs
and CDPSCs
For osteogenic differentiation, DPSCs and CDPSCs were

seeded in 2 mL complete culture medium at 36104/35 mm plate

and cultured to 70% confluence. Differentiation was induced by

culturing cells in complete medium supplemented with 10 mM b-
glycerol phosphate, 50 mg/mL ascorbic acid, and 1027 M

dexamethasone for 3 weeks. The induced cells were fixed in

70% ice-cold ethanol for 20 min at RT and then stained with 2%

alizarin red S. For adipogenic differentiation, DPSCs and

CDPSCs were seeded into 24-well plates at a density of 16104/

well and cultured to 70% confluence. Differentiation was induced

by culturing cells in complete medium supplemented with 0.5 mM

methylisobutylxanthine, 0.5 mM hydrocortisone, and 60 mM

indomethacin for 3 weeks. The cells were fixed in 4%

paraformaldehyde (PFA) for 20 min at RT and then stained with

oil red O. For chondrogenic differentiation, DPSCs and CDPSCs

were prepared as described for adipogenic differentiation. The

cells were incubated with 50 mg/mL ascorbic acid, 1% insulin-

transferrin-selenous acid, 100 mg/mL sodium pyruvate, 40 mg/
mL L-proline and 10 mg/L transforming growth factor-3 for 3

weeks. Finally, the cells were then fixed in 4% PFA for 20 min at

RT and then stained with alcian blue.

Protein Determination and 2D-DIGE
Samples for DPSCs and CDPSCs were centrifuged at 1,200 g

and washed in ice-cold PBS three times. Total proteins were

extracted from cells with 500 mL of lysis buffer (7 M urea, 4%

CHAPS, 20 mM Tris, 2 M Thiourea and 2 mM TBP) and a

mixture of protease inhibitors. The extraction mixture was

sonicated three times for 20 s with 40% amplitude by using

U200S sonicator (IKA Labortechnik, Germany) and then

centrifuged at 15,000 g for 1 h at 4uC. The Bradford assay was

performed to determine the protein content of DPSCs and

CDPSCs. All samples were stored at 280uC prior to electropho-

resis. 2D-DIGE was performed according to the manufacturer’s

protocol (CyDye DIGE Fluor minimal dyes, GE Healthcare) with

minor modifications outlined below. For IEF, samples were

labeled with three Cy-Dye DIGE fluors (Cy2, Cy3 and Cy5). A

total of 50 mg of protein sample was labeled with 400 pmol of Cy3

or Cy5. Cy2 was used to label two mixed samples as an internal

reference standard. The samples were vortexed briefly and

incubated on ice for 30 min in the dark. Reactions were quenched

by the addition of 1 mL of 10 mM lysine and incubated for

10 min on ice under dark conditions. The labeled samples were

pooled and mixed with rehydration buffer (7 M urea, 2 M

thiourea, 4% CHAPS, 40 mM DTT, 0.00004% bromphenol blue

and 0.2% IEF buffer) to a final volume of 450 mL. To ensure an

optimal focusing of the proteins, an ampholyte solution for pH 4–

7 (Serva, Heidelberg, Germany) was added in a concentration of

1% and the samples were loaded onto Immobiline Dry Strips

(IPG, 24 cm, linear pH gradient from pH 4–7, GE Healthcare) by

rehydration for 20 h at RT in darkness. The strips were

rehydrated and focused with the following parameters: 150 V

for 1 h and 250 V for 1 h, respectively; then 1 h at 500 V, 1 h at

1000 V, 5000 V for 3 h by gradient; finally 10000 V for 4 h by

step and hold until a total amount of 70000 Vh was obtained with

a current limit of 50 mA/gel. Subsequent to IEF, the strips were

equilibrated with 10 mg/mL DTT and 40 mg/mL iodoacetamide

for 15 min in equilibration buffer containing 6 M urea, 30%

glycerol, 2% SDS, and 75 mM Tris-HCl (pH 8.8). Gels were run

in Laemmli electrophoresis running buffer (250 mM Tris base,

1.92 M glycine and 1% SDS) and sealed on the borderline of the

SDS-PAGE gel by using 0.5% low-melting point agarose gel.

Protein spots were separated in 12.5% SDS-polyacrylamide gels at

2 W/gel for 1 h at 16uC and then 17 W/gel at 10uC until the

bromophenol blue dye reached the end of the gel. The biological

triplicates were run on three gels as analytical gels.

Image Scanning and Analysis
Three different gel images were performed from one gel at the

appropriate wavelengths. They are Cy2 (blue 488 nm laser and

520 nm band pass emission filter), Cy3 (green 532 nm laser and

580 nm band pass emission filter) and Cy5 (red 633 nm laser and

670 nm band pass emission filter) by using a Typhoon 9410

scanner (GE Healthcare) to generate eighteen protein spot maps.

DeCyder 5.0 software (GE Healthcare) was used for 2D-DIGE

analysis according to the manufacturer’s recommendation. The

DeCyder differential in-gel analysis (DIA) module was used for

pairwise comparisons of each sample with the internal standard in

each gel. The DeCyder biological variation analysis (BVA) module

was then used to simultaneously match all nine protein spot maps,
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using the Cy3/Cy2 and Cy5/Cy2 DIA ratios, to calculate average

abundance changes. Student’s t-test was used to calculate

significant differences in relative abundances of protein spot

features in DPSCs compared with CDPSCs. The differential

protein spots (|ratio|.2, p,0.05) were selected for further

identification.

Identification of Protein Spots by MS
Protein spots were cut from gels and washed twice with Milli-Q

water, destained with 50% acetonitrile (ACN) and 50 mM

ammonium bicarbonate (NH4HCO3), and dried under vacuum.

Each spot was digested overnight in 20 ng/mL trypsin in 40 mM

NH4HCO3. The peptides were extracted two times with 50%

ACN and 5% TFA. The extracts were pooled and dried

completely by centrifugal lyophilization. Then, 1 mL of the

mixture was loaded onto a target plate with 10 mg/mL CHCA

matrix, dried at RT, and analyzed using Voyager DE STR

MALDI-TOF (ABI, USA). All analyses were carried out in reflex

positive ion mode at an accelerating voltage of 20 kV and a reflex

voltage of 23 kV. The instrument was calibrated with external

standards including P14R and Insulin Chain B Oxidized. Internal

mass calibration was performed using trypsin auto-digestion

products. The obtained peptide mass fingerprints (PMF) were

submitted for identification using the Mascot search engine

(Matrix Science, UK). Search parameters were set as follows:

taxonomy human, cysteine acetylation, enzyme trypsin, one

missed cleavage site, and a peptide tolerance of 100 ppm.

Western Blot Analysis
Cells were harvested and homogenized for total protein

extraction. Equivalent amounts of protein extracts were separated

by SDS-PAGE and then transferred to nitrocellulose membranes

(Amersham Biosciences, Buckinghamshire, UK). Rabbit anti-

CCT2 (1:1000; ProteinTech Group Inc, Wuhan, China), anti-

stathmin(1:500; ProteinTech Group Inc), and anti-b-actin anti-

body (1:2000; Cell Signaling Technology, Beverly, MA, USA)

were used as the primary antibodies and horseradish peroxidase

conjugated goat anti-rabbit IgG (Thermo Scientific Pierce,

Rockford, IL, USA) was used as the secondary antibody.

Immunoreactive bands were detected using SuperSignal (R) West

Femto Maximum Sensitivity Substrate (Thermo Scientific Pierce).

The analysis was performed three times.

Statistical Analysis
The data were analyzed and expressed as the mean 6standard

deviation. Statistical significance was evaluated by independent

samples t-test using SPSS Statistics V21.0 software. Statistical

significance was set at P,0.05.

Results

Morphological Analyses
We compared DPSCs and CDPSCs at passage 3. Typical

colonies of DPSCs and CDPSCs growing in 25 cm2 culture flasks

for two weeks were identified after seeding as single cell

suspensions. Under light microscopy, both stem cell populations

formed single colonies in culture. Both DPSCs (Figure 1A) and

CDPSCs (Figure 1B) were spindle-shaped and fibroblast-like and

the cellular nuclei were round or oval-shaped. The fine structure

of both stem cells was studied using scanning electron microscopy.

Both DPSCs (Figure 1C) and CDPSCs (Figure 1D) had a

morphological homogeneous fibroblast-like appearance with long

cytoplasmic processes and many filopodia.

Cell Growth
The proliferation rates of DPSCs and CDPSCs were studied

using the cell counting technique at passage 3. The data showed

that the number of DPSCs was significantly lower than that of

CDPSCs at days 3, 5, and 7, indicating that CDPSCs had a higher

proliferative potential in comparison with DPSCs (**p,0.01)

(Figure 1E).

Multipotent Differentiation
To evaluate the multipotent differentiation capacity, both

DPSCs and CDPSCs were treated with various differentiation-

inducing media. Osteogenic differentiation was indicated by the

detection of mineralized nodules in DPSCs (Figure 2A) and

CDPSCs (Figure 2B) after 3 weeks of culture in mineralization

medium. Following the induction of adipogenic differentiation, the

accumulation of lipid-rich vacuoles in DPSCs (Figure 2C) and

CDPSCs (Figure 2D) was visualized within cells by oil red O

staining. The induction of chondrogenic differentiation was

demonstrated by the accretion of sulfated matrix in DPSCs

(Figure 2E) and CDPSCs (Figure 2F) stained with alcian blue.

DPSCs and CDPSCs Proteome in Narrow pH Range (4–7)
To better understand the differentially expressed proteins of

DPSCs and CDPSCs, we analyzed the DPSCs and CDPSCs by

2D-DIGE. Proteins were labeled with Cy3 or Cy5 fluorescent dye,

and then the Cy3, Cy5 and Cy2 images were scanned and

analyzed using DeCyder 5.0 software (Figure 3). Compared with

DPSCs, 18 protein spots were differentially expressed in CDPSCs.

Among them, 9 protein spots had increased expression while 9 had

reduced expression in CDPSCs (Figure 4). The 18 protein spots

were selected for further identification with MALDI-TOF MS.

The pH 4–7 range analysis showed that CDPSCs presented a

higher expression level of T-complex protein 1 subunit beta

(CCT2), tropomyosin beta chain (TPM2), transaldolase

(TALDO1), isocitrate dehydrogenase [NAD] subunit alpha,

mitochondrial (IDH3A), F-actin-capping protein subunit beta

(CAPZB), myosin regulatory light polypeptide 9 (MYL9), chloride

intracellular channel protein 4 (CLIC4), glutaredoxin-3 (GLRX3),

heat shock protein HSP 90-alpha (HSP90AA1) and DPSCs

presented a higher expression level of TAR DNA-binding protein

43 (TARDBP), macrophage-capping protein (CAPG), stathmin

(STMN1), acylamino-acid-releasing enzyme (APEH), heteroge-

neous nuclear ribonucleoprotein F (HNRNPF), keratin, type I

cytoskeletal 9 (KRT9), keratin, type I cytoskeletal 10 (KRT10)

(Table 1). All identified proteins were analyzed using the online

GOfact interface (http://61.50.138.118/gofact). These proteins

were potentially related to cell proliferation, differentiation, cell

cytoskeleton and motility, and antioxidant function. They are

widely distributed in the cytoplasm, nucleus, membrane and

mitochondria (see support information, Table S1).

Western Blot
We chose one upregulated protein and one downregulated

protein in CDPSCs to compare with DPSCs. The interestingly

selected identified proteins CCT2 and stathmin, which are closely

correlated with cell proliferation and differentiation, were

confirmed by western blot, the results demonstrated that CDPSCs

had a higher expression of CCT2 and a lower expression of

stathmin compared with DPSCs, which suggested that the

proteomic analyses based on 2-D DIGE were convincing

(Figure 5).
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Discussion

Recent studies have reported that DPSCs are able to

differentiate into various cell types or tissues including osteoblasts

[3], odontoblasts [16], chondroblasts [3], [17], adipocytes [17],

neuronal cells [18], endothelial cells [19], melanocytes [20] and

cornea [21]. Among these, the most important function of DPSCs

is forming odontoblasts, however; the mechanisms that are

responsible for DPSCs migration, proliferation, and differentiation

when the tooth encounters deep caries are poorly known.

Our study revealed that both DPSCs and CDPSCs had

fibroblast-like morphology and were shown to be capable of

differentiating into various cell types including osteoblasts,

adipocytes and chondrocytes. Moreover, CDPSCs had a higher

proliferative potential than DPSCs, which was consistent with the

previous study [9].

To better understand the molecular mechanisms underlying the

changes in DPSCs encountering deep caries, we used 2D-DIGE to

identify the proteins differentially expressed between DPSCs and

CDPSCs. The comparative narrow range PH analysis showed that

most differentially expressed proteins between the two stem cell

populations are potentially related to cell proliferation, differen-

tiation, cell cytoskeleton and motility, and antioxidative function.

These differentially expressed proteins may contribute to the

biological differences between CDPSCs and DPSCs.

A group of differentially expressed proteins are closely related to

cell proliferation and differentiation including CCT2, stathmin

and CLIC4. Chaperonin containing t-complex polypeptide 1

(CCT) is essential for maintaining cellular homoeostasis by

Figure 1. Morphology and proliferative potential of DPSCs and CDPSCs. Both DPSCs (A) and CDPSCs (B) isolated from dental pulp were
spindle-shaped and fibroblast-like under the light microscope. Both DPSCs (C) and CDPSCs (D) have a fibroblast-like appearance with long
cytoplasmic processes and many filopodia using the scanning electron microscope. (E) CDPSCs have a higher proliferative potential compared with
DPSCs (**p,0.01). Scale bar = 100 mm. Each experiment was repeated in triplicate.
doi:10.1371/journal.pone.0097026.g001
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assisting the folding of many proteins such as cytoskeleton proteins,

actin and tubulin. CCT is composed of eight different subunits (1,

2, 3, 4, 5, 6, 7, and 8) and their functions are poorly understood

[22]. Previous studies showed that CCT2 expression was

important for normal cell proliferation [23], [24]. Moreover,

CCT2 is overexpressed in certain malignant tumors and its

overexpression is closely correlated with poor prognosis [25].

CCT2 also involves in the regulation of the processes of cellular

motion and neuronal differentiation [26], [27]. As CCT2 is a

potential positive regulator of cell growth, the up-regulation of

CCT2 in CDPSCs may be partly responsible for the observation

that CDPSCs have a higher proliferation capacity compared with

DPSCs.

CLIC4 is ubiquitously expressed in almost every cell type

studied and is found in transmembranes and intramembranes. It

is implicated in diverse cellular processes including membrane

trafficking, cell proliferation, cell-cycle control, cell differentia-

tion and morphogenesis [28], [29]. CLIC4 is essential for

keratinocyte survival and is involved in the regulation of

endothelial proliferation [29], [30]. It is closely related to

adipocyte and keratinocyte differentiation [29], [31]. In

addition, recent studies also provide evidence that the down-

regulation of CLIC4 impairs angiogenesis and tubular morpho-

genesis [32]. CLIC4 is also shown to play a role in immune

response of macrophages to LPS and in the host defense against

bacterial infection [33]. As CLIC4 is a positive regulator of cell

Figure 2. Multilineage differentiation potential of DPSCs and CDPSCs. Mineralization assay in DPSCs and CDPSCs. Mineralized nodules
formed by DPSCs (A) and CDPSCs (B) were detected by alizarin red S staining after 3 weeks of culture in mineralized-induced media. Adipogenic
differentiation, visualized by oil red O staining, showed lipid vacuoles in DPSCs (C) and CDPSCs (D). Chondrogenic differentiation was visualized by
alcian blue staining of DPSCs (E) and CDPSCs (F), demonstrated by the accretion of sulfated matrix. Scale bar = 100 mm. Each experiment was
repeated 3 times.
doi:10.1371/journal.pone.0097026.g002

Proteomic Analysis of Dental Stem Cells

PLOS ONE | www.plosone.org 5 May 2014 | Volume 9 | Issue 5 | e97026



proliferation, differentiation and host defense, microbial prod-

ucts produced by bacteria might enhance the expression of

CLIC4 in CDPSCs in the case of deep caries. The up-

regulation of CLIC4 might be accountable for the increased

proliferation and osteogenic differentiation capacity of CDPSCs

compared with DPSCs.

Stathmin is a ubiquitous cytosolic regulatory phosphorprotein

and is involved in diverse intracellular signaling pathways

including cell proliferation, cell-cycle regulation, differentiation,

microtubule dynamics and activities [34], [35]. Up- and down

regulation of stathmin has similar inhibitory effect on cell

proliferation by interfering with the formation and dynamics of

mitotic spindles responsible for cell mitosis and the normal cell

cycle [36]. Recent studies showed that stathmin promoted

osteoblast differentiation and bone mass formation by interfering

with microtubule assembly [35]. The expression level of

stathmin diminishes in all cells detected so far as they become

more terminally differentiated in culture [37]. CDPSCs under

deep caries stimulation have greater osteogenic capacity

compared with DPSCs, suggesting that CDPSCs might be

more differentiated than DPSCs; thus, stathmin is expressed

higher in DPSCs than in CDPSCs. The essential role of

stathmin in regulating the cytoskeleton microtubules indicated

that it may be required for the biological functions of DPSCs.

Another group of differentially expressed proteins is correlated

with cell cytoskeleton and motility and includes TPM2, MYL9,

CAPZB, CAPG, KRT9 and KRT10. Tropomyosins (TPM) are a

family of actin-filament binding proteins expressed in most

eukaryotic cells. In human, there are at least four TPM genes

Figure 3. 2D-DIGE of DPSCs and CDPSCs. A Cy3 dye staining of
CDPSCs B Cy5 dye staining of DPSCs. C Cy2-labeled internal standard
proteome map.
doi:10.1371/journal.pone.0097026.g003

Figure 4. Changes in protein expression between DPSCs and
CDPSCs. A The merge of Cy3, Cy5 and Cy2. Distribution of 18
differentially expressed protein spots in fluorescence difference gel
electrophoresis gels. Protein spots are indicated (arrows). B Enlarged
images of the differentially expressed protein spots in DIGE analysis.
doi:10.1371/journal.pone.0097026.g004
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(TPM1, TPM2, TPM3 and TPM4). TPM2 is found primarily in

skeletal muscles and this protein helps regulate muscle contraction

by interacting with other muscle proteins, particularly myosin and

actin [38]. In addition, TPM2 is essential for cytoskeleton

Table 1. Differentiated expressed proteins between DPSCs and CDPSCs.

Spot
Entry
names Protein names

Accession
No.(Swiss-Prot)

Theoretical
MW/pI

Summary
score

A1 CCT2 T-complex protein 1 subunit beta P78371 57794/6.02 68

A2 TPM2 Tropomyosin beta chain P07951 32945/4.66 91

A3 TALDO1 Transaldolase P37837 37688/6.36 55

A4 IDH3A Isocitrate dehydrogenase [NAD] subunit alpha,
mitochondrial

P50213 40022/5.71 111

A5 CAPZB F-actin-capping protein subunit beta P47756 31616/5.36 148

A6 MYL9 Myosin regulatory light polypeptide 9 P24844 19871/4.78 108

A7 CLIC4 Chloride intracellular channel protein 4 Q9Y696 28982/5.45 128

A8 GLRX3 Glutaredoxin-3 O76003 37693/5.31 87

A9 HSP90AA1 Heat shock protein HSP 90-alpha P07900 85006/4.94 64

B1 TARDBP TAR DNA-binding protein 43 Q13148 44711/5.85 36

B2 CAPG Macrophage-capping protein P40121 38494/5.82 29

B3 CAPG Macrophage-capping protein P40121 38494/5.82 29

B4 STMN1 Stathmin P16949 17292/5.76 83

B5 STMN1 Stathmin P16949 17292/5.76 83

B6 APEH Acylamino-acid-releasing enzyme P13798 82142/5.29 85

B7 HNRNPF Heterogeneous nuclear ribonucleoprotein F P52597 45985/5.37 105

B8 KRT9 Keratin, type I cytoskeletal 9 P35527 62255/5.14 80

B9 KRT10 Keratin, type I cytoskeletal 10 P13645 59046/5.13 75

doi:10.1371/journal.pone.0097026.t001

Figure 5. Altered expressions of two identified proteins. The expression level of the CCT2 protein was lower in DPSCs than CDPSCs (A, B).
DPSCs have a higher expression level of stathmin protein compared with CDPSCs (C, D). The change in protein expression was consistent with that of
proteomic analysis (*p,0.05, **p,0.01). Each experiment was repeated 3 times.
doi:10.1371/journal.pone.0097026.g005
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establishment and the regulation of TGF-b induced stress fiber

formation [39].

MYL9 can be phosphorylated by myosin light chain kinase in

the presence of calcium and calmodulin. This phosphorylation

contributes to the increase in the actin-activated ATPase activities

of myosins. MYL9 is involved in the regulation of both smooth

muscle and nonmuscle cell contractile activity via its phosphor-

ylation [40]. Moreover, phosphorylation of MYL9 alters myocar-

dium contraction by increasing the force and rate of force

development [41].

CAPZB is a heterodimer with an a subunit of 32–36 kDa and a

b subunit of 28–32 kDa. The actin barbed end capping protein is

highly conserved and found in nearly all eukaryotic cells [42].

CAPZB regulates the assembly of actin filament structures which

are required for numerous biological processes and precise

coordination.

CAPG is a member of the gelsolin-villin family, and it binds to

actin in a calcium-dependent manner. CAPG is wildly distributed

in tissues and cells. Previous studies have shown that its function is

closely correlated with the motility and ruffling of various cell types

including macrophages, neutrophils, fibroblasts, and endothelial

cells [43], [44], [45]. Recently, CAPG was reported to be an

essential protein for the embedding and dendrite elongation

processes in osteocytes [46].

KRT9, a type I intermediate filament protein, is abundant in

human foot soles and palms. In mice, KRT9 is a major

component of the perinuclear ring of manchette in spermatids

and is required for normal sperm development [47], [48].

Mutation of KRT9 is responsible for human epidermolytic

palmoplantar keratoderma and degenerative changes of keratin’s

intermediate filament structure [49].

KRT10, a type I keratin protein, is normally expressed in the

suprabasal epidermal compartment. Deletion of KRT10 impairs

permeability barrier function and stratum corneum hydration

[50]. KRT10 is required for epidermal integrity, as KRT10

mutation leads to epidermolytic hyperkeratosis [51].

In this study, 3 identified proteins were mainly related to

antioxidative function including TALDO1, GLRX3, and APEH.

TALDO1 is an enzyme of the pentose phosphate pathway.

TALDO1 deficiency has been implicated in a widening spectrum

of diseases including male infertility, acetaminophen-induced

acute liver failure, cirrhosis, hepatocellular carcinoma and

autoimmunity diseases [52]. NADPH and GSH protect cells

against oxidative stress. The effect of TALDO1 depletion on

NADPH and GSH is discordant among various cells. Suppression

of TALDO1 increases NADPH and GSH production and

enhances oxidative stress in human Jurkat and H9 T cells,

however; TALDO1 deficiency diminishes NADPH and GSH

production in human lymphoblasts [53], [54], [55]. The up-

regulation of TALDO1 in CDPSCs may increase NADPH and

GSH expression, which may contribute to protecting CDPSCs

from oxidative damage.

GLRX3, an essential [2Fe–2S]-binding protein, has been

reported to play important roles in various signaling pathways

including embryogenesis, immune cell response, the regulation of

cardiac hypertrophy, cancer cell functions and iron homeostasis

[56], [57], [58]. GLRX3 is necessary to protect cells against

oxidative stress and GLRX3 deletion leads to embryonic lethality

in mice [59], [60]. The pulp with deep caries is more likely to

suffer from oxidative stress. The up-regulation of GLRX3 in

CDPSCs may help protect them from being damaged by reactive

oxygen species.

APEH belongs to the prolyl oligopeptidase family of serine

proteases. Previous studies have showed that APEH contributes to

the elimination of the oxidized proteins in mammalian cells and in

plants [61], [62]. APEH may be a potential regulator in sustaining

the homeostasis of the cytoplasmic antioxidative system. The

expression of APEH should be enhanced in CDPSCs, as dental

pulp with deep caries is more susceptible to oxidized stress;

however, our proteomic analysis showed opposite results. The

antioxidative role of APEH in CDPSCs requires further investi-

gation.

HSP90AA1 is a highly conserved and abundant protein. It has

been implicated in the activation of various proteins such as

important mediators of signal transduction, cell cycle regulation,

differentiation and pathogenic factors involved in tumor progres-

sion [63]. Previous studies showed that HSP90AA1 played an

important role in infectious disease by interacting with various

bacterial and viral proteins [64], [65]. Moreover, HSP90AA1 is

unregulated under elevated temperature [66]. Two reasons may

be accountable for the up-regulation of HSP90AA1 in CDPSCs.

First, the by-products secreted by bacteria and viruses might

enhance the expression level of HSP90AA1 in stem cells isolated

from dental pulp undergoing stimulation from a deep carious

lesion. Moreover, the fluctuating oral temperature may increase

HSP90AA1 expression in CDPSCs, as dental pulp with deep

caries is more vulnerable to temperature stimuli without sufficent

hard dental tissue protection.

Isocitrate dehydrogenase catalyzes the oxidative decarboxyl-

ation of isocitrate to form a-ketoglutarate. This process is

considered to be one of the key enzymes in the tricarboxylic acid

(TCA) cycle. In mammals, there are three types of isoenzymes

represented by cytosolic NADP-specific IDH (IDH1), mitochon-

drial NADP-specific IDH (IDH2), and mitochondrial NAD-

specific IDH (IDH3) [67]. IDH3 is composed of three distinct

types of subunits in the ratio 2alpha:1beta:1gamma [68]. The

function of the alpha subunit sequence is highly conserved among

the mammalian species. Moreover, it contains the isocitrate

binding site and is indispensable for catalytic activity [69], [70].

TARDBP and HNRNPF are both important for gene

regulation. TARDBP is normally concentrated in the nucleus

but also shuttles between the nucleus and cytoplasm. TARDBP

plays an important role in the regulation of splicing, microRNA

processing, mRNA transport, stability, and translation. Recent

studies showed that TARDBP knockdown inhibited neurite

outgrowth and causes cell death [71]. TARDBP dysfunction has

been linked to neurological disorders, such as amyotrophic lateral

sclerosis (ALS), frontotemporal lobar dementia (FTLD) and

Alzheimer’s disease (AD) [72].

Heterogeneous nuclear ribonucleoprotein F (HNRNPF) is a

member of the HNRNP family that is essential in splicing events.

It plays a vital role in modulating gene expression at the

transcriptional and posttranscriptional levels. Previous studies

have showed that HNRNPF participates at various steps in

processing cellular mRNA [73], [74], [75].

In conclusion, we revealed some candidate proteins that might

be responsible for the biological differences between CDPSCs and

DPSCs. The differently expressed proteins between DPSCs and

CDPSCs are mostly involved in the regulation of cell proliferation,

differentiation, cell cytoskeleton and motility. In addition, our

results suggested that CDPSCs in dental pulp with deep caries

have a higher level of expression of antioxidative proteins that may

protect CDPSCs from oxidative stress. Further studies are

warranted to elucidate the role of potential candidate proteins

that may favor dental tissue regeneration.
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