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Abstract

Background: Discovery of Eocene non-marine vertebrates, including crocodylians, turtles, bony fishes, and mammals in
Canada’s High Arctic was a critical paleontological contribution of the last century because it indicated that this region of
the Arctic had been mild, temperate, and ice-free during the early – middle Eocene (,53–50 Ma), despite being well above
the Arctic Circle. To date, these discoveries have been restricted to Canada’s easternmost Arctic – Ellesmere and Axel
Heiberg Islands (Nunavut). Although temporally correlative strata crop out over 1,000 km west, on Canada’s westernmost
Arctic Island – Banks Island, Northwest Territories – they have been interpreted as predominantly marine. We document the
first Eocene bony fish and crocodyliform fossils from Banks Island.

Principal Findings: We describe fossils of bony fishes, including lepisosteid (Atractosteus), esocid (pike), and amiid, and a
crocodyliform, from lower – middle Eocene strata of the Cyclic Member, Eureka Sound Formation within Aulavik National
Park (,76uN. paleolat.). Palynology suggests the sediments are late early to middle Eocene in age, and likely spanned the
Early Eocene Climatic Optimum (EECO).

Conclusions/Significance: These fossils extend the geographic range of Eocene Arctic lepisosteids, esocids, amiids, and
crocodyliforms west by approximately 40u of longitude or ,1100 km. The low diversity bony fish fauna, at least at the
family level, is essentially identical on Ellesmere and Banks Islands, suggesting a pan-High Arctic bony fish fauna of relatively
basal groups around the margin of the Eocene Arctic Ocean. From a paleoclimatic perspective, presence of a crocodyliform,
gar and amiid fishes on northern Banks provides further evidence that mild, year-round temperatures extended across the
Canadian Arctic during early – middle Eocene time. Additionally, the Banks Island crocodyliform is consistent with the
phylogenetic hypothesis of a Paleogene divergence time between the two extant alligatorid lineages Alligator
mississippiensis and A. sinensis, and high-latitude dispersal across Beringia.
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Introduction

Discovery of Eocene vertebrates, including alligators, turtles,

fishes, and mammals, on Ellesmere and Axel Heiberg Islands in

Canada’s eastern High Arctic [1], [2], [3] (Figure 1) was a critical

paleontological contribution of the last century, as it indicated that

this region of the Arctic had been mild, temperate, and ice-free

during the early – middle Eocene (,53–50 Ma), despite its

location at ,76–77uN. paleolatitude [4]. Eocene vertebrate-

bearing strata of the Eureka Sound Group crop out on islands

across the Canadian Arctic; however, to date, discoveries of

Eocene non-marine vertebrates are limited to Ellesmere and Axel

Heiberg Islands. On Banks Island – Canada’s westernmost Arctic

Island – Eureka Sound strata are exposed extensively across

northwestern parts of the island [5], but the paleoenvironment is

interpreted as predominantly shallow marine, based upon

abundant shark teeth [6], the trace fossil Ophiomorpha, marine

microfossils, and the sedimentology [5]. Here, we describe the first

Eocene non-marine vertebrates from northern Banks Island. Rare

fossils of bony fishes, including the lepisosteid (gar) Atractosteus, an

esocid (pike), and an amiid (bowfin), as well as a single vertebra of

a crocodyliform were discovered in lower – middle Eocene strata

of the Cyclic Member, Eureka Sound Formation near Eames

River within Aulavik National Park (,76uN. paleolatitude). These

fossils extend the known geographic ranges of Eocene Arctic

lepisosteids, esocids, amiids, and crocodyliforms west by ,40u of

longitude or ,1100 km [7]. Additionally, they provide a glimpse

into the early – middle Eocene vertebrate fauna from Canada’s

western Arctic, hitherto known only from isolated sharks’ teeth [6].

The shark fauna is being described elsewhere.

To date, the majority of paleoclimatic data for the Eocene

Arctic has come from eastern Arctic localities [8] and a single
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locality on Lomonosov Ridge in the central Arctic Ocean [9],

[10]. By analogy with living crocodylians [11], the occurrence of a

crocodyliform fossil on northern Banks implies that a regionally

mild, temperate climate extended across the Canadian Arctic

during early – middle Eocene time. Further paleoenvironmental,

biogeographic, and phylogenetic implications are discussed below.

Geologic Setting and Age

The fossils were recovered alongside hundreds of shark teeth

from CMN localities BKS04-16 and BKS04-19 in Eocene strata

near Eames River, within the boundaries of Aulavik National Park

on northern Banks Island, NWT, Canada (,N 74u 109; W 120u
45–469; Fig. 1). Because the locality is within the boundaries of a

national park, we are not able to provide more precise coordinates

in this paper. Qualified researchers should contact the Canadian

Museum of Nature (CMN) in Ottawa, ON, Canada, to request the

exact coordinates.

The Eocene bony fish and crocodyliform localities on northern

Banks occur in strata initially mapped as the Cyclic Member of the

Eureka Sound Formation [5], [12]. Subsequently, these strata

were re-assigned to the Margaret Formation of the Eureka Sound

Group, and inferred to be correlative with Eocene, terrestrial

vertebrate-bearing strata of the Margaret Formation on Ellesmere

and Axel Heiberg Islands over 1,000 km away in Canada’s eastern

High Arctic [13], [14]. However, given the enormous distance

from the type section of the Margaret Formation (at Strand Fiord

on southern Axel Heiberg Island) [13], the variable lithology of the

Eureka Sound Group across the Arctic, and deposition in multiple

isolated basins separated by upwarps [13], the Eocene vertebrate-

bearing sediments in Banks Basin on northern Banks Island are

here left as the Cyclic Member. There are environmental

differences that are consistent with taking this approach, namely

that the Margaret Formation in the eastern Arctic is predomi-

nantly non-marine, producing palynomorphs and a terrestrial

vertebrate fauna, while the Cyclic Member on northern Banks

Island comprises coarsening-upward cycles of shale, silt, uncon-

solidated sand, paleosol, and lignitic coal that are interpreted as a

deltaic sequence in a marginal marine setting [5]. At multiple

localities, the Cyclic Member preserves abundant shark teeth,

bivalves, and the trace fossil Ophiomorpha, interpreted as the burrow

of a thalassinidean shrimp and generally indicative of shallow-

water, moderately high energy, coastal marine environments [15].

Figure 1. Map of Arctic Canada showing location of Eocene crocodyliform locality on northern Banks Island, NWT (inset). Stars on
Ellesmere and Axel Heiberg Islands mark localities from which Eocene crocodylian and bony fish fossils were reported prior to this report [3]. Artwork
by L. McConnaughey.
doi:10.1371/journal.pone.0096079.g001
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Marine microfossils (foraminiferans and radiolarians) also are

documented from the Cyclic Member [5].

The bony fish and crocodyliform fossils were recovered as float

on unconsolidated sands in the Cyclic Member, a facies

interpreted as distributary mouth bar deposits in the delta-front

area [5]. Dry-screening of localities led to the recovery of

additional smaller shark teeth, but did not turn up additional

bony fish or croc material.

The Eocene age for the fossil localities near Eames River is

based upon pollen samples initially analyzed by Hopkins [16,17],

and reported by Miall [5]. Recent re-analysis of four pollen

samples near Eames River (GSC samples C-26411, C-30610, C-

30645, and C-30646) by Sweet [18] suggests that the localities are

late early to middle Eocene in age and likely spanned the Early

Eocene Climatic Optimum (EECO), based largely on overall

species richness as well as abundance of Caryapollenites spp.,

Ericipites, Intratriporopollenites (Tilia), Nyssapollenites sp., and Quercoidites

(oak) pollen. Presence of Pistillipollenites in three of the samples

(absent from the coal of sample C-30646) suggests a probable

minimum age of middle Eocene for the samples, while absence of

Aquilapollenites tumanganicus Bolotnikova and closely allied species,

infrequent occurrences of Momipites spp., and the richness of the

angiosperm component of the assemblages precludes an earliest

Eocene age for the samples [18].

Materials and Methods

The fossils were collected on northern Banks Island in 2004,

2010, and 2012, and permits to conduct paleontological field

research in Aulavik National Park were provided by Parks

Canada, Western Arctic Field Unit. All necessary permits were

obtained for the described study, which complied with all relevant

regulations. The fossils from Banks Island are curated at the

Canadian Museum of Nature (CMN) in Ottawa, ON, and are on

loan to the University of Colorado Museum of Natural History

(UCM) for study. Identifications were made based upon compar-

ison with specimens held in collections at the UCM, the University

of California Museum of Paleontology (UCMP) in Berkeley, CA,

and with published descriptions and images. Terminology used to

describe the crocodyliform vertebra follows Romer [19], and for

gar and amiid specimens follows Grande [20] and Grande and

Bemis [21], respectively. Although additional bony fish material

(isolated teeth and centra) was recovered from Banks Island, it

could not be referred to familial level, and therefore we did not

include these non-diagnostic specimens.

Systematic Paleontology

Actinopterygii Cope, 1887

Ginglymodi Cope, 1872

Lepisosteiformes Hay, 1929

Lepisosteidae Cuvier, 1825

Atractosteus Rafinesque, 1820
Referred Specimen. CMNFV 56070, lateral line scale,

Fig. 2a, b.
Locality and Horizon. CMN Loc. BKS04-16, N 74u 109; W

120u 459; Eames River, Aulavik National Park, northern Banks

Island, NWT; Cyclic Member, Eureka Sound Formation (early –

middle Eocene).
Description. CMNFV 56070 is a complete lateral line scale

and readily identifiable as a gar (Fig. 2a, b). The specimen

measures 1869 mm, and has the characteristic elongate rhombic

(diamond) shape of a gar scale, with a thickened bony base and an

outer surface mostly covered with ganoin that bears several dozen

regularly-spaced shallow perforations. The edges of the ganoin

bear a relatively fine ornament of slightly serrated scalloping. The

medial (inner) surface exhibits a well-formed canal, partially

encased in the bony base of the scale, for carrying the

mechanosensory lateral line through the scale.

The scale has a long, narrow, anteriorly-projecting anterodorsal

process, which is a part of the scale that is overlapped by its

neighbor, and therefore contributes to the rigidity of the

interlocking scale cover in gars. The dorsal peg is, however, little

more than a very low bump along the dorsal edge of the scale, just

posterior to the base of the anterodrosal process. Grande [20]

hypothesized that the absence of a prominent dorsal peg was a

feature that may be diagnostic for gars in the genus Atractosteus, as

opposed to its sister-genus Lepisosteus in which the scales typically

have more prominent dorsal pegs. For this reason, as well as the

close similarity in overall shape and proportions of the Banks

Island scale to those of Atractosteus spp. illustrated by Grande [20],

we assign the Banks Island scale to Atractosteus.

?Amiiformes Hay, 1929

?Amiidae Bonaparte, 1838

Referred Specimen. CMNFV 56069, vertebral centrum,

Fig. 2c.

Locality and Horizon. CMN Loc. BKS04-19, N 74u 109; W

120u 469; Eames River, Aulavik National Park, northern Banks

Island, NWT; Cyclic Member, Eureka Sound Formation (early –

middle Eocene).

Description. CMNFV 56069 is a single nearly complete

centrum, most likely from the mid-abdominal region and past the

middle of the body, based on the relatively closely-spaced and

ventrally directed parapophyses (Fig. 2c). The centrum is

amphicoelous and slightly higher dorsoventrally (9.5–10 mm) than

it is wide (8.5–9.0 mm), and varies from 4 to 5 mm in length,

being slightly longer along its dorsal edge. The articular surfaces

are rather shallowly concave, and the centrum overall has a

simple, almost shark centrum-like appearance.

The bases of the neural arches are closely spaced and appear to

be fused to the dorsal margin of the centrum. The larger, more

prominent parapophyses ( = the lateral components of the

basiventral elements in the abdominal region, sensu Grande and

Bemis [21]) are slightly more widely separated and project nearly

straight ventrally, with only a hint of lateral divergence, which, as

mentioned above, implies that this centrum is from a relatively

posterior but still abdominal position in the vertebral column, and

anterior to the caudal or ural centra.

While we cannot definitively rule out other possibilities, we note

that this centrum has several features consistent with our

determination that it is likely from an amiid. These include the

overall proportions of the centrum (a relatively short length vs.

diameter), the fact that it is perichordally ossified and amphicoe-

lous with shallowly concave articular surfaces, the comparable

shape and position of the parapophyses relative to those on

posterior abdominal centra of amiids [21], the slightly pitted but

otherwise relatively smooth external surface of the centrum, and

the simple construction of the centrum without complexly

elaborated features that are typical of centra from ‘higher’

actinopterygians. Finally, the centrum is bony, not calcified

cartilage as it would be if it were from a shark, and amphicoelous,

not opisthocoelous as it would be if it derived from a gar.

Teleostei sensu Patterson and Rosen 1977

Esocidae Cuvier, 1817

Referred Specimen. CMNFV 56071, 11 isolated teleost

scales, one shown in Fig. 2d.

Locality and Horizon. CMN Loc. BKS04-19, N 74u 109; W

120u 469; Eames River, Aulavik National Park, northern Banks

Eocene Arctic Bony Fishes and Crocodyliforms
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Island, NWT; Cyclic Member, Eureka Sound Formation (early –

middle Eocene).

Description. Eleven isolated teleost scales were recovered

from 2012 fieldwork on northern Banks Island, all preserved in

small siderite concretions. The clearest and best-preserved of these

is figured here (Fig. 2d) and represents Esocidae (the family that

includes pikes, pickerels, and muskellunges). Scale morphological

terminology follows Patterson et al. [22]. The scale is cycloid and

slightly longer craniocaudally than high dorsoventrally, measuring

17 mm by 14–15 mm. The lateral surface is exposed on the

siderite concretion, and exhibits very fine concentric circuli that

follow the contour of the outer margin of the scale. There is

variation in the appearance of the circuli, suggesting that the more

distinctly visible bands may be annuli that reflect seasonal

differentiation in growth and growth checks. The anterior mid-

region of the scale has a demarcated anterior field portion that

forms an elongate cone-shaped area set off by two distinct angled

radii that reach the anterior margin of the scale; this field extends

out from the center of formation (focus) of the scale, broadening

towards the anterior border of the scale, and it is subdivided into

two narrower regions within the anterior field by another, more

medially positioned radii. The distinctive appearance of this scale

very closely matches scales of extant esocids, including the

Northern Pike Esox lucius [23].

Crocodyliformes Hay, 1930

Eusuchia Huxley, 1875

Referred Specimen. CMNFV 56059, incomplete vertebra,

Fig. 3.

Locality and Horizon. CMN Loc. BKS04-19, N 74u 109; W

120u 469; Eames River, Aulavik National Park, northern Banks

Island, NWT; Cyclic Member, Eureka Sound Formation (early –

middle Eocene).

Figure 2. Fossils of Eocene bony fishes from northern Banks Island, NWT. CMNFV 56070, lateral line scale of Atractosteus from CMN Loc.
BKS04-16, in medial (A) and lateral (B) views. (C) CMNFV 56069, vertebral centrum of ?Amiid. (D) CMNFV 56071, Esocid scale. C and D are from CMN
Loc. BKS04-19.
doi:10.1371/journal.pone.0096079.g002
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Description. CMNFV 56059 is a small procoelous vertebral

centrum whose neural arch is no longer preserved

(Length = 12.1 mm; Anterior width = 9.14 mm). The centrum

bears a short hypapophysis on its anteroventral surface. The

anterolateral surfaces are damaged on both sides, but the centrum

flares anteriorly in dorsal and ventral view (Fig. 3), which indicates

that parapophyses were present on the centrum adjacent to the

neurocentral suture.

Because of the shortness of the hypapophysis and inferred

presence of a parapophysis on the centrum, we interpret CMNFV

56059 as coming from the posterior cervical part of the vertebral

column. Although not preserved, the parapophysis was adjacent,

or nearly so, to the neurocentral suture. The crocodyliform

parapophysis is widely separated from the neural arch in the

anteriormost cervical vertebrae except for the atlas, and it

gradually adopts a more dorsal position on the centrum surface

until, as one approaches the cervicodorsal transition, it straddles

the neurocentral suture. More anteriorly located cervical vertebrae

also have longer hypapophyses.

The size of CMNFV 56059 indicates a small animal, and the

vertebra compares in size with anterior dorsals on a 2-ft long A.

mississippiensis skeleton (UCM PTC-47). In extant crocodylians,

closure of the neurocentral sutures in the vertebral column follows

a caudal to cranial sequence during ontogeny, with the sutures of

most caudal vertebrae closed at hatching while closure of the

cervicals occurs near the end of ontogeny [24]. That the

neurocentral suture surface is exposed on CMNFV 56059

(Fig. 3b) indicates that the neurocentral suture was not closed.

The sutural surface, however, is very rugose. Together, these

indicate an animal that was immature, but possibly approaching

maturity.

Procoelous vertebrae occur in several crocodyliform lineages. In

most, including some putative basal eusuchians, the anterior socket

is shallow and the posterior cotyle is not very prominent [25], [26],

[27], [28], [29], [30]. A deep socket and prominent hemispherical

cotyle is most characteristic of Crocodylia and its closest relatives

[31]. Because all known non-marine crocodyliforms from the

Paleogene of North America are crocodylians, we expect more

complete material from this locality to put CMNFV 56059 within

Crocodylia.

Although posterior cervical and anterior crocodylian dorsal

vertebrae are typically not diagnostic to family, it seems probable

that CMNFV 56059 belonged to an alligatorid. Most Paleogene

alligatorids were small animals between 2 and 3 m in length.

Alligatorids are also more cold-tolerant than other crocodylians

[32], [33] and more likely to occur at high latitudes. Further,

alligatorid fossils referred to Allognathosuchus are relatively abundant

at early Eocene localities on Ellesmere Island, known from dozens

of teeth and osteoderms as well as jaws and an incomplete skull,

whereas no other crocodyliform taxa are known from the Arctic

[3], [8].

Discussion

Based largely on paleoclimate proxy data from the eastern and

central Arctic, early – middle Eocene Arctic climate in this region

has been characterized as having warm, wet summers and mild

winters [9], [10], [34], [35] [36]. High-resolution carbon isotope

analysis across tree rings in mummified wood from Muskox River

on northern Banks Island (,50 km south of the Eames River

locality) and Stenkul Fiord on southern Ellesmere Island allow the

reconstruction of seasonal precipitation patterns in the Eocene

Arctic [37]. Incorporation of intra-ring d13C values into a model

based upon extant evergreen taxa [38] suggest that evergreen trees

growing in the Eocene Arctic forests experienced three times more

precipitation during summer than winter, a seasonal pattern

analogous to today’s temperate forests in eastern Asia [37].

The discovery at Eames River of a fossil from an immature

crocodyliform, alongside rare turtle shell fragments (too small to be

Figure 3. CMNFV 56059, vertebral centrum of an Eocene
crocodyliform from CMN Loc. BKS04-19 on northern Banks
Island, NWT. (A) Left lateral view; (B) dorsal view; (C) ventral view. h,
hypapophysis; ncs, neurocentral sutural surface; pc, posterior cotyle.
Scale bar equals 5 mm.
doi:10.1371/journal.pone.0096079.g003
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identified to family), indicates that mild temperatures extended

across the Arctic during early – middle Eocene time. Specifically,

based upon analogy with the geographic range and climatic

preferences of living crocodylians [11], the Banks Island crocodyli-

form infers above-freezing, year-round temperatures. This is

further reinforced by the presence of gars, which are associated

with mild temperate to warm conditions, and are today restricted

to freshwater environments in the southeastern USA, Central

America, and Cuba [20].

Given their rarity among thousands of shark teeth, the

crocodyliform and turtle fossils probably were washed into the

coastal delta from fully freshwater upriver habitats. While this is

also a plausible explanation for the paucity of lepisosteids, amiids,

and esocids, it should be noted that gars, including the extant

species Atractosteus spatula, are known to tolerate brackish coastal

environments [20], and the extant Northern Pike Esox lucius enters

brackish coastal wetland environments in the Baltic Sea, where it is

anadromous [39]. Therefore, caution is required with bony fishes

in this regard because salinity and overall environmental

conditions of extant taxa may not always provide an accurate

guide to the tolerances of their relatives in the fossil record.

Previous work from the Eocene Canadian Arctic, summarized

in Eberle and Greenwood [8] and Estes and Hutchison [3],

identified gars (cf. Lepisosteus sp.), amiids (Cyclurus fragosa and Amia

cf. A. pattersoni), and esocids (cf. Esox sp.) on Ellesmere, which

means that, at least to the family level, the low-diversity bony fish

faunas of Ellesmere and Banks islands, separated by some 40

degrees of longitude and over 1,000 km, are essentially identical.

This suggests a pan-High Arctic bony fish fauna of relatively basal

groups that extended around the margin of the Eocene Arctic

Ocean, inhabiting freshwater and perhaps low salinity marginal

marine settings during the EECO. This family-level biogeographic

hypothesis could be further refined if additional fish specimens are

recovered that are identifiable to a finer taxonomic level, but at

present our suggestion of a low-diversity, pan-High Arctic pattern

in bony fishes is consistent with our current understanding of the

Banks Island and comparable Arctic Eocene faunas. Along with

the Banks and Ellesmere island occurrences, there is a relevant

High Arctic fossil amiid record from the Svalbard Archipelago –

Pseudamiatus heintzi (Lehman, 1951) [40], a partially articulated

specimen collected at 78uN on the west coast of Spitsbergen. The

specimen was recovered from a similar deltaic depositional

environment as the Banks material, so it is uncertain whether

the fish inhabited a marine, brackish, or freshwater environment.

Pseudamiatus was first described as Eocene [40], but more recently

the Firkanten Formation from which it derives has been re-

interpreted as lower Paleocene (Danian) [41,21].

The survivors, in an Arctic context, of this Eocene High Arctic

grouping are the esocids, today represented by the Northern Pike,

Esox lucius, which is circumglobal in Holarctic freshwater

environments as high as 74u N [42]. In contrast, the ranges of

gars and bowfins have retracted since the Eocene into their

present-day lower-latitude and environmentally more mild distri-

butions.

Arctic crocodylians could resolve several longstanding biogeo-

graphic questions, including the biogeographic origins of Asian

alligatorids. There are two living species of Alligator – one in North

America (the American alligator, Alligator mississippiensis) and

another in China (the critically endangered Chinese alligator, A.

sinensis). Because alligators are intolerant of salt water [43], a non-

marine dispersal corridor, such as Beringia, probably explains the

presence of an otherwise North American clade in eastern Asia

[44], [45], [46]. Fossil evidence puts the minimum divergence time

between the two lineages in the early Miocene [47], but high-

latitude dispersal routes would not have been within crocodylian

thermal preferences at that time [11]. Molecular data generally

put the mississippiensis-sinensis split in the Paleogene [48], [49], [50],

when climatic conditions were more favorable for high-latitude

alligatorids, and presence of a crocodyliform (and probable

alligatorid) in Canada’s western Arctic is consistent with this

hypothesis.

A longstanding biogeographic question regards the origin of

Asian alligatorids. Phylogenetic analyses thus far have rejected a

close relationship between Paleogene alligatorids and either living

species of Alligator [44], [45], [46], [51], but if the mississippiensis-

sinensis split occurred in the Paleogene and followed a Beringian

route to Asia, we would predict the discovery of Arctic fossils

within crown Alligator. Further field research in the region may

uncover more diagnostic material that can resolve this biogeo-

graphic question.
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