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Abstract

Targeted resequencing by massively parallel sequencing has become an effective and affordable way to survey small to
large portions of the genome for genetic variation. Despite the rapid development in open source software for analysis of
such data, the practical implementation of these tools through construction of sequencing analysis pipelines still remains a
challenging and laborious activity, and a major hurdle for many small research and clinical laboratories. We developed
TREVA (Targeted REsequencing Virtual Appliance), making pre-built pipelines immediately available as a virtual appliance.
Based on virtual machine technologies, TREVA is a solution for rapid and efficient deployment of complex bioinformatics
pipelines to laboratories of all sizes, enabling reproducible results. The analyses that are supported in TREVA include:
somatic and germline single-nucleotide and insertion/deletion variant calling, copy number analysis, and cohort-based
analyses such as pathway and significantly mutated genes analyses. TREVA is flexible and easy to use, and can be
customised by Linux-based extensions if required. TREVA can also be deployed on the cloud (cloud computing), enabling
instant access without investment overheads for additional hardware. TREVA is available at http://bioinformatics.petermac.
org/treva/.
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Introduction

Targeted resequencing (TR) by massively parallel sequencing,

which includes whole-exome sequencing (WES), is a well-

established and cost-effective means to analyse specific regions of

a genome. Previous studies on genetic diversity (e.g. the 1000

genomes project [1]) and on human diseases [2–4] have benefited

greatly from this sequencing technology. Moreover, with reducing

costs of sequencing, TR technologies are becoming an increasingly

attractive and feasible option for smaller research groups and

clinical laboratories to undertake sequencing projects. Coupled

with the popularity of TR is the deluge of bioinformatics tools that

have been developed to analyse sequence data, with over 570 tools

published within a span of only 2 years [5]. These methods
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include: FastQC (http://www.bioinformatics.bbsrc.ac.uk/

projects/fastqc) and htSeqTools [6] for assessing the quality of

short-read data; BWA [7] and Bowtie2 [8] for sequence

alignment; MuTect [9] and GATK [10] for detecting single-

nucleotide variations; CONTRA [11] and ExomeCNV [12] for

identifying copy number aberrations; Genome MuSiC [13] and

MutSig (https://confluence.broadinstitute.org/display/

CGATools/MutSig) for conducting pathway analysis; and,

TREAT [14] and VarSifter [15] for annotation and visualization.

Some of these methods are specifically tailored to TR data (e.g.

CONTRA, ExomeCNV and TREAT), while others are also

applicable to sequence data generated by other technologies.

Many of these tools are constantly being improved and updated,

with new versions released on a frequent basis (e.g. BWA and

GATK).

Despite the large number of tools, the bottleneck in a typical

sequencing project remains in the bioinformatics analysis phase

due to lack of access to informatics expertise. This is especially the

case when a more complex approach that combines multiple tools

is required to generate meaningful results for a given study.

Without the ability to effectively analyse data, TR technologies are

largely under-utilised by many laboratories.

While the larger institutes or laboratories have invested in

building data analysis pipelines, many of these pipelines are not

transferrable to other labs due to an obfuscated set of dependen-

cies, operating system (OS) incompatibility or porting issues, as

well as hardware incompatibility. It is critical that these factors be

addressed when developing and distributing a robust pipeline for

TR data analysis to ensure that it can be easily adopted by a wide

range of researchers or clinicians.

Therefore, rather than conventionally packaging and distribut-

ing our pipelines as independent executables/packages/scripts

(with ports to different operating systems), we have utilised the

concept of a Virtual Machine (VM) to distribute our pipelines in

their native OS, alleviating the need to configure and manage both

hardware and software dependencies and requirements. The use

of a VM to package a complex bioinformatics pipeline is becoming

an increasingly attractive alternative to distribute analysis methods

that are easily reproduced between laboratories. Our proposed

VM, referred to as TREVA (Target REsequencing Virtual

Appliance), enables small laboratories and research groups to

tap into the vast potential of TR technologies by providing

streamlined and rigorously tested pipelines in a convenient and

easy-to-use form. We have included a primary and secondary

analysis pipeline in TREVA to explore and investigate variations

in individual as well as related groups of samples. Both pipelines

have been tested and used for the analysis of cancer genomes

(published studies include [2,16–18]), and are generally applicable

to any human and mouse TR projects. As such, TREVA can also

be used as a backbone to build more complex or specialised

pipelines.

Analysis Pipelines for Targeted Resequencing Data
An analysis pipeline in the context of bioinformatics refers to a

modular set of tools that are arranged in series, enabling the

automation of complex analyses to be conducted on sequence

data. Streamlined bioinformatics pipelines for TR/WES are

essential since most of these projects involve a constantly changing

group of samples, where extra samples can become available for

unforeseen reasons, existing samples can become unusable due to

technical reasons, and clinical annotation data can be changed or

added depending on pathology reviews. Any change would require

a re-run of the entire analysis; a well-established pipeline can

facilitate data restructuring and reanalyses, and help to avoid

repetitive programming.

Although many tools and independent analysis methods are

currently available, the development of a pipeline that makes use

of these tools/methods is still faced with a large number of

challenges. These challenges can be broadly classified into 3

primary areas: design, implementation and bioinformatics exper-

tise.

1. Pipeline design. A typical TR analysis pipeline includes

modules that call and interpret single-nucleotide variants (SNVs),

short insertion-deletions (INDELs) and exon-level copy number

variants (CNVs) for individual samples; and finds significantly

mutated genes and pathways among cohorts of samples. The

design of each analysis module involves the identification of

candidate methods or software packages, which then require

testing and evaluation using representative datasets. This is a non-

trivial task given the large number of software tools that are

publicly available [19]. Similar concerns exist for selecting the

correct annotation databases and visualization tools.

2. Pipeline implementation. An extensive, and often

prohibitive, amount of time and effort is required to create a

ready-to-use pipeline. The laborious tasks during implementation

include, but are not limited to, installation and configuration of the

various analysis packages, parameter tuning, performance optimi-

sation, input/output interfacing, debugging, and streamlining

[20].

3. Bioinformatics expertise. A broad range of highly

specialised skills is required to put together an effective and

efficient analysis pipeline. From a computational standpoint,

special attention needs to be placed on the management of data

storage and compute units due to the high-volume of data

generated by TR technologies. Operating systems also need to be

administered in a way that optimizes efficiency for the bioinfor-

matics algorithms, since they often perform intensive input/output

(I/O) operations. From an informatics perspective, a good

knowledge of the analysis algorithms is required in order to

maintain information integrity. Genomics and biological insights

are also critical to the design of a pipeline. These specialised

requirements greatly limit the analysis capability of many

laboratories [21], especially the smaller clinical laboratories [22].

To tackle some of these challenges, there have been efforts to

develop frameworks upon which components of the pipelines can

be customised and workflows be defined; examples of these include

Taverna [23], Galaxy [24] and Ruffus [25]. However, the

implementation and maintenance of these ‘‘frameworks’’ them-

selves require strong bioinformatics and programming expertise,

and users will still face the challenges of pipeline design problem

since the frameworks only serve as a blank canvas. Other efforts

such as Atlas2 Suite [22] and WEP [26] were designed specifically

for whole-exome data. However, they either require strong

programming expertise (Atlas2) or require upload to external

web servers which associate with storage, bandwidth and security

concerns (WEP). Checklist S1 provides a comparison of the

features of various pipeline solutions.

As the field of genomics research continues to change rapidly,

the time that is available to design and implement a pipeline is

very limited for any given analysis problem. Consequently,

sophisticated pipelines are often only realized by large sequencing

centres, and generally their automated architectures cannot be

scaled down or replicated in small to medium sized laboratories or

sequencing centres [27].

TREVA: A Virtual Appliance for Sequence Data Analysis
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The Benefits of a Virtual Appliance
Virtual image technologies (VTs) have been widely adopted in

the IT community, and are increasingly gaining popularity. There

are several commonly used virtual machines that are free for non-

commercial use, such as VMware Player or Oracle VM VirtualBox.

Virtual appliances are ready-to-use, application-focused images

built on VTs. They come with a full operating system (OS) and all

necessary components pre-configured in the images. Virtual

applicances eliminate the need for setting up, testing, debugging,

installing, configuring, streamlining, porting to an OS and etc,

thereby ultimately minimising the need for specialised computing

support. As an example, BitNami (http://bitnami.org/) is an

organisation that has made various virtual appliances available in

the fields of ecommerce and software project management.

The speed of deployment and efficient maintenance are key

drivers of the success of virtual appliances. We see the same needs

in bioinformatics, where applications are generally obfuscated in

complex layers of dependencies. In a recent publication [28], the

use of virtual machines in the context of next-generation

sequencing was also discussed and recommended.

By offering our TR/WES analysis pipelines as part of a virtual

appliance, users are able to bypass the need for any further setup

and can start using the pipelines immediately. Our pipelines are

derived from a cancer research centre and can handle a range of

data types that are commonly encountered in human disease

research. Moreover, packaging our pipelines in a virtual appliance

will enable all laboratories, regardless of budget or size, to have

access to sophisticated bioinformatics pipelines. Additional knowl-

edge is not required to deploy a virtual appliance (as is the case

with Galaxy), and if desired, computer scientists/bioinformaticians

can readily extend and build upon the default pipelines through

the Linux environment installed in the virtual appliance.

Results: TREVA – a Targeted REsequencing Virtual
Appliance

The pipelines within TREVA are packaged within a fully

installed Linux operating system (Ubuntu Luid) on a virtual hard-

disk, with all software dependencies already configured. TREVA

can be launched on any host platform, and is independent of the

software and hardware requirements of the constituent methods in

the pipelines. TREVA images are available for download at

http://bioinformatics.petermac.org/treva/.

Analysis Pipelines Included in TREVA
TREVA pipelines cover the detection of genomic variations that

are related (but not limited) to cancer studies. We provide a

primary and a secondary analysis pipeline. The primary pipeline is

used to analyse germline susceptibility or somatic variations

(SNVs/INDELs/CNVs), where each sample is considered inde-

pendently. The secondary pipeline conducts analysis on a cohort

of samples taking into consideration any relationships between the

samples that are based on predefined clinical or biological

grouping of the samples, such as cancer subtype. These pipelines

can be run on TR and WES data for human and mouse genomes.

Primary analysis pipeline for individual samples. The

primary pipeline is outlined in Figure 1. Raw reads (fastq files) are

first quality checked with FastQC. Reads that do not pass QC for

base qualities are then trimmed using cutadapt [29]. If sequencing

adaptors or primers are detected, they are also removed using

cutadapt. Filtered reads are then aligned to the appropriate

reference genome using BWA [7] and duplicate reads marked

using Picard (http://picard.sourceforge.net/). For detection of

somatic variants the tumour and normal BAM files are then

merged so that GATK INDEL realignment [30] can be

performed on both together as per GATK’s best practice

recommendations (http://www.broadinstitute.org/gatk/guide/

topic?name= best-practices). Base qualities are recalibrated using

GATK to correct for inaccurate base qualities [30] to generate the

BAM file ready for variant calling.

To identify somatic SNVs and INDELs we use the MuTect [9]

and GATK’s Somatic Indel Detector [30] programs, respectively,

developed at the Broad Institute. We also use GATK’s Unified

Genotyper as a secondary variant caller to assist in identifying true

positive somatic variant calls and reducing false positive calls, as

we have found a high validation rate for the variants called by both

MuTect and GATK. The identified SNVs and INDELs are then

combined into a single file and annotated using the Ensembl

database. The annotation makes use of a local copy of the

Ensembl database and a customised version of Ensembl Variant

Effect Predictor [31] (both included with TREVA) to add

information such as what gene the variant is in, the consequence

of the mutation (nonsynonymous, nonsense, etc.) and information

from databases such as PolyPhen2 [32], SIFT [33], dbSNP [34],

OMIM [35], and COSMIC [36]. We then use CONTRA [11]

and ADTEx (http://adtex.sourceforge.net) to analyse copy

number variations based on the ratio of read coverage between

tumour and normal samples. Custom scripts are used to

supplement the output file with additional information from the

BAM file corresponding to each variant call, such as: the number

of reads that contained the variant, the number of reads that

matched the reference, the variant frequency and whether the

variant was present in reads that mapped to both forward and

reverse strands of the reference (presence on both strands adds

confidence to the variant call). The final output of the pipeline

consists of a single file containing the annotated variants from the

tumour and normal sample.

We use a slightly modified pipeline for calling variants in

germline samples for our projects on familial susceptibility to

cancer (Figure 1). The distinction between these two pipelines is

that only one variant caller is used for germline samples (i.e.

GATK’s Unified Genotyper). For sample groups comprising more

than one member of a family, all samples are run through the

pipeline collectively (i.e. combined into a single BAM file) to

improve identification of INDELs and SNVs shared by family

members.

Secondary analysis pipeline for related groups of

samples. With the lowering cost of TR/WES, experimental

designs involving multiple samples are not only feasible but are

often utilised to increase the power of a study to detect, for

example, driver/recurrent mutations and frequently mutated

genes [37]. As an extension to the primary pipeline, our secondary

pipeline has been designed to conduct the multi-sample analysis by

taking into account any inherent relationships or grouping

between samples based on the study design (Figure 2). These

relationships are defined by the user in a file and are typically

given in terms of clinical annotation. Any additional analysis

parameters are also defined in this file. As such, any component of

the analysis can be flexibly changed from a single point of

reference. This abstraction allows the pipelines to be applied in

many different studies without the need to modify or configure any

part of the pipelines directly. For instance, contrasts can also be

defined between samples if these are of interest.

In the secondary pipeline, the variants called in individual

samples by the primary pipeline are first filtered using criteria

defined by the user to produce a set of highly confident candidate

variants. The output file produced by this step (example available

as Table S1) is used for all downstream processing, and can be

TREVA: A Virtual Appliance for Sequence Data Analysis
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inspected manually if desired. Nucleotide sequence content is also

analysed by first annotating SNVs with flanking nucleotide bases.

Summaries of any changes are reported to assist in the

interpretation of mutational signatures. A well-documented

example of these signatures is the characteristic C to T and CC

to TT mutations in melanoma that are representative of UV

signatures. Genome MuSiC v0.4 is then used to investigate the

presence of significantly mutated pathways, recurrent mutations,

clinical correlations and mutation-relations between genes (such as

mutual exclusivity of BRAF and NRAS mutations in melanoma).

Finally, CNVs that are called by CONTRA and ADTEx are then

analysed for recurrent CNVs using GISTIC 2.0 [38], by first

converting CONTRA/ADTEx output files into the required

GISTIC 2.0 input format.

The TREVA Workflow
Our proposed workflow for analysing TR/WES data has been

designed for ease of use to assist small laboratories in rapidly

setting up and executing analysis pipelines with minimal hands-on

time or bioinformatics expertise.

1. Launching TREVA

1. TREVA can be launched on a local host using publically

available virtual machine software, such as VMware or Oracle

VM VirtualBox. After importing the TREVA image, the user

will need to set up the data directory such that user data can be

seen and processed by the VM. There are no other critical

setup requirements to perform, as all the necessary configura-

tion and management of dependencies has already been done.

2. TREVA can also be launched directly from a cloud provider

without the need to set up the appliance locally on host

machines. In this context, TREVA can be maintained centrally

and has the added benefit of scalable computational resources

and shared access to all researchers within a laboratory. We

have currently made TREVA images available in the

Australia’s NeCTAR cloud (National eResearch Collaboration

Tools and Resources), which is readily accessible by most

Australian academic and research institutes.

2. Setting up input data files. Data files can be made

accessible by TREVA by uploading them to the VM/cloud, or by

mounting an external file-system containing all the relevant files.

Data files can be either BAM files or Illumina HiSeq/MiSeq/GA-

IIx fastq files.

3. Running the primary analysis pipeline for individual

samples. A single command is all that is required to execute

TREVA’s primary variant analysis pipeline. The command takes

Figure 1. Primary analysis pipelines. Red colour highlights the difference between our Somatic Pipeline and Familial (Germline) Pipeline.
doi:10.1371/journal.pone.0095217.g001
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arguments indicating the sample names for the tumour and

normal samples, species (human or mouse), email for progress

notification, number of processors, BED file defining the capture

assay, and other optional parameters. The resulting output file has

Figure 2. The TREVA workflow: execution of primary and secondary pipelines for variant calling on individual and related groups
of samples.
doi:10.1371/journal.pone.0095217.g002
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a total of 50 columns containing variant annotation and sequence

data statistics.

4. Running the secondary analysis pipeline for related

groups of samples. Once the samples have been run through

the primary pipeline, the secondary analysis pipeline can be

executed to analyse the samples in the context of any relationships

between them. The user is first required to define the sample

groups in a tab-delimited file (the form of the analysis can be

conveniently changed by the modifying this file; see example in

Table S2). Once this file is prepared, the entire pipeline can be

executed by a single command. The analyses that follow include

pathway analysis and the identification of significantly mutated

genes, which are performed internally using Genome MuSiC; and

followed by the invocation of scripts to conduct recurrent mutation

analysis and to plot the final results for visualisation (including

publication-quality figures).

5. Running additional utilities included in TREVA

(optional). Additional miscellaneous tools have also been

included to support parallel processing and other routine tasks.

These include a multi-threading controller to manage the

processing of a large set of samples in parallel; a tool to detect

mouse contamination in sequenced xenograft samples; a tool to

conduct motif analysis around single nucleotide variations; a tool

to append symbols corresponding overlapping and nearest genes;

and a tool to extract the corresponding DNA sequence given as a

location in a BED file.

Case Study – Melanoma Mutational Landscape
In a recently published study [16], TREVA was applied to

exome sequence data of 34 fresh frozen primary cutaneous

melanomas and matched peripheral blood, with an aim to

characterise mutations in melanomas and correlate them with

clinico-pathologic features. The entire analysis workflow is

summarised as follows:

1. Exome sequencing data was generated using an Illumina

HiSeq 2000 on 34 fresh frozen melanoma tumours and

matched blood (68 samples in total). Exome capture was

performed using either NimbleGen EzExome V2 or Agilent

SureSelect Exome V2 capture kits.

2. Two gzipped fastq files containing paired short read data were

obtained for each of the 68 samples, and were placed into

directories with names corresponding to the sample identifier.

3. Variant calling pipeline (runSomatic.sh in TREVA) was

applied to each sample. All samples were processed at once

using a batch controller script that comes with TREVA

(cmdqueue) to limit the number of concurrent tasks.

4. A tabular file defining the sample groups and clinical variables

was prepared by the researcher in Excel. Clinical variables in

this study included tumour anatomical site, tumour thickness,

tumour subtype, solar elastosis score, pigmentation scores and

BRAF/NRAS mutation status (known oncogenic drivers in

melanoma).

5. Cohort analysis pipeline (runCohort.py in TREVA) was then

applied on the sample definition file. The script matched up

sample labels with directory names to find the correct output

files from individual samples.

6. A number of results were generated from the cohort pipeline,

including a master spreadsheet of somatic SNVs and INDELs

that pass a bidirectionality filter (variants supported by reads

from both strands), a read depth filter and a consequence filter

(variants with deleterious consequences only). A plot was

generated automatically, capturing mutation rates, mutational

status of key melanoma-associated genes, as well as a

breakdown of variant types (Figure S1). Copy number,

transition/transversion, pathway, and clinical correlation

analyses were all performed as part of the pipeline.

A number of key results of the study were derived from our

automated pipeline. Correlation analysis against clinical annota-

tion led to a few significant findings: The mutation rate in each

melanoma sample was identified and found to vary widely

between tumours, where melanomas arising in severely sun

damaged skin have significantly higher mutation loads than non-

severely sun damaged melanomas. BRAF/NRAS wild-type tu-

mours were also found to have a higher average mutation rate

compared to BRAF/NRAS mutant tumours. Furthermore, transi-

tion/transversion analysis led to a novel finding that tandem CC.

TT/GG.AA mutations (UV damage signature) were more

common in tumours arising in severely sun damaged skin and in

BRAF/NRAS wild-type tumours. Pathway analysis suggested that

potentially actionable mutations in wild-type tumours, including

NF1, KIT and NOTCH1, were spread over various signalling

pathways. Importantly, TREVA has been successful in the

molecular subtyping of melanomas, which may direct novel

therapeutic options for BRAF/NRAS wild-type patients.

Performance. Fastq files of the 34 tumour and the 34

matched blood samples (i.e. 68 whole-exome samples in total) were

processed on a 64-bit Linux with 6 quad cores (24 CPUs) and

128GB RAM. The primary variant calling pipeline was run with a

limit of 6 concurrent analyses (i.e. 12 samples) at any one time

allowing up to 4 threads each. Analyses on all the 68 samples were

completed in 9 days, with the most time-consuming steps being

alignment, INDEL realignment and variant calling. The second-

ary pipeline for cohort analysis was run across all samples in a

single run on 11 clinical variables. All clinical variables are

processed in parallel by default. On the same server, the pipeline

completed in 2 days, with the most time-consuming step being

pathway analysis with Genomic MuSiC.

Discussion: Versioning

Due to rapid evolvement in sequencing technologies and

bioinformatics methods, it is often desirable to keep up-to-date

with the latest release of the software packages that are used in a

pipeline. With VMs, users would have the options to begin with a

stable image, and then update individual packages as they wish.

Installing an update may require updating other parts of the

pipeline when, for example, there is a change in the input

parameters or interface format requirements. In the case when an

update breaks the pipeline, the original image can be easily

restored (another benefit of the VM approach), avoiding update

catastrophes where everything needs to be built from scratch.

Pipeline publishers should provide regular updates to their

virtual images either via patches or brand new images. We are

continually developing, testing and applying our pipelines and new

versions will be made available as they become stable. We

encourage other pipeline developers to publish their pipelines in

the form of a Virtual Machine to enable the community to gain

quick access to complex analyses.

An emerging tool called Vagrant [39,40] is becoming popular in

the software industry for building and configuring VMs with a

focus on automation. We envisage this tool will further increase

the value of using VMs in bioinformatics as it provides a

systematic, lightweight way to update and deploy any analysis

pipeline.
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Conclusion

We have proposed a novel solution to the problem of pipeline

construction for TR/WES data analysis using a virtual appliance

(TREVA), which requires minimal effort on the management and

configuration of the underlying hardware and software systems.

This allows TREVA to be transferrable to multiple laboratories or

research institutions, enabling them to reproducibly run complex

analysis pipelines with ease. TREVA is packaged with two types of

analysis pipelines to cater for the analysis and interpretation of

variations in the human and mouse genome, and to further allow

for comparisons to be made between samples. TREVA is also

streamlined for extension if required, enabling more complex

pipelines to be built upon its original backbone. We envisage that

the distribution of bioinformatics pipelines as virtual machines will

be critical in the current era of big data, cloud computing, cheaper

sequencing, and the need for faster and more efficient analysis of

results.
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