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Abstract

This paper studies a Non-convex State-dependent Linear Quadratic Regulator (NSLQR) problem, in which the control
penalty weighting matrix R in the performance index is state-dependent. A necessary and sufficient condition for the
optimal solution is established with a rigorous proof by Euler-Lagrange Equation. It is found that the optimal solution of the
NSLQR problem can be obtained by solving a Pseudo-Differential-Riccati-Equation (PDRE) simultaneously with the closed-
loop system equation. A Comparison Theorem for the PDRE is given to facilitate solution methods for the PDRE. A linear
time-variant system is employed as an example in simulation to verify the proposed optimal solution. As a non-trivial
application, a goal pursuit process in psychology is modeled as a NSLQR problem and two typical goal pursuit behaviors
found in human and animals are reproduced using different control weighting R(x). It is found that these two behaviors
save control energy and cause less stress over Conventional Control Behavior typified by the LQR control with a constant
control weighting R, in situations where only the goal discrepancy at the terminal time is of concern, such as in Marathon
races and target hitting missions.
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Introduction

1.1 Problem Definition
In this paper, we seek an optimal control law u~k(x,t), for

which the performance index

J(x(t),u(t))~

ðtf

t0

L(x(t),u(t),t)dtzw(x(tf ),tf )

~
1

2

ðtf

t0

(xT (t)Q(t)x(t)zuT (t)R(x(t))u(t))dt

z
1

2
xT (tf )S(tf )x(tf )

ð1Þ

is minimized along the associated closed-loop system trajectory of

the Linear Time-variant (LTV) system

_xx(t)~A(t)x(t)zB(t)u(t) x(t0)~x0 ð2Þ

where u(t)[Rm is the control input, x(t)[Rn is the system state, t0

is the starting time, tf is the terminal time and x0 is the initial value

of x(t) at time t0. The coefficients A(t),Q(t),S(tf )[Rn|n,

B(t)[Rn|m, R(x(t))[Rm|m. To simplify notation, the dependence

of variables on t is omitted when no confusion will be introduced

in the rest of the paper. It is assumed that A, B, Q are continuous

in t, R(x) is differentiable with respect to x, and
LR

Lx
is bounded.

The coefficients Q and S are positive semi-definite symmetric

matrices for all t[½t0,tf �, and R(x) is a positive definite

symmetric matrix for all x(t),t[½t0,tf �. Additional conditions on

R(x) will be imposed in order to obtain the sufficiency for

optimality.

It is noted that when the state-dependent matrix R(x) in Eq (1)

is replaced by a time-dependent matrix R(t), the performance

index J is quadratic and convex in both x and u, and Eq (1) and (2)

constitute the standard Linear Quadratic Regulator (LQR)

problem. The classical LQR theory provides a mature way to

find an optimal control law for such a convex quadratic

performance index. However, the state-dependent coefficient

R(x) in Eq (1) renders the performance index in the problem no

longer convex in both x and u, which makes the LQR theory

inapplicable here. However, the formalism of the LQR theory is

still useful. Therefore, we denote the problem defined above as a

Non-convex State-dependent LQR (NSLQR) problem. The

associated Riccati Equation of the NSLQR problem is named as

Pseudo-Differential-Riccati-Equation (PDRE). In this paper, a

necessary and sufficient condition for the optimal solution of the

defined NSLQR problem is presented, with an additional

condition on R(x), and the optimality of the solution is proven

with Euler-Lagrange Equation. The PDRE is also studied to

obtain the optimal solution and a theorem is given to estimate the

solution of the PDRE.
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1.2 Related Work
A similar problem has been studied in the context of State-

Dependent Riccati Equation (SDRE) control strategy since mid-

90’s. The strategy, proposed by Pearson[1] and expanded by

Wernli and Cook[2], was independently studied by Mracek and

Cloutier[3] in 1998. Friedland[4], Salamci and Gokbilen[5],

Cimen et.al[6,7] also contributed to the existence of solutions as

well as the properties of optimality and stability. In the SDRE

strategy, a nonlinear system is ‘‘factored’’ into the product of the

state vector and the state-dependent matrix-valued function in the

form

_xx(t)~f (x(t))zg(x(t))u(t)~A�(x(t))x(t)zB�(x(t))u(t)

x(t0)~x0

ð3Þ

which is a linear structure having state-dependent coefficients.

Borrowing the LQR theory, the SDRE strategy postulates an

approximately optimal feedback control law as

u(x)~{R�{1(x)B�T (x)P�(x)x(t) ð4Þ

for the performance index

J�~
1

2

ð?
t0

(xT (t)Q�(x)x(t)zuT (t)R�(x)u(t))dt ð5Þ

where P�(x) is the solution of an algebraic Riccati Equation (RE)

as

A�T (x)P�(x)zP�(x)A�(x)

{P�(x)B�(x)R�{1(x)B�T (x)P�(x)zQ�(x)~0
ð6Þ

This strategy has been applied in a wide variety of nonlinear

control applications, such as autopilot design [8,9], integrated

guidance and control design[10], etc.

However, only the necessary condition for optimality has been

studied in the SDRE control strategy, and it cannot always be

established. So the optimality of the control law in the SDRE

control strategy cannot be guaranteed. Since a simplified algebraic

RE is employed to obtain P� instead of a differential RE, the

application of the SDRE control strategy is limited to Slowly

Time-Varying and Weakly State-dependent Systems. Moreover,

even though the SDRE strategy has been used in many

applications, in most cases, the coefficients R� and Q� in the

performance index J� are constant instead of state-dependent, as

shown in its formulation[7].

The NSLQR problem defined in this paper focuses on the state-

dependent R(x) and the time-dependent Q(t) in the performance

index and starts with the LTV systems. The optimality of the

solution is validated by a rigorous proof with Euler-Lagrange

Equation. The solution can be obtained by solving a PDRE

associated with the problem. The work is a special case of the

SDRE control strategy, but with rigorous mathematical proof. It

could be considered as a theoretical support for the SDRE control

strategy.

On another aspect, the solution of the optimal LTV problem is

usually obtained through numerical approximation approaches,

which can be roughly classified into offline and online methods.

The offline method usually pre-computes solutions and stores

them for fast online look-up [11,12]. Since the computation grows

exponentially with the size of the control problem, offline methods

are normally used in small- and medium-size applications. The

most prominent online methods are active set[13] and interior

point method[14]. The method of active set performs well in large-

size cases even though its convergence rate is unknown. For the

interior point method, the reported lower iteration number is

larger than the practically observable number. In Ref. [15] and

[16], a fast gradient method is introduced to help calculating the

lower iteration bound for a quadratic LTV optimal problem with

input constraints. Though the work listed above is mainly about

the optimal problem with a time-dependent R, the formalism is

still applicable when developing the numerical solution for the

defined NSLQR problem.

1.3 Application Background
The NSLQR problem discussed in this paper can be applied to

model a psychological goal pursuit process, as a non-trivial

example.

Psychologists observe that there are two different behaviors

when intelligent creatures pursue a goal. One is the Goal-Gradient

Behavior (GGB) [17–20], in which the control effort to reach a

goal increases monotonically with the proximity to the desired end

state, such as the predator stalking behavior and the deadline

beating behavior. Fig. 1 (a) and (b) give the normalized goal

discrepancy and control effort of the GGB. As it is shown, with a

monotonically increasing control energy, as the goal is approached

the discrepancy reaches zero faster at the end of the process than it

does at the beginning. The other is the Stuck-in-the-Middle

Behavior (SMB) [21], in which the control effort to reach a goal is

high at the beginning of the goal pursuit and when the desired end

state is in sight, but it is maintained at a low level in between, such

as what athletes do in Marathon. Part (c) and (d) in Fig. 1 show

typically the SMB where the goal discrepancy decreases faster at

the two ends than it is in the middle of the goal pursuit process and

the control effort is maintained at a low level in the middle.

Both the GGB and the SMB are different from the Conven-

tional Control Behavior (CCB) found in an engineering control

system, as shown in part (e) and (f) in Fig. 1. For the CCB, the

control effort is proportional to the goal discrepancy, so the effort

decreases with proximity to the desired end. The purpose of this

paper is to study which one pf these three behaviors is the best.

Some computational models of the GGB have been proposed

based on psychological interpretation [22,23]. In this paper, a

single-task goal pursuit process is modeled as a NSLQR problem

and the three behaviors are reproduced for comparison, facilitat-

ing ‘‘a deeper understanding of mathematical characterizations of

principles of adaptive intelligence’’[24] instead of psychological

interpretation.

In the sequel, Section 2 presents the necessary and sufficient

condition for the optimality of the solution to the NSLQR

problem. Section 3 analyzes the solution of a PDRE involved in

the NSLQR problem and presents a Comparison Theorem.

Section 4 verifies the feasibility of the NSLQR theory with a LTV

system and applies the NSLQR to model a goal pursuit process.

The numerical simulation results are presented to demonstrate

that the GGB and SMB save control energy and cause less stress

over the CCB in some applications. Conclusion and Future Work

are presented in Section 5.

Analysis of the Optimality of the Solution

In this section, the main result of this paper is presented: the

necessary and sufficient condition of the optimality of the solution

to the NSLQR problem defined in Eq (1) and (2). Before that, an

Optimality Lemma is introduced first. The Optimality Lemma

The Optimal Solution of a NSLQR Problem and Its Applications
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discusses a more general optimal problem, compared with the

NSLQR problem. To differ from the performance index J in the

NSLQR, we denote the performance index in the Lemma as J 0

with an associated general L0(x(t),u(t),t). The associated aug-

mented performance index is defined as eJ 0J 0 in Eq (10), to

distinguish it from the eJJ in the NSLQR problem. In this paper,

the header ‘‘*’’ indicates the associated augmented performance

index, as presented on Page 379 in Ref [25].

Lemma 1 For the problem of finding an optimal control law u(t), for

which the performance index

J 0(x(t),u(t))~

ðtf

t0

L0(x(t),u(t),t)dtzw0(x(tf ),tf ) ð7Þ

is minimized along the associated closed-loop system trajectory x(t) of the LTV

system (2), with a fixed starting time t0 and terminal time tf , to simplify

notation, define

z(t)~½xT (t),uT (t)�T ð8Þ

f 0(z(t), _zz(t),t)~h0(x(t),u(t), _xx(t), _uu(t),t)

~L0(x(t),u(t),t)zl0(t)T (A(t)x(t)zB(t)u(t){ _xx(t))
ð9Þ

and an augmented performance index as

eJ 0J 0(x(t),u(t))~

ðtf

t0

f 0(z(t), _zz(t),t)dtzw0(x(tf ),tf ) ð10Þ

where l0(t) is the Euler-Lagrange multiplier, with the boundary condition as

Lf 0

L _zz
(z, _zz,t)dzjz~zo,t~tf

{
Lf 0

L _zz
(z, _zz,t)dzjz~zo ,t~t0

z
Lw0

Lxtf

(xtf ,tf )dxtf ~0

ð11Þ

Then the point zo~½(xo)T ,(uo)T �T that satisfies Euler-Lagrange Equation

Lf 0

Lz
(z, _zz,t)jzo~

d

dt
(
Lf 0

L _zz
(z, _zz,t))jzo ð12Þ

Figure 1. Three Different Behaviors: GGB, SMB and CCB.
doi:10.1371/journal.pone.0094925.g001
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is the optimal solution if the augmented performance index eJ 0J 0(x,u) is strictly

convex in , uniformly in u; and strictly convex in , uniformly in x.

Here, the superscript ‘‘o’’ indicates the optimal solution.

Proof 1 It can be proven that eJ 0J 0(x,u) is equivalent to J 0(x,u)in that they

have the same minimizing function, if it exits [25]. With Euler-Lagrange

Equation (12), the variation of eJ 0J 0(x,u) at zo can be written as

deJ 0J 0(xo,uo)~

ðtf

t0

(
Lf 0

Lz
dzz

Lf 0

L _zz
d _zz)jzo dtz

Lw0

Lxtf

(xtf ,tf )dxtf

~

ðtf

t0

(
d

dt

Lf 0

L _zz
(z, _zz,t)dzz

Lf 0

L _zz
(z, _zz,t)d _zz)jzo dt

z
Lw0

Lxtf

(xtf ,tf )dxtf

~

ðtf

t0

d

dt
(
Lf 0

L _zz
(z, _zz,t)dz)jz~zo dtz

Lw0

Lxtf

(xtf ,tf )dxtf

~
Lf 0

L _zz
(z, _zz,t)dzjz~zo,t~tf

{
Lf 0

L _zz
(z, _zz,t)dzjz~zo,t~t0

z
Lw0

Lxtf

(xtf ,tf )dxtf

ð13Þ

To make the point zo be the optimal solution, the variation deJ 0J 0(x,u) is

supposed to be 0 at zo, which leads to Eq (11). However, the point zo

satisfying Eq (11) and (12) can either an extreme point or a saddle point of theeJ 0J 0(x,u). Now we prove that, under the convexity constraint stated in Lemma

1, the point zo is a minimum point by contradiction.

With eJ 0J 0(x,u) being strictly convex in x, uniformly in u, it follows that

xo(t) satisfying Eq (12) is a minimum point of eJ 0J 0(x,u) with respect to x,

uniformly in u. Then we have

eJ 0J 0(x,u)weJ 0J 0(xo,u) ð14Þ

for every u(t),t[½t0,tf � and every x(t)=xo(t). Similarly, we have

eJ 0J 0(x,u)weJ 0J 0(x,uo) ð15Þ

for every x(t),t[½t0,tf � and every u(t)=uo(t).

Assume that the point zo is a maximum point of eJ 0J 0(x,u). Then sinceeJ 0J 0(x,u) is continuous, there exists a x(t)=xo(t), such that

eJ 0J 0(x,uo)ƒeJ 0J 0(xo,uo) ð16Þ

which contradicts Eq (14). Thus zo cannot be a maximum point of eJ 0J 0(x,u).

Now assume that zo is a saddle point of eJ 0J 0(x,u). Then by continuity ofeJ 0J 0(x,u), there must be a z1~½(x1)T ,(u1)T �T=zo and a

z2~½(x2)T ,(u2)T �T=zo such that

eJJ(x1,u1)ƒeJJ(xo,uo)ƒeJJ(x2,u2) ð17Þ

Then with Eq (15), we have

eJJ(x1,uo)ƒeJJ(x1,u1)ƒeJJ(xo,uo) ð18Þ

The equality holds if and only if x1~xo and u1~uo, which contradicts the

defination of z1. The inequality contradicts Eq (14). Thus the point zo cannot

be a saddle point of eJJ 0(x,u) either. Then the point zo must be a minimum point

of eJJ 0(x,u). So the solution (xo,uo) minimizes the performance index J 0 in (7).

From the proof above, it can be said that the classical LQR is a

special case of Lemma 1. In the classical LQR theory, the

sufficiency of the optimality of the solution obtained from Euler-

Lagrange Equation is guaranteed by the convexity of the

augmented performance index eJJ in its arguments (x,u) [25].

However, in the NSLQR, eJJ is no longer convex in (x,u) because

of the state-dependent R(x). The theorem below shows that the

solution of Euler-Lagrange Equation is still optimal for the

NSLQR problem with a constraint on R(x).

Theorem 1 Under the convexity constraint that the function

l(x,u)~uT R(x)u is a strictly convex function in x, uniformly in u, the

state feedback control law

uo(t)~k(xo,t)~{R{1(xo)BT (t)P(t)xo(t) ð19Þ

for the NSLQR problem defined in Eq (1) and (2), and the associated closed-

loop system trajectory xo(t) as

_xxo(t)~½A(t){B(t)R{1(xo)BT (t)P(t)�xo(t) xo(t0)~x0 ð20Þ

minimizes the performance index (1) if and only if the n|n matrix P(t)
satisfies the PDRE as

{ _PP(t)xo(t)~AT (t)P(t)xo(t)zP(t)A(t)xo(t)

{P(t)B(t)R{1(xo)BT (t)P(t)xo(t)

zQ(t)xo(t)zM(xo,uo)

ð21Þ

with

P(tf )~S(tf ) ð22Þ

where the column vector

M(xo,uo)~M(x,u)j(xo,uo)~
1

2

L(uT R(x)u)

Lx
j(xo ,uo) ð23Þ

Here, the explicit x(t) on both sides of the equation can be

eliminated for some sharpened R(x). One example is discussed in

Section 3.

This theorem provides an optimal solution, which is similar to

that of the classical LQR theory, for the NSLQR problem.

However, the PDRE (21) is with an additional term ‘‘M(xo,uo)’’,
compared with the standard Riccati Equation in the LQR theory.

This term comes from the derivative of the state-dependent R(x)
with respect to x in the Euler-Lagrange Equation, as detailed in

Proof 2. Theorem 1 can be proven with Lemma 1 as follows.

Proof 2 To simplify notation, define

f (z(t), _zz(t),t)~h(x(t),u(t), _xx(t), _uu(t),t)

~L(x(t),u(t),t)zl(t)T (A(t)x(t)

zB(t)u(t){ _xx(t))

ð24Þ

The Optimal Solution of a NSLQR Problem and Its Applications
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where

z(t)~½xT (t),uT (t)�T ð25Þ

and l(t) is the Euler-Lagrange multiplier. The admissible directions of z(t)
are denoted as

n(t)~½jT (t),mT (t)�T ð26Þ

with j(t0)~0, j(tf ), m(t0), and m(tf ) being free, since the initial value of

x(t) is fixed. The augmented performance index is

eJJ(x(t),u(t))~

ðtf

t0

f (z(t), _zz(t),t)dtzw(x(tf ),tf ) ð27Þ

Similarly, eJJ(x,u) is equivalent to J(x,u) in that they have the same

minimizing function, if it exits [25]. Now we need to prove that xo(t), uo(t)
defined in Eq (19) and (20) minimizes the augmented performance index (27)

if and only if P(t) satisfies the PDRE (21) and P(tf )~S(tf ).

We start with the necessary condition. From Euler-Lagrange Equation, it is

known that for a point zo~½(xo)T (uo)T � to be an optimal solution, the

necessary condition is

Lf

Lz
(z, _zz,t)jz~zo~

d

dt
(
Lf

L _zz
(z, _zz,t))jz~zo ð28Þ

with a boundary condition, as discussed later. For a state-dependent R(x)

Lf

Lz
(z, _zz,t)jz~zo~½

Lh

Lx
(x,u, _xx, _uu,t),

Lh

Lu
(x,u, _xx, _uu,t)�j(xo,uo)

~½xT (t)Q(t)zlT (t)A(t)z
1

2
(
L(uT R(x)u)

Lx
)T ,

uT (t)R(x)zlT (t)B(t)�j(xo,uo)

ð29Þ

Lf

L _zz
(z, _zz,t)jz~zo~½Lh

L _xx
(x,u, _xx, _uu,t),

Lh

L _uu
(x,u, _xx, _uu,t)�j(xo,uo)

~½{lT (t),0�j(xo,uo)

ð30Þ

To simplify notation, the column vector
1

2

L(uT R(x)u)

Lx
is denoted as M(x,u).

Substituting the two equations above into Eq (28), we have

(xo)T (t)Q(t)zlT (t)A(t)zMT (xo,uo)~{ _llT (t) ð31Þ

(uo)T (t)R(xo)zlT (t)B(t)~0 ð32Þ

which leads to a control law as

uo(t)~{R{1(xo)BT (t)l(t) ð33Þ

with l(t) satisfying

{ _ll(t)~A(t)T l(t)zQ(t)xo(t)zM(xo,uo) ð34Þ

The variation of eJJ(x,u) at the point zo~½(xo)T ,(uo)T �T can be written as

deJJ((xo,uo); (j,m))~

ðtf

t0

(
Lf

Lz
dzz

Lf

L _zz
d _zz)jzo dt

z
Lw(x(tf ),tf )

Lz
jzo dz(tf )

~

ðtf

t0

(½xT (t)Q(t)zlT (t)A(t)zMT (x,t),

uT (t)R(x)zlT (t)B(t)�
j(t)

m(t)

" #

z½{lT (t),0�
_jj(t)

_mm(t)

" #
)j(xo,uo)dt

zxT (tf )S(tf )j(tf )

~

ðtf

t0

(½{ _llT (t),0�
j(t)

m(t)

" #
z½{lT (t),0�

_jj(t)

_mm(t)

" #
)dtzxT (tf )S(tf )j(tf )

~{lT (tf )j(tf )zl(t0)T j(t0)

zxT (tf )S(tf )j(tf )

~(xT (tf )S(tf ){lT (tf ))j(tf )

ð35Þ

To minimize eJJ(x(t),u(t)), we need to achieve deJJ((x,u); (j,m))~0 for all

admissible directions. Since j(t0)~0 and j(tf ) is free, the terminal value of l

needs to satisfy

l(tf )~S(tf )x(tf ) ð36Þ

We choose l(t) such that it is linearly related to x(t) through

l(t)~P(t)x(t). Then the boundary condition Eq (36) becomes

P(tf )~S(tf ) ð37Þ

Substituting the assumption l(t)~P(t)x(t) into Eq (33) and (34), we

obtain a control law as

uo(t)~k(xo,t)~K(t)xo(t)~{R{1(xo)BT (t)P(t)xo(t) ð38Þ

where K(t)~{R{1(xo)BT (t)P(t), with the associated closed-loop system

as

_xxo(t)~½A(t){B(t)R{1(xo)BT (t)P(t)�xo(t) xo(t0)~x0 ð39Þ

where P(t) satisfies

{ _PP(t)xo(t)~AT (t)P(t)xo(t)zP(t)A(t)xo(t)

{P(t)B(t)R{1(xo)BT (t)P(t)xo(t)

zQ(t)xo(t)zM(xo,uo)

ð40Þ

and P(tf )~S(tf ).

The Optimal Solution of a NSLQR Problem and Its Applications
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Now we prove that the solution (xo,uo) from the necessary condition of

optimality also satisfies the sufficiency condition using Lemma 1.

First, it is easy to verify that the solution (xo,uo) in Eq (38) and (39) with

P(tf )~S(tf ) satisfies Eq (11) and (12) in Lemma 1. Now we prove thateJJ(x,u) in Theory 1 is strictly convex in u, uniformly in x. Considering an

arbitrary fixed x, we set j(t)~0, then the variation of eJJ(x,u) in u is

d((x,u); (0,m))~

ðtf

t0

(
L
Lu

mz
L
L _uu

_mm)dt

~

ðtf

t0

(uT R(x)mzlT Bm)dt

ð41Þ

In terms of Eq (41), we have

eJJ((x,u); (0,m)){eJJ(x,u)~(

ðtf

t0

f (zz½0,mT �T , _zzz½0, _mmT �T ,t)

dtzw(x(tf ),tf )){(

ðtf

t0

f (z, _zz,t)dt

zw(x(tf ),tf ))

~

ðtf

t0

(f (zz½0,mT �T , _zzz½0, _mmT �T ,t)

{f (z, _zz,t))dt

~

ðtf

t0

(L(x,uzm,t){L(x,u,t)

zlT Bm)dt

~

ðtf

t0

(
1

2
((uzm)T R(x)(uzm)

{uT R(x)u)zlT Bm)dt

~

ðtf

t0

(uT R(x)mzlT Bm)dt

z
1

2

ðtf

t0

mT R(x)mdt

~deJJ((x,u); (0,m))

z
1

2

ðtf

t0

mT R(x)mdt

§deJJ((x,u); (0,m))

ð42Þ

Since R(x)w0, the equality holds when and only when m(t)~0. So eJJ(x,u)

is strictly convex in u, uniformly in x.

Now we prove that eJJ(x,u) is strictly convex in x, uniformly in u. Setting

m(t)~0, the variation of eJJ(x,u) in x is written as

deJJ((x,u); (j,0))~

ðtf

t0

(
LeJJ
Lx

jz
LeJJ
L _xx

_jj)dt

~

ðtf

t0

((xT (t)Q(t)zlT (t)A(t)

zMT (x,u))j(t){lT (t) _jj(t))dt

zx(tf )T S(tf )j(tf )

ð43Þ

where M(x,u)~
1

2

L(uT R(x)u)

Lx
. In term of Eq (43), we obtain

eJJ((x,u); (j,0)){eJJ(x,u)~(

ðtf

t0

f (zz½jT ,0�T , _zzz½ _jjT ,0�T ,t)dt

zw(x(tf )zj(tf ),tf ))

{(

ðtf

t0

f (z, _zz,t)dtzw(x(tf ),tf ))

~

ðtf

t0

(f (zz½jT ,0�T , _zzz½ _jjT ,0�T ,t)

{f (z, _zz,t))dtzx(tf )T S(tf )j(tf )

z
1

2
j(tf )T S(tf )j(tf )

~

ðtf

t0

(L(xzj,u,t){L(x,u,t)

zlT (Aj{ _jj))dtzx(tf )T S(tf )j(tf )

z
1

2
j(tf )T S(tf )j(tf )

~

ðtf

t0

((xT (t)Q(t)zlT (t)A(t)

zMT (x,u))j(t){lT (t) _jj(t))dt

zx(tf )T S(tf )j(tf )

z
1

2

ðtf

t0

(jT QjzuT (R(xzj)

{R(x))u{2MT j)dt

z
1

2
j(tf )T S(tf )j(tf )

ð44Þ

Since the function l(x,u)~uT R(x)u is a strictly convex function in x,

uniformly in u as it is stated in Theorem 1, we have

uT R(xzj)u{uT R(x)u§2MT j ð45Þ

Then

eJJ((x,u); (j,0)){eJJ(x,u)§deJJ((x,u); (j,0))

z
1

2

ðtf

t0

jT Qjdtz
1

2
j(tf )T S(tf )j(tf )§deJJ((x,u); (j,0))

ð46Þ
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the equality holds when and only when j(t)~0. So eJJ(x,u) is strictly convex

in x, uniformly in u.

From the analysis above, it holds that the uo(t) and xo(t) defined in (19)

and (20) with the boundary condition (22) satisfy (11) and (12) in Lemma

1. In addition, the augmented performance index eJJ(x,u) is strictly convex in x,

u separately, uniformly in the other one. We conclude that xo and uo minimize

the performance index J in Eq (1) for the NSLQR problem. So uo(t) defined

in (19) is the optimal control law for the NSLQR problem.

From the proof of Theorem 1 and Lemma 1, we obtain a

corollary for the defined NSLQR problem with a general R(x) as

following.

Corollary 1 For the optimal problem defined in (1) and (2) with

R(x)w0 and free boundary values of x(t0) and x(tf ), the uo(t) and xo(t)

defined in (19) and (20) with P(t) satisfying (21) and (22) is either a

minimum or a saddle for the performance index J in (1).

It follows from Eq (42) that eJJ is strictly convex in u, uniformly in

x if R(x)w0. It then follows from the proof of Lemma 1 thateJJ(xo,uo) cannot be a maximum. Detailed proof is omitted.

Remark: The corollary signifies that the optimal control law

(19) gives the minimum cost for a particular x(t0) among all

possible control laws for a general R(x)w0, since uo is the

minimum point of J(x,u) with respect to u. However, the cost may

be lowered if a different x(t) trajectory with a different x(t0) is

chosen since (xo,uo) can be a saddle of J . So for a given x(t0), the

control law (19) gives the optimal solution.

From the analysis, it can be said that, for the NSLQR problem

with a general R(x)w0, the optimal solution (xo,uo) needs to be

evaluated for every specific x(t0). Whereas in the classical LQR

problem or the SDRE problem, the optimal solution can be

explicitly written as a function of t or x, uniformly for any x(t0).
For the NSLQR to have such uniform solutions, R(x) has to satisfy

the additional constraint that the function l(x,u)~uT R(x)u is

strictly convex in x, uniformly in u.

Analysis of the Solution for PDRE

3.1 A Sharpened R(x)
The PDRE (21) of the NSLQR problem is different from the

RE in the SDRE control strategy literature in

1. There is an additional term M(x,u) in the PDRE (21), which is

derived from the derivative of the state-dependent R(x) with

respect to x;

2. It is a differential RE instead of an algebraic RE;

3. The system state x(t) appears on both sides of the equation.

The way to solve the SDRE is not applicable for the PDRE. To

obtain the optimal solution of the NSLQR, it is necessary to

investigate the solution of the PDRE (21). In this section, a

sharpened R(x) is studied as an example.

As stated in Theorem 1, the function l(x,u) needs to be strictly

convex in x, a quadratic function of x seems to be a reasonable

choice for the matrix R. So consider

R(x)~xT R0xIm|mzR1 ð47Þ

where R0 is a n|n symmetric, positive semi-definite constant

matrix, R1 is a m|m symmetric, positive definite constant matrix

and Im|m is the m|m identity matrix. The term R1 guarantees

that R(x) is invertible. Then

M(x,u)~
1

2

L(uT R(x)u)

Lx

~
1

2

L(uT (xT R0xIm|mzR1)u)

Lx

~uT uR0x

ð48Þ

and the PDRE (21) becomes

{ _PP(t)xo(t)~AT (t)P(t)xo(t)zP(t)A(t)xo(t)

{P(t)B(t)R{1(xo)BT (t)P(t)xo(t)zQ(t)xo(t)zuoT uoR0xo(t)

[{ _PP(t)~AT (t)P(t)zP(t)A(t)

{P(t)B(t)R{1(xo)BT (t)P(t)zQ(t)zuoT uoR0

~AT (t)P(t)zP(t)A(t){P(t)B(t)R{1(xo)BT (t)P(t)zQ(t)

zxoT (t)PT (t)B(t)R{1(xo)R{1(xo)BT (t)P(t)xo(t)R0

ð49Þ

which can be denoted as

{ _PP(t)~AT (t)P(t)zP(t)A(t)

{P(t)B(t)R{1(xo)BT (t)P(t)zQ0(xo,t)
ð50Þ

where Q0(xo,t)~Q(t)zxoT (t)PT (t)B(t)R{1(xo)R{1(xo)BT (t)
P(t)xo(t)R0§Q(t)§0, and xo(t) satisfies the closed-loop system (20).

Remark: The PDRE (50) is coupled with closed-loop system

(20). In classical LQR theory, system state x(t) and the solution of

Riccati Equation P(t) can be obtained through a 2n-dimensional

Hamiltonian matrix [25] or by decoupling the system plant and

the Riccati Equation. However, in the NSLQR problem, the 2n-

dimensional Hamiltonian matrix is not linear any more, and the

decoupling is not applicable. The PDRE (50) has to be solved

together with the closed-loop system (20).

To generalize the results, the PDRE (50) can be rewritten into a

general form as:

_PP(t)zAT (t)P(t)zP(t)A(t)zG(x,t){P(t)V (x,t)P(t)~0 ð51Þ

with a given terminal value P(tf ), and x(t) is a continuous single-

valued function of t. The matrices G(x,t), V (x,t) are positive semi-

definite, symmetric, and continuous in both arguments.

For convenience of reference, the PDRE (51) is denoted as

<(P)~0 in the sequel. The dependence of the variables on t is

omitted, for example, x(tm) is denoted as xm. The time argument

of matrices and vectors are omitted when no misunderstanding is

introduced. For instance, Gm denotes the value of matrix

G(xm,tm).

3.2 A Comparison Theorem for the PDRE
The propositions and theorem introduced below are derived

from Proposition 7 and 8 in [26]. In [26], similar results are

developed for time-dependent Riccati Equations with initial

values. Now, a Comparison Theorem for the PDRE (51) with a

terminal value is given. Before presenting the theorem, four

propositions need to be established first.

Proposition 1 Let P(t) be a symmetric solution of the PDRE (51) on

D~T|X , where T~½t0,tf �, X~fx(t)jVt[T ,x(t)[Rng.
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(1) If U(t) is a symmetric solution of the inequality <(U)w0 on

D such that U(tf )vP(tf ), then U(t)vP(t) on D.

(2) If W (t) is a symmetric solution of the inequality <(W )v0 on

D such that W (tf )wP(tf ), then W (t)wP(t) on D.

Proof 3 Since the matrices and vectors in the PDRE (51) are continuous

in the arguments, P(t), U(t) and W (t) are continuous in t. We start with

part (1) of the proposition.

Suppose that U(t)vP(t) does not hold on D, there must be a

time tm[½t0,tf ) by the Mean Value Theorem, such that

U(tm)~P(tm) ð52Þ

and

U(t)vP(t) ð53Þ

for any t[(tm,tf �, as shown in Fig. 2. Let

w(t)~rT (P(t){U(t))r t[½tm,tf � ð54Þ

where r is a non-zero constant vector. Then

w(t)§0 t[½tm,tf � ð55Þ

and the equality holds if and only if t~tm.

w(tm)~rT ( _PP(tm){ _UU(tm))r

~rT _PP(tm)r{rT _UU(tm)r

~rT<(Pm)r{rT<(Um)r

~0{rT<(Um)rv0

ð56Þ

Therefore, w(t)v0 in a right neighborhood of tm, which

contradicts Eq (55). So U(t)vP(t) holds on D.

Part (2) can be proven similarly.

Proposition 2 Let P(t) be a symmetric solution of the PDRE (51) on

D~T|X , where T~½t0,tf �, X~fx(t)jVt[T ,x(t)[Rng.

(1) If U(t) is a symmetric solution of the inequality <(U)w0 on

D such that U(tf )ƒP(tf ), then U(t)ƒP(t) on D.

(2) If W (t) is a symmetric solution of the inequality <(W )v0 on

D such that W (tf )§P(tf ), then W (t)§P(t) on D.

Proof 4 The inequality part of the proposition has been proven in

Proposition 1. The following part is the proof for the case in which

U(tf )~P(tf ). We start with part (1).

As it is discussed in Proof 3, P(t), U(t) and W (t) are continuous

in t. Assume that U(t)ƒP(t) does not hold on D when

U(tf )~P(tf ), there must be a period ½tm,tn�[½t0,tf �, such that

U(t)wP(t) ð57Þ

for any t[½tm,tn), and

U(tn)~P(tn) ð58Þ

Figure 2. Trajectories of P(t) and U(t).
doi:10.1371/journal.pone.0094925.g002
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Let

w(t)~rT (P(t){U(t))r t[½tm,tn� ð59Þ

where r is a non-zero constant vector. Then

w(t)ƒ0 t[½tm,tn� ð60Þ

and the equality holds if and only if t~tn.

w(tn)~rT ( _PP(tn){ _UU(tn))r

~rT _PP(tn)r{rT _UU(tn)r

~rT<(Pn)r{rT<(Un)r

~0{rT<(Un)rv0

ð61Þ

Therefore, w(t)w0 in a left neighborhood of tn, which contradicts

Eq (60). So U(t)ƒP(t) holds on D.

Part (2) can be proven similarly.

Proposition 3 Let P(t) be a symmetric solution of the PDRE (51) on

D~T|X , where T~½t0,tf �, X~fx(t)jVt[T ,x(t)[Rng.

(1) If U(t) is a symmetric solution of the inequality <(U)§0 on

D such that U(tf )vP(tf ), then U(t)vP(t) on D.

(2) If W (t) is a symmetric solution of the inequality <(W )ƒ0 on

D such that W (tf )wP(tf ), then W (t)wP(t) on D.

Proposition 4 Let P(t) be a symmetric solution of the PDRE (51) on

D~T|X , where T~½t0,tf �, X~fx(t)jVt[T ,x(t)[Rng.

(1) If U(t) is a symmetric solution of the inequality <(U)§0 on

D such that U(tf )ƒP(tf ), then U(t)ƒP(t) on D.

(2) If W (t) is a symmetric solution of the inequality <(W )ƒ0 on

D such that W (tf )§P(tf ), then W (t)§P(t) on D.

The proofs of these two propositions are similar to those of

Propositions 1 and 2.

These four propositions give a boundary estimation for the

solution of the PDRE. Based on the four propositions discussed

above, a Comparison Theorem is introduced for the PDRE (51).

Theorem 2 For i[f1,2g, let Pi(t) be the solution of the PDRE

{ _PPi(t)~AT
i (t)Pi(t)zPi(t)Ai(t)zGi(x,t){Pi(t)Vi(x,t)Pi(t) ð62Þ

on D~T|X , where T~½t0,tf �, X~fx(t)jVt[T ,x(t)[Rng. If

P1(tf )ƒP2(tf ), and

G2(x,t) AT
2 (t)

A2(t) {V2(x,t)

� �
§

G1(x,t) AT
1 (t)

A1(t) {V1(x,t)

� �
(t,x)[D ð63Þ

Then P1(t)ƒP2(t) on D:.

Proof 5 Let P0(t)~P2(t){P1(t), then P0(tf )§0.

_PP0(t)~ _PP2(t){ _PP1(t)

~{AT
2 (t)P2(t){P2(t)A2(t){G2(x,t)

zP2(t)V2(x,t)P2(t){f{AT
1 (t)P1(t){P1(t)A1(t)

{G1(x,t)zP1(t)V1(x,t)P1(t)g

~(P2{P1)V2(P2{P1)zP1V2(P2{P1)

z(P2{P1)V2P1zP1(V2{V1)P1

{AT
2 (P2{P1){(P2{P1)A2{(A2{A1)T P1

{P1(A2{A1){(G2{G1)

~{eAAT P0{P0
eAA{½In|n,P1�

G2{G1 AT
2 {AT

1

A2{A1 {V2{({V1)

" #
In|n

P1

" #

ð64Þ

where In|n is the n|n identity matrix and eAA~A2{V2P1{
1

2
V2P0.

Since

½In|n,P1�
G2{G1 AT

2 {AT
1

A2{A1 {V2{({V1)

� �
In|n

P1

� �
§0 ð65Þ

for the PDRE <0(P0) defined as

_PP0(x,t)~

{eAAT P0{P0
eAA{½I ,P1�

G2{G1 AT
2 {AT

1

A2{A1 {V2{({V1)

" #
I

P1

" #
ð66Þ

we have <0(P0)~0, <0(0)§0, P0(tf )§0. It is readily concluded that

P0(t)~P2(t){P1(t)§0 for all (t,x)[D by Proposition 4. So P1(t)
ƒP2(t) on D.

3.3 Application of Comparison Theorem
For the PDRE (50), it is readily verified that Q0(xo,t)~

Q(t)zuoT (t)uo(t)R0§Q(t) and B(t)R{1(xo)BT (t)w0. Then we

have

Q0(xo,t) AT (t)

A(t) {B(t)R{1(xo)BT (t)

" #
§

Q(t) AT (t)

A(t) {B(t)R{1(xo)BT (t)

" #
(t,x)[D

ð67Þ

and

Q0(xo,t) AT (t)

A(t) 0

" #
§

Q0(xo,t) AT (t)

A(t) {B(t)R{1(xo)BT (t)

" #
(t,x)[D

ð68Þ

With Theorem 2 in Section 3.2, it follows that the solution P(t) of
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the PDRE (50) satisfies

P1(t)ƒP(t)ƒP2(t) ð69Þ

where P1(t) is the solution of

{ _PP1(t)~AT (t)P1(t)zP1(t)A(t)

{P1(t)B(t)R{1(x)BT (t)P1(t)zQ(t)

P1(tf )~S(tf )

ð70Þ

and P2(t) is the solution of

{ _PP2(t)~AT (t)P2(t)zP2(t)A(t)zQ0(x,t)

P2(tf )~S(tf )
ð71Þ

These two equations are differential REs, which are similar to the

algebraic RE in the SDRE control strategy. The analysis shows

that the solution of a PDRE can be estimated by the solutions of

two differential REs. Thus the methods of solving a differential RE

can be borrowed to facilitate the solution to a PDRE, such as

determining the initial value for P(t).

Simulation

In this section, the NSLQR problem studied above is applied to

two specific simulation cases to first verify the optimality

numerically and then to model the goal pursuit process introduced

in the section Introduction, so that the three goal pursuit

behaviors, GGB, SMB and CCB are reproduced for further

studying.

The NSLQR problem is, technically, a Two-Point Boundary

Value (TPBV) Problem, since the initial value of the system plant

(20) x0 and the terminal value of the PDRE (21) Pf are known. A

shooting method is employed in the simulation with sacent

iteration to solve this TPBV problem [27]. The convergence of the

method is slightly slower than being second-order with the chosen

R(x), as it is discussed in [28] and [29]. The solver of ‘‘ode4

Runge-Kutta’’ is chosen in the simulation with a fixed step of 0:01

second. The simulation error threshold is set as 10{6.

4.1 Numerical Verification of the NSLQR Optimality
4.1.1 Simulation Model. In this section, we consider a

specific optimal problem of seeking a control law u(t) to minimize

the given performance index

J1~
1

2

ðtf ~1

t0~0

(1:x2(t)z4:x2(t):u2(t))dtz
1

2
:0:x2(tf ) ð72Þ

along the first-order LTV system as

_xx(t)~
{1

tz1
:x(t)z1:u(t) x(t0)~1 ð73Þ

with A~
{1

tz1
, B~1, Q~1, S(tf )~0 and R~4x2(t).

Three forms of control law are considered. The first one is the

optimal control law uo(t) defined in Eq (19) with the P(t) from the

PDRE (21). The second control law is the same uo(t) in Eq (19) but

with the P(t) from a standard Differential Riccati Equation, which

has no additional term of M(x,u). The third control law is the

same uo(t) in Eq (19) with a perturbation of 0:01. To differentiate

with each other, the three control laws are named as ‘‘Optimal

Solution’’,‘‘Riccati Perturbation’’ and ‘‘Control Perturbation’’,

respectively. Table 1 summarizes the parameter details used in this

simulation case as well as the values of performance index J1. Fig. 3

gives the system behaviors with the three different control laws.

4.1.2 Discussion of Results. From Fig. 3, it is valid to say

that the three control laws, with the same function of R(x), all

bring the system state a stable behavior. However, the optimal

control law uo(t) supplies the minimal performance index J1, as

shown in Table 1. Even though it cannot be said with great

confidence that the control law uo(t) is optimal since it is difficult

to verify infinite numerical examples. It is still proved that the

classical LQR solution, which is the ‘‘Riccati Perturbation’’ case,

provides a greater value of J1 than the optimal control law uo(t)
does, so the classical LQR theory is not applicable to the NSLQR

problem anymore. Moreover, the NSLQR theory does provide

the minimal value of J1 among all three control laws, which

verifies the optimality of the NSLQR theory at some degree.

4.2 Application of the NSLQR to Goal Pursuit Processes
4.2.1 Modeling Goal Pursuit Behaviors. From a psycho-

logical perspective, the system state x(t) in the NSLQR problem

represents the goal discrepancy. The parameter A(t) in system model

(2) represents the goal attraction. For a constant A, all the

eigenvalues having negative real parts (asymptotically stable)

means the goal is attractive; if the eigenvalues are with non-

positive real parts and those eigenvalues with zero real parts are

simple (marginal stable), then the goal is neutral; otherwise

(unstable), the goal is repulsive. Similar interpretations apply to

time-varying A(t), where the asymptotic stability, marginal

stability and instability can be interpreted as attractive, neutral

and repulsive goals. The input u(t) represents the level of control

effort, while the parameter B(t) is treated as control effectiveness. In the

performance index J, the weighting coefficient Q(t) functions as

goal discrepancy penalty. A greater value of jjQjj results in less

discrepancy; and the weighting coefficient S(tf ) is known as

terminal penalty. A greater value of jjSjj leads to smaller terminal

goal discrepancy; the weighting coefficient R(x) is control energy

penalty, which depends on goal discrepancy. A greater value of jjRjj
means less control energy expenditure is allowed.

Table 1. The Values of Parameters in Simulation Case 01.

x0 xf P0 Pf u(t) P(t) J1

Optimal Sol: 1 0.413 0.5 3:7e{15 uo(t) PDRE() 0.237653

Riccati Per: 1 0.417 0.5 3:3e{08 uo(t) Diff :RE� 0.237672

Control Per: 1 0.421 0.5 3:7e{15 uo(t)z0:01 PDRE() 0.237695

*Diff. RE: { _PP(t)~AT (t)P(t)zP(t)A(t){P(t)B(t)R{1(t)BT (t)P(t)zQ(t).
doi:10.1371/journal.pone.0094925.t001
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4.2.2 Simulation Model. As an initial study, we consider a

first-order linear goal attainment process in the simulation case.

The process is set as

_xx(t)~0:x(t)z1:u(t) x(t0)~1 ð74Þ

which is a neutrally attractive goal process. The parameter R(x) is

the concern in the current simulation case study. Based on the

analysis above, we hypothesize that the GGB can be produced by

R(x) that is a monotonically increasing function of jjxjj; the SMB

can be produced by R(x) that is a hump function of jjxjj; and the

CCB can be produced by a constant R. Table 2 gives the value of

the parameters used in the simulation. The simulation results are

presented in Table 3 and Fig. 4. From Table 2, it can be seen that

the choice of R(x) in the GGB satisfies the convexity constraint of

the function l(x,u), so the solution is optimal for the GGB. Even

though the convexity constraint is not satisfied in the SMB, from

Corollary 1, it still can be said that the solution is optimal since

x(t0) is fixed. For a meaningful comparison, the parameters are

adjusted such that three behaviors achieve roughly equal terminal

values, as the values of xtf shown in Table 3.

From Fig. 4 Part d), it can be seen that, the NSLQR method has

successfully modeled the goal pursuit process with three behaviors.

Part a) and Part b) show the control energy penalty matrix R vs

time t and goal discrepancy x, respectively. The hypothesis is

validated that when R is a monotonically increasing function of

jjxjj, the goal pursuit process can exhibit the GGB; when R is a

hump function of jjxjj, the goal pursuit process can exhibit the

SMB; and when R is a constant, the goal pursuit process can

exhibit the CCB. Part e) and Part f) present the control effort u vs

time t and goal discrepancy x, respectively. For the CCB, the

control effort increases as it approaches the goal; for the GGB, the

control effort decreases with goal discrepancy; and for the SMB,

the control effort is higher at two ends than in the middle.

Table 3 lists some selected norms of the goal discrepancy x(t),
and the control effort u(t). It shows that, with the same initial value

x0 and terminal value xf , the CCB features the least accumulated

error jjxjj1, but consumes the most control energy jjujj2 and suffers

from the highest stress level jjujj?. The SMB consumes the least

control energy and sufferers from the lowest stress level at the price

of a higher accumulated error. The CCB is in between of these

two.

4.2.3 Discussion of Results. Based on the simulation results

above, it is concluded that in pursuing a goal with a finite terminal

time (deadline), the GGB and the SMB behaviors may save

control energy and reduce stress level over the CCB. However, the

CCB has the least accumulated error. So the GGB and SMB may

be beneficial in applications where only the level of goal

attainment at the terminal time is of concern, such as a deadline

beating process. However, the GGB or SMB would not a

preferred choice when the goal needs to be maintained over long

time or needs to be approached smoothly.

Figure 3. System Behavior of Simulation Case 01: a) Control Energy Penalty R vs. Goal Discrepancy x; b) Goal Discrepancy x.
doi:10.1371/journal.pone.0094925.g003

Table 2. The Values of Parameters in Simulation Case 02.

Param: GGB SMB CCB

Goal Discrepancy Penalty Q 1 1 23.5

Terminal Penalty S 10 10 0

Control Energy Penalty R 3:7(x2z0:1) 2:2(0:5{(x{0:5)2) 2

Simulation Error Threshold E 0.000001 0.000001 0.000001

Initial Value of x(t) x0 1 1 1

Initial Value of P(t) P0 2.831 0.903 6.841

doi:10.1371/journal.pone.0094925.t002
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Figure 4. Three Goal Pursuit Behaviors: a) Control Energy Penalty R vs. Time; b) Control Energy Penalty R vs. Goal Discrepancy x; c)
Feedback Gain K; d) Goal Discrepancy x; e) Control Effort u vs. Time; f) Control Effort u vs. Goal Discrepancy x.
doi:10.1371/journal.pone.0094925.g004

The Optimal Solution of a NSLQR Problem and Its Applications

PLOS ONE | www.plosone.org 12 April 2014 | Volume 9 | Issue 4 | e94925



Conclusion and Future Work

In this paper, a necessary and sufficient Optimality Theorem

with rigorous mathematical proof for the NSLQR problem with a

convexity constraint on R(x) is presented. It is also argued that for

given x(t0), the NSLQR gives an optimal solution. A Comparison

Theorem for the solution of the PDRE with a general form for the

NSLQR problem is presented as well. In the simulation, the

NSLQR is first applied to a first-order LTV system to verify the

proposed theory. The NSLQR is then used to model two

psychological behaviors (GGB and SMB) in goal pursuit processes

identified from psychology, along with the typical behavior of

engineering control systems (CCB) by employing different control

energy weighting R(x). The simulation results show that the

NSLQR modeling method can reproduce the three goal pursuit

behaviors and the psychological goal pursuit behaviors can be

more beneficial than the CCB in terms of energy saving and stress

reduction in applications where only the goal discrepancy at the

terminal time is of concern, such as in Marathon race, animal

stalking, beating a deadline or hitting a target.

In this paper only some scalar cases of the goal pursuit process

are studied; studies of the multi-variable cases are the next steps of

our work. In the current study, the parameter R(x) is selected to

reproduce the goal pursuit behaviors. Similar results should be

achievable with a state-dependent goal discrepancy weighting

Q(x), which would be more akin to intuitive psychological

tendency to employing the GGB and SMB strategies in terminal

goal pursuit processes; whereas the control weighting modeling is

more akin to conscious choice of the GGB and SMB for its energy

saving and stress reduction benefits. Since for the NSLQR

problem the PDRE has to be solved simultaneously with the

closed-loop system, it is a TPBV problem. An inherent difficulty in

this TPBV problem is how to determine the initial value of P(t).
An Approaching-Horizon algorithm based on a shooting method

is developed to address this problem, which will be presented in

detail in a separate paper.
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