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Abstract

Hereditary defects in the transcription-coupled nucleotide excision repair (TC-NER) pathway of damaged DNA cause severe
neurodegenerative disease Cockayne syndrome (CS), however the origin and chemical nature of the underlying DNA
damage had remained unknown. To find out, to which degree the structural properties of DNA lesions determine the extent
of transcription arrest in human CS cells, we performed quantitative host cell reactivation analyses of expression vectors
containing various synthetic adducts. We found that a single 3-(deoxyguanosin-N2-yl)-2-acetylaminofluorene adduct
(dG(N2)-AAF) constitutes an unsurmountable obstacle to transcription in both CS-A and CS-B cells and is removed
exclusively by the CSA- and CSB-dependent pathway. In contrast, contribution of the CS proteins to the removal of two
other transcription-blocking DNA lesions – N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG(C8)-AAF) and cyclobutane
thymine-thymine (TT) dimer – is only minor (TT dimer) or none (dG(C8)-AAF). The unique properties of dG(N2)-AAF identify
this adduct as a prototype for a new class of DNA lesions that escape the alternative global genome repair and could be
critical for the CS pathogenesis.

Citation: Kitsera N, Gasteiger K, Lühnsdorf B, Allgayer J, Epe B, et al. (2014) Cockayne Syndrome: Varied Requirement of Transcription-Coupled Nucleotide
Excision Repair for the Removal of Three Structurally Different Adducts from Transcribed DNA. PLoS ONE 9(4): e94405. doi:10.1371/journal.pone.0094405

Editor: Maria Spies, University of Iowa, United States of America

Received January 30, 2014; Accepted March 14, 2014; Published April 8, 2014

Copyright: � 2014 Kitsera et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) (KH 263/1 and KH 263/2). The funder’s
website: www.dfg.de. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: khobta@uni-mainz.de

Introduction

Cockayne syndrome (CS) is an incurable genetic disease

characterized by severe neurological and developmental abnor-

malities, growth failure and pathological changes in multiple

organs [1]. CS has been linked to a defect in the transcription-

coupled nucleotide excision repair pathway (TC-NER), which is

normally initiated by arrest of the elongating RNA polymerase II

(RNAPII) complexes at bulky DNA adducts [2,3]. As a result, CS

patients generally manifest impaired recovery of transcription after

DNA damage induction (such as UV-irradiation), which is a useful

diagnostic criterion for CS [4]. Pathogenic mutations in CS were

mapped to the genes CSB/ERCC6 (about 60% of cases) and CSA/

ERCC8 [5]. In response to UV damage, both gene products

regulate (de-)ubiquitination reactions which are essential for

displacement of the stalled RNAPII [6] – CSB as one of the

initial sensors of the damage-arrested RNAPII [7] and CSA as an

interaction partner of the CRL4 E3 ubiquitin ligase complex [8,9].

However, since organs deep in the body are not exposed to UV,

the nature and origins of DNA damage responsible for CS remain

speculative [10,11].

If the TC-NER defect is crucial for the CS phenotype, there

must exist a DNA lesion that would fulfill the following criteria: (i)

a strong capacity to impede the RNAPII-driven transcription; (ii)

requirement of both CSB and CSA proteins for efficient recovery

of transcription in cells; and (iii) the lack of efficient alternative

repair pathways in the absence of TC-NER. The capacity to arrest

the elongating RNAPII has been demonstrated for a few DNA

modifications, including – besides the UV-induced cyclobutane

pyrimidine dimers and (6–4) photoproducts – the adducts of

chemical carcinogens, such as N-2-acetylaminofluorene (AAF)

[12,13]. AAF forms two types of adducts with guanine bases – N-

(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG(C8)-AAF) and 3-

(deoxyguanosin-N2-yl)-2-acetylaminofluorene (dG(N2)-AAF) – with

remarkably different topologies of the modified DNA duplexes.

The presence of dG(C8)-AAF in DNA results in a large degree of

helical distortion [14] and significant thermodynamic destabiliza-

tion of the duplex which facilitates the damage recognition by

human nucleotide excision repair (NER) factors [15,16]. In

contrast, (dG(N2)-AAF) is accommodated in the minor groove of

the helix, increasing the thermodynamic stability of the duplex

DNA [17]. According to the prevailing bipartite model of the

damage recognition in NER [18], this is expected to impede the

detection of dG(N2)-AAF. Here, we tested whether the strikingly

different thermodynamic properties of the two AAF adducts have
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implications for the repair pathway, which led us to finding that

only dG(N2)-AAF requires the CSA and CSB proteins.

Materials and Methods

Oligonucleotides
All synthetic deoxyribo-oligonucleotides were HPLC-purified

and verified by MALDI-TOF mass spectrometry. The sequence

was 59-CATTGCTTCGCTAGCACG, where the underlined TT

and G indicate the positions of the TT dimer and the

acetylaminofluorene (AAF) adducts. Unmodified oligonucleotide

was purchased from Eurofins MWG Operon (Ebersberg, Ger-

many). Oligonucleotide containing TT dimer was from TriLink

BioTechnologies (San Diego, CA). Oligonucleotides containing

the N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG(C8)-AAF)

and 3-(deoxyguanosin-N2-yl)-2-acetylaminofluorene (dG(N2)-AAF)

adducts were produced as following.

The dG(C8)-AAF phosphoramidite containing an isopropyl-

phenoxyacetyl group at the N2 position for solid phase DNA

synthesis was prepared as previously published [19,20] and

incorporated into DNA using ultra mild conditions [21]. The

dG(N2)-AAF phosphoramidite for solid phase DNA synthesis was

prepared as previously published by Johnson and coworkers and

incorporated into DNA using standard conditions [22]. Deprotec-

tion and cleavage of the oligodeoxynucleotides from the CPG

carrier containing dG(N2)-AAF were carried out in a mixture of

saturated (7 M) ammonia solution in water:ethanol (3:1) at 17 uC
overnight. Oligonucleotide synthesis was performed on an ABI

394 Nucleic Acid Synthesis System (Life Technologies, Darmstadt,

Germany). Phosphoramidites for dA, dC, dG, dT and CPG

carriers were obtained from Glen Research (Sterling, VA) or Link

Technologies (Bellshill, Scotland). The coupling time for the

modified phosphoramidites was extended to 2 6 7 min.

DNA purification was conducted on analytical and preparative

HPLC (Waters, Eschborn, Germany) using Nucleodur or

Nucleosil columns (250 6 4 mm, C18ec, particle size 3 mm or

250 6 10 mm, C18ec, particle size 5 mm) from Macherey-Nagel

(Düren, Germany). The applied buffer was 0.1 M triethylammo-

nium acetate in water and 0.1 M triethylammonium acetate in an

80% aqueous MeCN buffer system. The fractions were checked

for purity by analytical HPLC. The purified oligonucleotides were

concentrated using a Savant SpeedVac system (Thermo Scientific,

Dreieich, Germany) and desalted with Sep-Pak cartridges (Wa-

ters).

Construction of vectors containing single adducts
Mammalian expression vectors pZAJ-5w-AGC and pZAJ-5c-

AGC, containing the 59-CATTGCTTCGCTAGCACG-

CATTGC sequence in opposite orientations within the the 59

untranslated region (59-UTR) of a gene coding for the enhanced

green fluorescent protein (EGFP), were described previously [23].

A pair of vectors, containing the same sequences in an arbitrarily

chosen non-genic region upstream of the immediate early CMV

promoter, was constructed by analogous procedures from the

same maternal pZAJ vector.

Site-specific double nicks were produced in either the

transcribed or coding DNA strand with the Nb.BsrDI endonucle-

ase (NEB GmbH, Frankfurt am Main, Germany). After melting

the excised 18-mers away, the synthetic oligonucleotides (unmod-

ified or containing the specified adducts) were inserted and the

nicks sealed by the protocol described previously [24]. The

presence of dG(C8)-AAF and dG(N2)-AAF in vector DNA was

verified by the inhibition of generation of a double-stranded break

by the NheI restriction endonuclease; the presence of TT dimer

was verified by incision with T4 endonuclease V (Figure S1).

Cell lines
Immortalised human skin fibroblasts from patients with

mutations in the specified nucleotide excision repair genes were

obtained from the NIGMS Human Genetic Cell Repository,

Coriell Institute for Medical Research (Camden, New Jersey,

USA). The CS-B cell line was CS1ANps3g2 (GM16095); the CS-A

cell line was CS3BEs3gl (GM16094); the XP-A cell line was

XP20S (GM04312); and the XP-C cell line was XP4PA-SV-EB

(GM15983). The matched repair-proficient cell line was MRC-5

VA1 (AG10076). The CSB-corrected cell line was CS1ANps3g2

transfected with the CSB cDNA expression construct [25], kindly

provided by Kiyoji Tanaka (Osaka University, Japan).

CSB protein knockdown
Stable knockdown of the CSB gene in HeLa cells was achieved

exactly as described previously for another gene [23]. For shRNA

targeting of the CSB gene, the specific complimentary oligonucle-

otides containing the BglII- and HindIII-compatible overhangs

were annealed and cloned into the pENTR/pSuper+ vector

(Addgene, Cambridge, MA) downstream of the H1 promoter. The

sequences of oligonucleotides were the following: 59-

GATCCCCGGAAGAAGCAAGGTTGTAATTCAAGAGATT-

ACAACCTTGCTTCTTCCTTTTTGGAAA (forward) and 59-

AGCTTTTCCAAAAAGGAAGAAGCAAGGTTGTAATCTC-

TTGAATTACAACCTTGCTTCTTCCGGG (reverse). The

CSB protein levels in individual clones were monitored by

Western blotting with the A301-345A rabbit polyclonal antibody

(Bethyl Laboratories, Inc., Montgomery, TX) raised against the

amino acid residues 1–50 of human CSB.

Transfections and gene expression analyses
Exponentially growing cells were co-transfected with equal

amounts of one of the EGFP-encoding vectors with an inserted

synthetic oligonucleotide (either unmodified or containing the

specified adducts) and pDsRed-Monomer-N1 vector (Clontech,

Saint-Germain-en-Laye, France). Transfections were performed

with the help of Effectene (QIAGEN, Hilden, Germany). Cells

were fixed 24 hours post transfections, and EGFP expression was

measured in individual cells by flow cytometry, as described in

detail previously [26].

Results

A unique dG(N2)-AAF abolishes gene expression in CS
cells

Our strategy was to construct mammalian expression vectors

carrying unique synthetic DNA base modifications in defined

positions of the reporter EGFP gene [24], followed by quantitative

gene expression analyses in human host cells carrying mutations in

the CSA and CSB genes. We produced synthetic oligonucleotides

containing unique dG(C8)-AAF and dG(N2)-AAF adducts and

inserted them into the specially designed expression vectors, in

various positions (Figure 1, Figure S1). Analogously constructed

vectors containing a single cyclobutane thymine-thymine (TT)

dimer (Figure 1, Figure S1) were used for comparison. In a

human CS-B cell line, we detected a potent inhibition of the gene

expression by dG(N2)-AAF in the transcribed DNA strand of the

EGFP gene, whereas the construct containing dG(C8)-AAF in the

same position was expressed at the same level as control

unmodified DNA (Figure 1). These results indicate that

dG(C8)-AAF is efficiently removed by a CSB-independent repair

A Critical DNA Lesion in Cockayne Syndrome
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pathway, which is in line with a previous report [27]. In contrast,

dG(N2)-AAF can be neither removed nor bypassed in the absence

of the CSB protein, constituting an unconditional roadblock for

the RNAPII transcription. It is interesting to note that the TT

dimer, which is a widely accepted ‘‘golden standard’’ for a

transcription-blocking lesion and a classical substrate for TC-

NER, exhibited a much milder grade of inhibition of the gene

expression than dG(N2)-AAF. We interpret this attenuated effect as

a result of removal of a significant fraction of TT dimers by global

genome NER (GG-NER) – an alternative (CSA-, CSB- and

transcription-independent) pathway initiated by the specific

damage recognition factors XPC-RAD23B and UV-DDB [3,28].

To test whether the inhibitory effect of the dG(N2)-AAF adduct

on the gene expression requires the damage presence within the

transcribed DNA strand, we also analyzed the effects of the same

three adducts positioned in the opposite DNA strand and in a non-

transcribed sequence upstream of the promoter. Only minimal

effects were caused by dG(N2)-AAF and TT dimers in the coding

strand of the gene and none of the adducts could affect the EGFP

expression when located in the upstream non-transcribed region

(Figure 1), thus indicating that a direct interaction of transcrip-

tion complexes with the dG(N2)-AAF adduct is necessary for the

inhibition of the gene expression.

CSB is required for removal of the transcription-blocking
dG(N2)-AAF

To test whether the CSB gene defect is causal for the inhibitory

effect of single dG(N2)-AAF adduct on the gene transcription, we

transfected the same constructs in parallel into the CS-B cell line

(GM16095) and the isogenic cell line stably expressing the CSB

cDNA [25]. The EGFP expression was restored almost completely

in the CSB-complemented cells (Figure 2A, Figure S2),

indicating that a functional CSB gene is required for the efficient

recovery of transcription. To test the effect of CSB in a different

genetic background, we stably knocked down CSB expression in

HeLa cells by permanent transfection with the specific short

hairpin (sh) RNA. This resulted in an approximately 70%

reduction of the CSB protein level (Figure S3), which in turn

hindered transcription of the dG(N2)-AAF-containing expression

construct (Figure 2A, Figure S4), Altogether, the results indicate

that the requirement for CSB is independent from the genetic

background.

TC-NER is indispensable for removal of the transcription-
blocking dG(N2)-AAF

To obtain further information about the relative contributions

of TC-NER and GG-NER to the repair of dG(N2)-AAF, the

expression was analyzed in parallel in the CS-A and CS-B cell

lines (deficient in the TC-NER), an XP-C cell line (deficient in the

GG-NER), and an XP-A cell line (deficient in both the TC-NER

and GG-NER pathways). A fully repair proficient MRC-5 cell line

was used for comparison. In the XP-C cell line, the expression of

the construct containing dG(N2)-AAF in the transcribed DNA

strand was as good as in the control MRC-5 cells, indicating that

the GG-NER defect does not compromise the efficiency of the

adduct removal (Figure 3, Figure S5). In the CS-A and CS-B

cell lines, the strength of the negative effect of the dG(N2)-AAF

adduct on the gene expression was quantitatively the same as in

the XP-A cell line. Since the TC-NER defect was phenotypically

equivalent to the total absence of NER, we conclude that dG(N2)-

AAF in the transcribed DNA strand can only be repaired by the

transcription-coupled pathway.

Figure 1. Effects of single adducts on the EGFP gene expression in the GM16095 (CS-B) cell line. The protein coding sequence (arrow)
and the transcription start (broken arrow) are represented out of scale, along with the adduct position (star) with respect to the transcription unit.
Overlaid fluorescence distribution plots were obtained by flow cytometric analyses of cells transfected with vectors carrying the specified adducts
(amber line) and with the control constructs obtained by incorporation of the unmodified deoxyribo-oligonucleotide (blue line).
doi:10.1371/journal.pone.0094405.g001

A Critical DNA Lesion in Cockayne Syndrome
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Figure 2. Modulation of the effect of dG(N2)-AAF by CSB. Host cell reactivation of the EGFP expression in pairs of isogenic cell lines with
different CSB expression statuses. Cells were transfected with constructs containing a unique dG(N2)-AAF (amber colors) or dG (blue colors) in the
transcribed strand of the EGFP gene. Cells were selected according to the expression of DsRed as a transfection marker (the gated region shown by
square brackets near the dot density plots) to generate the overlaid fluorescence distribution plots (on the right). (A) The effect of complementation
of the CSB deficiency by expression of the CSB cDNA. (B) The effect of CSB knockdown by expression of the specific shRNA (CSBsh). See also Figures
S3 and S4.
doi:10.1371/journal.pone.0094405.g002

Figure 3. Exclusive requirement of TC-NER for the removal of transcription-blocking dG(N2)-AAF. Host cell reactivation in human cell
lines of the specified nucleotide excision repair complementation groups (CS-A, CS-B, XP-C and XP-A) and in the repair proficient cell line (MRC-5). The
expression constructs contained a unique dG(N2)-AAF or dG in the specified DNA strand. (A) Overlaid fluorescence distribution plots obtained in a
representative experiment. All cell lines were transfected in parallel with the same constructs. (B) Mean relative expression (dG(N2)-AAF/dG) calculated
for multiple transfections with independent preparations of the expression constructs (n = 3, +/2 s.d.).
doi:10.1371/journal.pone.0094405.g003
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Host cell reactivation efficiencies of vectors carrying
various adducts in CS-A cells

Data shown in Figure 3 indicate that the products of CSA and

CSB genes are of the same critical importance for removal of the

transcription-blocking dG(N2)-AAF in cells. We questioned how

harmful are two other bulky DNA lesions – dG(C8)-AAF and TT

dimer – for the gene expression in CS-A cells. Regardless of the

DNA strand concerned, the constructs containing dG(C8)-AAF

and the corresponding adduct-free control vectors were expressed

at the same levels (Figure 4), exactly recapitulating the results

previously obtained in the CS-B cell line (Figure 1). TT dimer

induced inhibition of the gene expression which was milder than in

the case of dG(N2)-AAF and exhibited a less pronounced DNA

strand-specificity, which may indicate some indirect interference of

the lesion with transcription (Figure 4). Both findings resembled

the effects previously observed in the CS-B cell line (Figure 1).

Altogether, of the three lesions investigated, dG(N2)-AAF turned

out to be most critical for transcription both in CS-A and CS-B

cells, if present in the transcribed DNA strand. None of the lesions

could influence the EGFP expression when located in the

upstream non-transcribed region (data not shown).

Discussion

In summary, of the three bona fide transcription blocking DNA

base modifications investigated here, only dG(N2)-AAF constitutes

an insuperable transcription block in human CS cells. Two other

DNA lesions are repaired or bypassed to a significant (TT dimer)

or full (dG(C8)-AAF) extent. The removal of dG(N2)-AAF from the

transcribed DNA strand of the actively transcribed gene takes

place exclusively by the TC-NER pathway which requires both

CSA and CSB proteins, whereas the GG-NER pathway (initiated

by the XPC gene product) is unimportant. This finding explains

the remarkably long (.11 months) persistence time of dG(N2)-

AAF in rats fed with 2-nitrofluorene [29]. In a striking contrast,

the contribution of TC-NER to the removal of another AAF

adduct (dG(C8)-AAF) from the same transcribed gene is negligible,

providing a reason for the absence of a strand-selective repair of

dG(C8)-AAF in the endogenous ADA gene [27].

Comparison between the two AAF adducts suggests that GG-

NER may be generally inefficient for adducts which have minimal

influence on the DNA duplex structure and thermodynamic

stability, leaving TC-NER as the only possible repair pathway.

Such DNA lesions must be especially harmful in the CS-A and

CS-B patients. Thereby, dG(N2)-AAF can be regarded as a close

prototype for unknown DNA lesion(s) that could be responsible for

the molecular pathology of CS. Adducts with similar structural

and thermodynamic features can be formed by active metabolites

of environmental and dietary compounds (such as arylamines and

heterocyclic amines), raising a possibility that manifestation of the

clinical features of CS can be influenced by environmental

exposures and the individual metabolic phenotype. This would

explain the lack of good correlation between the patients’ genotype

and the severity of the disease [5], including the absence of the

characteristic CS phenotype in a few described cases [30,31].

Supporting Information

Figure S1 Verification of the incorporation of oligonu-
cleotides containing the specified adducts into vector
DNA. The presence of acetylaminofluorene adducts (dG(C8)-AAF

or dG(N2)-AAF, indicated by the asterisk in the DNA sequence)

within the unique NheI cleavage sequence (59-GCTAGC) was

verified by inhibition of the NheI endonuclease activity (left panel).

The incorporation of thymine dimer was verified by incision with

T4 endonuclease V (T4 EV) which cleaves the N-glycosylic bond

of the 59 thymine of the dimer and the phosphodiester bond 39 to

the resulting abasic site (right panel). Images show typical vector

preparations analyzed in agarose gels containing ethidium

bromide.

(PDF)

Figure S2 Host cell reactivation of the EGFP expression
in the CS-B cell line and the isogenic cell line corrected
by expression of the CSB cDNA. Transfected constructs

contained a unique dG(N2)-AAF in either the transcribed or non-

transcribed (coding) strand of the EGFP gene, as indicated.

Extended data for the experiment shown in Figure 2a.

(PDF)

Figure S3 Stable knockdown of the endogenous CSB
expression in HeLa cells. Single clones were selected following

transfections with empty vector (no sh) or the vector expressing the

shRNA designed to target the CSB gene (CSBsh, three different

clones) and analyzed by Western blot. Of the two bands

recognized by the CSB antibody, one corresponds to the full-

length CSB protein (arrow). This band is absent in the extracts

obtained from the CS-B cell line (GM16095).

(PDF)

Figure S4 Host cell reactivation of the EGFP expression
in HeLa cells and the derived cell lines with different
CSB expression statuses. Clonal cell lines stably transfected

with empty vector (no sh) or the vector expressing the CSB-specific

shRNA (CSBsh, clone 21) were transfected with constructs

containing a unique dG(N2)-AAF in either the transcribed or

non-transcribed (coding) strand of the EGFP gene, as indicated.

Extended data for the experiment shown in Figure 2b.

(PDF)

Figure S5 Host cell reactivation in human cell lines of
the specified nucleotide excision repair complementa-
tion groups (CS-A, CS-B, XP-C and XP-A) and in the
repair proficient cell line (MRC-5). The expression con-

structs contained synthetic oligonucleotides with a unique dG(N2)-

AAF (amber colors) or dG (blue colors) in the specified DNA

Figure 4. Effects of single adducts on the EGFP gene
expression in the GM16094 (CS-A) cell line. Overlaid fluorescence
distribution plots of cells transfected with vectors carrying the specified
adducts (amber line) and with the control constructs obtained by
incorporation of the unmodified deoxyribo-oligonucleotide (blue line).
doi:10.1371/journal.pone.0094405.g004

A Critical DNA Lesion in Cockayne Syndrome

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e94405



strand. Dot density plots obtained in a representative experiment

and the corresponding overlaid fluorescence distribution plots.

Extended data for the experiment shown in Figure 3.

(PDF)
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