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Abstract

Large amounts of manure have been applied to arable soils as fertilizer worldwide. Manure is often contaminated with
veterinary antibiotics which enter the soil together with antibiotic resistant bacteria. However, little information is available
regarding the main responders of bacterial communities in soil affected by repeated inputs of antibiotics via manure. In this
study, a microcosm experiment was performed with two concentrations of the antibiotic sulfadiazine (SDZ) which were
applied together with manure at three different time points over a period of 133 days. Samples were taken 3 and 60 days
after each manure application. The effects of SDZ on soil bacterial communities were explored by barcoded pyrosequencing
of 16S rRNA gene fragments amplified from total community DNA. Samples with high concentration of SDZ were analyzed
on day 193 only. Repeated inputs of SDZ, especially at a high concentration, caused pronounced changes in bacterial
community compositions. By comparison with the initial soil, we could observe an increase of the disturbance and a
decrease of the stability of soil bacterial communities as a result of SDZ manure application compared to the manure
treatment without SDZ. The number of taxa significantly affected by the presence of SDZ increased with the times of
manure application and was highest during the treatment with high SDZ-concentration. Numerous taxa, known to harbor
also human pathogens, such as Devosia, Shinella, Stenotrophomonas, Clostridium, Peptostreptococcus, Leifsonia,
Gemmatimonas, were enriched in the soil when SDZ was present while the abundance of bacteria which typically
contribute to high soil quality belonging to the genera Pseudomonas and Lysobacter, Hydrogenophaga, and Adhaeribacter
decreased in response to the repeated application of manure and SDZ.
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Introduction

The use of animal manure for fertilization of agricultural soils

has a long tradition in many parts of the world and is generally

assumed to be ecologically more friendly and sustainable than

mineral fertilizer. In particular organic and bio-dynamic farms

depend on manure or compost as sources for fertilization.

However, industrial husbandries with typically large numbers of

animals sharing limited space depend on the prophylactic and

therapeutic use of antibiotics. In addition, in several parts of the

world antibiotics are still being used as growth promoters.

Although antibiotics as growth promoters were banned in many

European countries, considerable amounts of antibiotics such as

tetracyclines, b-lactams and sulfonamides are still used in animal

husbandries [1]. Depending on their physicochemical properties,

many antibiotics such as sulfonamides are to a large extent

excreted via urine or feces and are not or only to a low extent

degraded during manure storage [2,3]. Thus, spreading manure

on agricultural soils does not only introduce nutrients required for

maintaining the soil fertility but also antibiotics, their metabolites

and antibiotic resistant bacteria. Indeed, antibiotics have been

detected in the environment due to the use of manure for soil

fertilization or direct deposition via dung and urine of animals

grazing on pastures [4,5].

The rapid sequestration of most antibiotics in soils, as e.g.

observed for the sulfonamide antibiotic SDZ [6], leads usually to

low concentrations of bioavailable SDZ, which are far below the

minimal inhibitory concentrations after a single application of

manure. Most data published indicated only short-term effects on

the microbial community after a single application of manure

spiked with antibiotics followed by a fast regeneration of the

community structure [7,8] and its function [9–11]. However,

agricultural management implies in most cases a repeated

application of manure mainly during the vegetation period to

keep the level of nutrients needed for best possible plant growth.

Surprisingly, little is known of the effects of repeated application of

manure containing antibiotics on microbial communities in soil

which might cause cumulative effects. Despite a rapid dissipation

and sequestration of SDZ in soil [3,6,12] an increased abundance

of sul1 and sul2 resistance genes and their transferability was

observed in soils treated with manure containing SDZ compared

to control manure under microcosm, mesocosm and field

conditions [13–15], suggesting that manure containing antibiotics
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enhanced the spreading of the antibiotic resistance genes in soils.

In particular the repeated application of manure in combination

with antibiotics may set the ground for an increased abundance of

resistant bacteria as recently reported by Heuer et al. [16] and thus

might stimulate the spreading of antibiotic resistance genes and

mobile genetic elements in agricultural ecosystems. Antibiotic

resistance genes localized on mobile genetic elements can be

captured by human and veterinary pathogens and thus pose a

threat to the treatment of bacterial diseases [17–19].

In the present microcosm experiment, the effect of repeated

application of manure containing antibiotics on the soil bacterial

community was investigated by 454 sequencing of 16S rRNA gene

fragments amplified from total community (TC)-DNA. We have

chosen the sulfonamide SDZ as a model compound as it is still

frequently used in pig husbandry [4] and highly persistent in

manure [20]. Manure unspiked and spiked with SDZ in two

concentrations was applied three times, and the bacterial

community composition was monitored over a period of 193

days. We hypothesized that repeated application of manure spiked

with SDZ to soil would increase the degree of disturbance and

reduce the resilience of soil bacterial communities compared to a

single application of manure spiked with SDZ or soils treated with

manure not containing antibiotics. Resilience was measured as the

stability of bacterial diversity after changes in soil properties ([21];

here manure addition). To differentiate between short and long-

term effects, the soil was sampled 3 and 60 days after each manure

application, respectively.

Materials and Methods

Experimental design
The experimental design is described in detail by Heuer et al.

[16]. In short, topsoil samples (Ap horizon) of a silt loam soil

(Orthic Luvisol) with no history of manure application were used.

Pots were filled with 100 g of 2 mm-sieved soils and treated with

4 g of manure from healthy pigs (approximately 30 m3/ha) spiked

with SDZ or not to achieve a SDZ concentration in soil of 10

mg/kg, 100 mg/kg, or no SDZ (Sigma-Aldrich, Germany), which

corresponded to samples S10, S100, and S0, respectively. Soil

samples without manure application served as controls (U). To

avoid effects based on different manure composition at the

different time points of application, manure was taken before the

experiment and frozen in aliquots at 220uC. For each time point

of application, an aliquot of the manure was thawn and the

corresponding amount of SDZ was directly applied before mixing

the manure into the soil. The SDZ concentration S10 was chosen

in accordance to maximal inputs of sulfonamides detected in

agricultural soils [3,22]. Manure loads were applied on days 0, 63

and 133. The loosely covered pots were incubated at 15uC in the

dark. Water was added to the microcosms twice a week to

compensate for weight losses and to maintain a soil moisture of

about 55% of the soil’s water-holding capacity. For each treatment

and time point 5 replicates were prepared and treated individually

for the subsequent analysis. Samples were taken every 3rd and

60th day after manure application (days 3, 60, 66, 123, 136 and

193) and kept at 280uC until further analysis. No specific

permissions were required for collecting the manure and soil and

the study did not involve endangered or protected species.

DNA extraction
Extraction of total community DNA from soil samples was

performed according to Griffith et al. [23]. Briefly, 0.4 g soil per

replicate were added to a lysing matrix tube (MP Biomedicals,

Germany) and submitted to phenol:chloroform extraction starting

with homogenization for 30 seconds at 5.5 m S-1 (Precellys,

PeqLab, Germany). Extracted DNA was finally resolved in 50 ml

DNase-free water. Quality and quantity of DNA extracts were

checked using a spectrophotometer (Nanodrop, PeqLab, Ger-

many). For the extraction of total community DNA from manure,

10 ml manure were centrifuged at about 6500 g for 10 min, the

pellet was homogenized and DNA was extracted from 0.5 g

manure pellet using the FastDNA SPIN kit for soil (MP

Biomedicals, Heidelberg, Germany), followed by a purification

step using the Geneclean spin kit (MP Biomedicals, Heidelberg,

Germany), according to the manufacturer’s instructions.

Preparation of the 16S rRNA gene amplicons,
pyrosequencing and data processing

To generate the amplicon library for Bacteria, 16S primers 926-F

(59-AAACTYAAAKGAATTGACGG-39), Escherichia coli position

907–926 and 630-R (59-CAKAAAGGAGGTGATCC-39), E. coli

position 1528–1544 [24], were selected. Fusion primers were

designed according to the guidelines of ROCHE (www.my454.

com), by extending the specific primers with a 10 base multiplex

identifier (MID), a 4 base key and the respective sequencing

primers A or B for bidirectional sequencing. The optimal PCR

conditions were determined by gradient PCRs with annealing

temperatures ranging from 50uC to 60uC. Amplicons were finally

generated using 50 ng of extracted DNA, an annealing temper-

ature of 50uC and 22 PCR cycles. The PCR products were

purified with AMPure Beads (Agencourt, Beckman Coulter,

Krefeld, Germany) according to the Amplicon Library Prepara-

tion Method Manual (www.my454.com) and pooled in equimolar

amounts.

Sequencing of the 16S rRNA genes was performed on a second-

generation pyrosequencer (454 GS FLX Titanium, ROCHE,

Germany) following the manufacturer’s protocol for amplicon

sequencing (www.my454.com). The number of replicates per

treatment included in the final sequencing run can be found in

Table S1 in File S1.

The automatic amplicon pipeline of the GS Run Processor

(ROCHE) was used to perform an initial quality filtering of the

pyrosequencing raw reads in order to remove failed reads, low

quality reads and adaptor sequences. Sequence files were

submitted to the NCBI Sequence Read Archive (www.ncbi.nlm.

nih.gov/sra/) and are available with the study accession number

SRP038712.

Sequence analysis
The two data sets acquired by the forward and reverse primers

were analyzed separately to avoid the systematical bias of

individual primers. The analyses were mainly performed accord-

ing to Ding et al. [25]. Only those sequences with a length above

200 bp after removing the barcode, primer and unpaired regions

were subjected to further analysis. The unpaired regions were

truncated based on a standalone BlastN analysis against a bacterial

database described by Pruesse et al. [26]. Sequences were grouped

into operational taxonomic units (OTUs.97% sequence identity)

using software package mothur (v1.14.0). The classification of

sequences was performed using software RDP MultiClassifier at

.80% confidence [27]. A taxonomic OTU report with each row

representing one OTU containing taxonomic positions (from

phylum to genus) and the number of sequences for each sample

was constructed based on the OTU assignment and on the

classification.

Analyses based on the taxonomic OTU report were done with

R (version 2.14). To allow the comparison of samples with

different number of reads, all algorithms selected rely on relative
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abundance of taxonomic groups. To check whether the forward

and reverse primers revealed a similar taxonomic composition or

not, the percent of Bray-Curtis similarity of taxonomic composi-

tion between two data sets was calculated for each sample based

on the percent of classified taxa at phylum, class, order, family,

and genus level using the R add-on package ‘‘vegan’’. To evaluate

the influence of repeated application of manure containing SDZ

on the bacterial community compositions, the pairwise Pearson

dissimilarities between S0 and S10 or between S0 and S100 for

day 193 were calculated. To compare the microbial community

composition between samples, non-metric multidimensional scal-

ing (NMDS) analysis was carried out based on the Pearson

dissimilarity matrix using R package MASS. The 3-dimensional

plots of NMDS analysis were created with the R package ‘‘rgl’’ in

conjunction with the Linux command ‘‘import’’. Tukey’s honest

significance tests under a generalized linear model via a logistic

function for binomial data with the package multcomp [28] was

applied to identify the discriminative taxa between treatments

using a Bonferroni adjusted p value,0.05.

Results

Effects of the repeated application of manure containing
SDZ on the composition of soil bacterial communities

In this study, bacterial 16S rRNA gene fragments amplified

from TC-DNA extracted from 50 composite soil samples were

sequenced using forward (926F) and reverse (630R) primers. A

total of 132,278 sequences for 50 samples with 790–5685 high

quality sequences per sample were obtained with the forward

primer, and 162,446 sequences for 49 samples with 1105–7053

high quality sequences per sample with the reverse primer.

To study the effect of repeated applications of manure

containing SDZ on the soil bacterial community composition,

16S rRNA gene pyrosequencing data sets acquired from TC-DNA

of soils treated with SDZ manure or control manure were

compared. Sequences obtained with the forward and reverse

primers were treated independently and grouped into OTUs

(.97% sequence identity). Both datasets revealed similar changes

of bacterial community composition after manure application

(Figure 1). In general, the Pearson dissimilarities of the bacterial

community compositions between the S0 and S10 soils increased

with repeated manure application (Figure 1). Shortly after each

manure application the dissimilarity between the bacterial

community composition of S0 and S10 soils was strongly

increased. Sixty days after the first and second manure applica-

tions the dissimilarity remained at the same level as shortly after

manure application, while 60 days after the third application a

decrease in dissimilarity between S0 and S10 soil was observed.

Compared with the S10 soils on day 193, the S100 soils were less

similar to S0 soils in the bacterial community composition,

indicating that a higher concentration of SDZ caused more

pronounced changes of the soil bacterial communities (Figure 1).

Non-metric multidimensional scaling based on the OTU reports

acquired for the forward (Figure S1 in File S1) and reverse

(Figure 2) data set confirmed the findings presented in Figure 1 as

it showed that the bacterial community composition of S10 soils

increasingly deviated from the S0 soils with time, and this

difference was even more pronounced for S100 soils. Furthermore,

the faint color symbols in Figure 2 representing the bacterial

community composition shortly after manure application strongly

deviated from the community composition of untreated soil

suggesting a pronounced disturbance of the system. In contrast to

S10 and S100 soils, the bacterial community composition of S0

soils (indicated by cubes) 60 days after the third manure

application still grouped in the vicinity of the untreated soils

(Figures 2 and S1) suggesting a stronger resilience of the soil

bacterial community towards manure when no antibiotic was

present.

The difference between bacterial communities of the initial soil

(day 3 untreated) and of the treated soil was calculated based on

Pearson dissimilarity (Figure 3). A pronounced increase in

difference was observed for soils shortly after each manure

application (S0, S10). The dissimilarity increased with the repeated

applications of manure containing SDZ for samples collected 60

days after each manure application. The highest deviation was

observed for soil treated three times with manure containing the

high concentration (100 mg/kg) of SDZ. At the same sampling

time, the least difference was found for the untreated control soils.

Figure 1. Dissimilarity between soils treated with manure (S0) and manure spiked with SDZ (S10 indicated by circles; S100
indicated by triangles) at different sampling times. Red symbols: results based on the data set acquired by the forward primer; blue symbols:
results based on the data set acquired by the reverse primer. Error bars indicate the first and third quartiles.
doi:10.1371/journal.pone.0092958.g001
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Figure 2. Non metric multidimensional scaling based on OTU reports acquired by the reverse primer sequencing. Balls: untreated
soils; cubes: S0; octahedron: S10; pyramid: S100.
doi:10.1371/journal.pone.0092958.g002

Figure 3. Dissimilarity between soils treated with manure (S0, S10 and S100) or not (U) and the untreated initial soils (Day3 U) at
different sampling times. Dissimilarity was calculated from the data acquired by the reverse primer. Error bars indicate the first and third quartiles.
doi:10.1371/journal.pone.0092958.g003
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Taxa with significantly altered relative abundance in
response to repeated application of manure spiked with
SDZ or unspiked

About 86% of the sequences obtained with the forward primer

could be assigned to 21 phyla while 90% of the reverse primer

derived sequences were affiliated to 19 phyla. The percent Bray-

Curtis similarities of the taxonomic composition between the data

sets acquired with the forward and reverse primers, respectively,

were calculated for each sample based on the percent of the

classified taxa at different taxonomic ranks (from phylum to genus

level). Although from the phylum to the genus level the similarity

of the taxonomic composition decreased as shown in Figure 4, the

overall taxonomic composition of both data sets was very similar.

To identify the taxa which significantly (Bonferroni adjusted

p value,0.05) responded to the repeated application of manure,

comparisons were made between soils treated with S0 or not (U).

All taxa with significantly different relative abundance (Bonferroni

adjusted p value,0.05) were considered. In soil samples taken

three days after the addition of manure short-term responders

were identified (summarized in Table S2 for the reverse primer

derived sequence set and in Table S3 in File S1 for the sequence

set obtained with the forward primer). Based on these data (Table

S2 and S3) we could mainly identify genera belonging to the

Proteobacteria such as Delftia (Betaproteobacteria), Pseudomonas, Pseudox-

anthomonas, Stenotrophomonas (Gammaproteobacteria), Bacillus, Lactobacil-

lus, Streptocococcus, Clostridiales (Firmicutes) and Arthrobacter (Actinobac-

teria) which were significantly increased in relative abundance in

S0 soils compared to the untreated soil as short time responders to

the manure application. The increase in the relative abundance of

Firmicutes (Table S4 in File S1) is likely related to the high

abundance of these organisms in the manure (data not shown). In

turn the relative abundance of different genera of the Acidobacteria

and Planctomycetaceae but also Gemmatimonadetes, the genus Methyli-

bium (Betaproteobacteria) decreased in S0 soils compared to the

untreated soils (Table S2 and S3 in File S1). An increased relative

abundance of the genera Devosia, Clostridium, Peptostreptococcus and

Adheribacter in response to the manure application was observed by

comparing U and S0 soil on day 193 (Table S5 and S6 in File S1).

In contrast, Myxococcales seemed to be negatively affected by

manure. On day 193 the relative abundance of Acidobacteria was

still significantly decreased in all manure treatments compared to

untreated soil with the exception of GP10 which showed a higher

relative abundance in S10. Some taxa, such as the family

Planctomycetaceae, were not affected by manure application.

With repeated application of manure the number of taxa with

significantly altered relative abundance in S10 compared to S0 soil

increased (summarized in Table 1 for the reverse primer and in

Table S7 in File S1 for the forward primer). An increased

abundance in S10 soils was observed in particular after repeated

manure application for the genera Devosia, Sphingobium, Gp10 and

Gemmatimonas. Shortly after manure application a significantly

increased abundance was observed in S10 compared to the S0

soils for the phylum Chloroflexi, the class of the Deltaproteobacteria and

the orders of Clostridales and Actinomycetales. Acidobacterial genera

Gp4, Gp6 and Gp10 with one exception showed always higher

relative abundances in S10 but only in some cases these differences

were found to be significant (Table 1). The relative abundances of

Pseudomonas, Lysobacter and Adheribacter were lower in all S10

compared to S0 soils indicating that the presence of SDZ exerted a

negative effect on these taxa.

Samples taken 60 days after the first, second and third manure

applications mainly revealed the same taxa with increased or

decreased relative abundance in S10 compared to S0 as in the

samples taken shortly after manure application (shown in Table 2

for the reverse primer and in Table S8 in File S1 for the forward

primer). With repeated application of manure (S0, S10) the

number of taxa with significantly different relative abundance

increased from 3 (60 days after the first manure application) to 11

(60 days after the third manure application). Although not

significant at all time points the genera Devosia, Gemmatimonas and

Acidobacteria Gp6 and Gp10 showed an increased relative

abundance in S10 compared to S0 soils. In S100 soils analyzed

only for the samples taken 60 days after the third manure

application (day 193) the relative abundances of Devosia and

Gemmatimonas were increased compared to their abundance in S10

and S0 soils clearly indicating that bacteria belonging to these

genera take profit from high concentrations of SDZ. A higher

relative abundance in S100 soils was also observed for Anerolineaceae

(Chloroflexi), Microbacteriaceae and the genus Clostridium. Most striking

was the selection of Stenotrophomonas in S100 soils as sequences of

this genus were not detected in S0 and in very low relative

abundance in S10 soils on day 193. Also acidobacterial genera

were identified as responders to SDZ. However, the different

genera of Acidobacteria responded differently to SDZ manure. The

S10 soils had a higher abundance of Acidobacteria belonging to the

genera Gp10 and Gp6 (except day 60) compared to S0. On day

193, the relative abundance of Gp4, Gp6 and Gp10 was lower in

S100 than in S10 soil. The negative effect of SDZ on Pseudomonas,

Lysobacter and Adheribacter was also detected in S100 but there was

no significant difference in their relative abundance between S10

and S100.

Discussion

The importance of the soil microbiome for various ecosystem

services such as nutrient cycling, soil fertility, degradation of

pollutants, and plant growth promotion is well recognized [29].

However, antibiotics introduced into agricultural fields via manure

might alter the ability of soil microbes to fulfill crucial ecosystem

services, changing the diversity and activity of key functional

Figure 4. Box plot showing the similarity of taxonomic
composition at different ranks between data acquired by the
forward and reverse primers.
doi:10.1371/journal.pone.0092958.g004
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groups by enhancing antibiotic resistant populations while

decreasing the abundance of sensitive populations in soils

[16,30]. In the present study, the effects of repeated application

of SDZ manure on soil bacterial communities were explored by

barcoded pyrosequencing of 16S rRNA gene amplicons from TC-

DNA. More pronounced changes of bacterial communities were

observed for soils that were repeatedly treated with SDZ manure.

The strongest effects were observed for soils treated three times

with manure containing a high concentration of SDZ (Figures 2

and 4). For the first time, taxonomic groups affected by the

presence of SDZ were systematically identified, and numerous

taxa were found with significantly altered relative abundance

(Tables 1 and 2). These findings largely extended our understand-

ing of the influence of SDZ introduced via manure on soil

bacterial communities.

Although the bioavailable fraction of SDZ in soil rapidly

decreased after each manure application [16], cumulative inputs

of SDZ via manure still affected bacterial communities. Also in the

study by Byrne-Bailey et al. [31], the proportion of sulfachlor-

opyridazine resistant bacteria increased in soils after treatment

with manure containing antibiotics. The repeated application of

SDZ manure to grassland soil was found to affect nitrite oxidizing

bacteria [32]. The influence of SDZ on soil bacterial communities

is more likely to be detected when additional nutrients (root

exudates, manure) are added to stimulate bacterial growth [33,34]

as SDZ affects only growing bacteria and bacterial activities are

generally low in oligotrophic environments such as soils.

The amendment of soil with SDZ manure resulted in a

significantly increased relative abundance of numerous Gram-

negative and Gram-positive taxa such as Devosia, Shinella,

Stenotrophomonas, Clostridium, Peptostreptococcus, Leifsonia, Gemmatimo-

nas, suggesting that the presence of SDZ provided a selective

advantage for these taxa. Mainly the increase in bacteria affiliated

to Clostridia detected shortly after the addition of manure likely

resulted from manure-derived bacteria. In our study more than

60% of sequences in manure could be affiliated to Clostridium (data

not shown), which confirms data from previous studies where the

dominance of Clostridium in manure has been reported [35–37]. A

steep decrease of Clostridia was observed 60 days after the

application. Only in S100 soils the relative abundance of Clostridia

was found to be significantly higher than in the other soils on day

193, suggesting that the high concentration of SDZ slowed down

the decline of Clostridium populations. Whether the enhanced

abundance of Clostridium in S100 soils was due to the selection of

SDZ resistant populations deserves further research.

Although the resistance to SDZ was not reported yet for most of

these taxa, it is likely that some of the populations enriched in the

present study might be resistant to SDZ either due to the presence

of resistance genes or due to intrinsic resistance. Isolates belonging

to Stenotrophomonas and Clostridium were previously reported to be

resistant to other sulfonamide antibiotics [38,39]. Based on the

same TC-DNA, Heuer et al. [16] found an accumulation of sul

gene carrying populations in the soil repeatedly treated with SDZ

manure. Sul genes located on mobile genetic elements such as class

1 integrons or plasmids might have spread among different taxa

[40,41]. The presence of antibiotics, even at very low concentra-

tions could accelerate the genetic exchanges between bacteria

[42,43]. The enhanced transferability of resistant genes was

recently also reported by Jechalke et al. [15] in a field experiment

using manure from SDZ-treated pigs. However, we cannot

exclude that some of the taxa were intrinsically resistant to, or

even able to mineralize SDZ as a SDZ degrader identified as

Microbacterium lacus was recently isolated from the same Merzen-

hausen soil [44]. Interestingly, in the present study an OTU

affiliated to Leifsonia, which is phylogenetically closely related to

Microbacterium was found to be enriched in S100 soils.

In this study, the consensus sequences of an enriched OTU in

soils treated with manure shared high similarity with the 16S

rRNA gene of S. maltophilia which is also known as a human

pathogen [38]. However, these enriched bacteria are not

necessarily human pathogens as Stenotrophomonas was also found

in different environments such as rhizosphere or soils [45,46].

Nevertheless, the enrichments of Shinella, Stenotrophomonas, Clostrid-

ium and Peptostreptococcus in soil which was continually treated with

manure containing a high concentration of SDZ still urge for

further investigation due to potential implications for public

health. The enrichment of these bacteria, which are phylogenet-

ically closely related to human pathogens, may improve the

chance of transferring antibiotic resistance genes to human

pathogens, since horizontal gene transfer is more prevalent

between closely related organisms than between those distantly

related (reviewed by Boto [47]). Soil particles carrying viable

bacteria can be transported over long distances and might

contribute to the spreading of antibiotic resistant bacteria over

wide geographic ranges [48]. The ecological role of taxa such as

Devosia, Leifsonia and Gemmatimonas has not been fully understood

and thus the effect of their changed abundance on soil functions

remains to be explored. Few studies suggested that some members

of Devosia [49,50] and Gemmatimonas [51] might be associated with

nitrogen cycling.

The relative abundances of several other taxa such as

Pseudomonas, Lysobacter, Hydrogenophaga, Haliangium, and Adhaeribacter

were found to be significantly lower in the soils treated by SDZ

manure. Several members of Lysobacter or Pseudomonas are known as

biological control agents against soilborne phytopathogens such as

Rhizoctonia solani, Thielaviopsis basicola [52,53]. Several studies

suggested that these beneficial bacteria belonging to Pseudomonas

or Lysobacter probably play an important role for soil suppressive-

ness and plant growth [45,54]. In the present study, the consensus

sequences of an OTU with decreased relative abundance in soil

treated with SDZ manure shared 100% similarities with 16S

rRNA gene of the strain of P. brassicacearum (NCBI accession

number: NR_074834) which is a beneficial root-associated

bacterium [55]. The decline of Pseudomonas and Lysobacter in arable

soils might increase the susceptibility towards fungal pathogens.

However, in general the application of manure to soils is one

strategy to suppress soilborne diseases. Our data showed that the

relative abundance of Pseudomonas was much higher in soils treated

with manure than in untreated soils on days 3 and 193. The

presence of SDZ in manure likely reduces the beneficial effects of

manure on improving soil health as the abundance of Pseudomonas

was reduced. However, resilience of these beneficial populations

might still occur in the rhizosphere as decreased concentrations of

SDZ were recently observed in the rhizosphere of maize and grass

compared to bulk soil [6]. Little is known about the ecological

roles of Hydrogenophage, Haliangium, Adhaeribacter in soil. Hydrogeno-

phaga spp. were reported as main biphenyl degraders in the

rhizosphere of horseradish (Armoracia rusticana) contaminated with

polychlorinated biphenyls [56].

The present study is the first to explore the influence of

veterinary antibiotics entering soil via manure on the diversity and

abundance of Acidobacteria. The results revealed that Gp4 was

negatively affected by repeated application of manure containing

the high concentration of SDZ. Low concentrations of SDZ in

manure seemed to favor Gp6 and Gp10, while high concentra-

tions of SDZ could deprive the effects. Acidobacteria are known to be

adapted to an oligotrophic lifestyle. Indeed, in the present study

the relative abundance of Acidobacteria was significantly higher in
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the untreated soil than in the soil amended with manure. Due to

their high abundance and ubiquitous distribution in soils,

Acidobacteria might play an important role in terrestrial ecosystems.

In combination with the analysis of three genomes of acidobacterial

isolates, Ward et al. [57] suggested that Acidobacteria might

significantly contribute to the terrestrial carbon cycle.

Along with nutrients, a large amount of manure bacteria was

also introduced into soil which could have also contributed to the

dramatically altered bacterial community compositions observed

in the present study shortly after each manure application.

However, the majority of these introduced manure bacteria might

not be very well adapted to soil, allowing the resilience of the

indigenous soil bacteria community. In the present study we

showed that repeated application of manure spiked with SDZ to

soil increased the degree of disturbance and reduced the resilience

of soil bacterial communities compared to a single application of

manure spiked with SDZ or soils treated with manure without

antibiotics. In a recent study by Poulsen et al. [58], the taxonomic

composition of bacterial communities based on the abundance of

phyla and proteobacterial classes were highly similar between soils

with amendments of different organic wastes such as manure. In

the present study, we observed clear effects of manure on the soil

bacterial community composition as the NMDS analysis revealed

separated groups for S0 and untreated soils on day 193 (Figure 3).

In contrast to several subgroups of the Acidobacteria, Myxococcales

(Deltaproteobacteria), numerous taxa belonging to different phyla

(Proteobacteria, Firmicutes and Bacteriodetes) were observed with

significantly higher relative abundance in the soils amended with

manure than in the untreated control 60 days after the third

application. Very likely the added nutrients favored taxa with a

more copiotrophic lifestyle. In contrast to the field experiment

analyzed by Poulsen et al. [58], the conditions in the present

experiment were more controlled and the time period after the last

manure amendment might have been shorter although this was

not specified in the Poulsen study.

In summary, repeated input of SDZ into the Merzenhausen soil

via manure, especially at a high concentration, caused pronounced

changes in soil bacterial communities. The presence of SDZ

provided a selective advantage for species affiliated to the genera

Devosia, Shinella, Stenotrophomonas, Clostridium, Peptostreptococcus, Leifso-

nia, Gemmatimonas, while suppressing Pseudomonas, Lysobacter, Hydro-

genophage, Haliangium, Adhaeribacter. We could show that SDZ-

containing manure caused a more pronounced disturbance of the

soil bacterial community compared to control manure and

reduced resilience at least for the time period studied. However,

whether the findings obtained can be generalized to other soil

types with different soil properties remains an open question which

needs further attention. Furthermore, mainly the long-term

consequences of repeated manure application for soil ecosystem

functions and human health demand further investigations.
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