A Reference Pan-Genome Approach to Comparative Bacterial Genomics: Identification of Novel Epidemiological Markers in Pathogenic *Campylobacter*

Guillaume Méric¹, Koji Yahara^{1,2¤}, Leonardos Mageiros¹, Ben Pascoe¹, Martin C. J. Maiden³, Keith A. Jolley³, Samuel K. Sheppard¹*

1 Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom, 2 Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan, 3 Department of Zoology, University of Oxford, Oxford, United Kingdom

Abstract

The increasing availability of hundreds of whole bacterial genomes provides opportunities for enhanced understanding of the genes and alleles responsible for clinically important phenotypes and how they evolved. However, it is a significant challenge to develop easy-to-use and scalable methods for characterizing these large and complex data and relating it to disease epidemiology. Existing approaches typically focus on either homologous sequence variation in genes that are shared by all isolates, or non-homologous sequence variation - focusing on genes that are differentially present in the population. Here we present a comparative genomics approach that simultaneously approximates core and accessory genome variation in pathogen populations and apply it to pathogenic species in the genus Campylobacter. A total of 7 published Campylobacter jejuni and Campylobacter coli genomes were selected to represent diversity across these species, and a list of all loci that were present at least once was compiled. After filtering duplicates a 7-isolate reference pangenome, of 3,933 loci, was defined. A core genome of 1,035 genes was ubiquitous in the sample accounting for 59% of the genes in each isolate (average genome size of 1.68 Mb). The accessory genome contained 2,792 genes. A Campylobacter population sample of 192 genomes was screened for the presence of reference pan-genome loci with gene presence defined as a BLAST match of \geq 70% identity over \geq 50% of the locus length - aligned using MUSCLE on a gene-by-gene basis. A total of 21 genes were present only in C. coli and 27 only in C. jejuni, providing information about functional differences associated with species and novel epidemiological markers for population genomic analyses. Homologs of these genes were found in several of the genomes used to define the pan-genome and, therefore, would not have been identified using a single reference strain approach.

Citation: Méric G, Yahara K, Mageiros L, Pascoe B, Maiden MCJ, et al. (2014) A Reference Pan-Genome Approach to Comparative Bacterial Genomics: Identification of Novel Epidemiological Markers in Pathogenic *Campylobacter*. PLoS ONE 9(3): e92798. doi:10.1371/journal.pone.0092798

Editor: Stefan Bereswill, Charité-University Medicine Berlin, Germany

Received December 19, 2013; Accepted February 26, 2014; Published March 27, 2014

Copyright: © 2014 Méric et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by various funding sources from the Biotechnology and Biological Sciences Research Council (BBSRC), and the Wellcome Trust. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: s.k.sheppard@swansea.ac.uk

¤ Current address: The Biostatistics Center, Kurume University, Fukuoka, Japan

Introduction

Periodic advances in DNA sequencing technology, such as wide-spread adoption of automated DNA sequencing in the 1990s, have revolutionized understanding of microbial processes, from single-cell physiology to population biology [1,2]. The last decade saw the increased use of high-throughput or 'next-generation' sequencing methods that parallelize the DNA sequencing process beyond what was possible with standard dye-terminator methods. These technologies have underpinned important research in pathogen epidemiology and evolution [3,4,5,6,7,8], but there are still major technical challenges for effectively archiving and analyzing hundreds or thousands of bacterial genomes [9].

A popular approach to describe the genetic variation among multiple bacterial genomes has been to map stretches of DNA sequences from multiple isolates to a reference bacterial genome to identify variable sites that display single nucleotide polymorphisms (SNPs). This is an effective way of condensing large genomes into panels of informative sites. This has provided detailed information on the genetic structure and transmission of pathogen species with relatively low sequence diversity, such as *Mycobacterium tuberculosis* [10] or *Yersinia pestis* [11], and for single lineages of more diverse species, for example *E. coli* O157:H7 [12]. However, this approach has potential limitations, particularly when applied to highly diverse species such as *Campylobacter jejuni*. First, because it requires careful separation of biologically informative SNPs from relatively common sequencing errors, and second because this approach typically treats dispersed and locally clustered SNPs equally even though the later are likely to be the consequence of horizontal genetic exchange.

An alternative to using a reference genome SNP-based approach is to use genes as the units of comparison. In this reference gene based approach [13], genetic variation within the sample is catalogued one gene at a time by comparison with reference gene sequences, and each new variant is assigned a unique arbitrary allele number in order of description. This wholegenome multilocus sequence typing (MLST) approach enables locus information to be defined in simultaneously in hundreds of genomes and has been implemented for genera, including *Campylobacter, Staphylococcus,* and *Neisseria,* using the web-based BIGSdb platform (http://zoo-talisker.zoo.ox.ac.uk/dbases/ [14,15]).

Both the SNP-based and gene-by-gene approaches rely on reference-based mapping and cannot be used to detect variation in genes that are not present in the reference isolate sequence or locus list. This is not important in analyses based on comparison of a core genome shared among all isolates, but may be less suitable for the discovery of novel genes and functions, and for the examination of the accessory genome composed of genes that vary in presence across isolates of the same population. Here we address this challenge by combining multiple reference genomes to create a single list of genes present in 7 reference genomes from which gene presence and variation can be examined in other bacterial genomes. This list of genes will be hereafter termed the 'reference pan-genome' - not to be confused with the true pangenome as it is based on just 7 isolates. This technique is then applied to characterize the genetic variation in Campylobacter jejuni and Campylobacter coli.

C. jejuni and C. coli are common constituents of the commensal gut microbiota of various bird and mammal species. Human infection, typically associated with the consumption of contaminated meat or poultry [16,17], results in symptoms of severe diarrhea and fever. Campylobacteriosis is currently the most common form of bacterial gastroenteritis in industrialized countries, accounting for an estimated 1 million cases in the UK each year [18], with an annual economic burden of $\pounds 500$ million [19]. In spite of its public health importance, aspects of the ecology and evolution of Campylobacter remain poorly understood, even though they could have a profound effect on transmission and human infection. For example, it is not fully explained how C. coli and C. jejuni, that have similar host niches and frequently exchange genetic material [20,21,22], differ in terms of their disease epidemiology. Furthermore, within C. jejuni there are lineages that are largely limited to one host and others that are frequently isolated from multiple hosts and are common in human disease [7,23,24]. This ecological variation will have an impact on transmission ecology in C. coli and C. jejuni and here we aim to define the genomic differences between species and lineages and identify informative epidemiological markers using a reference pan-genome approach.

Materials and Methods

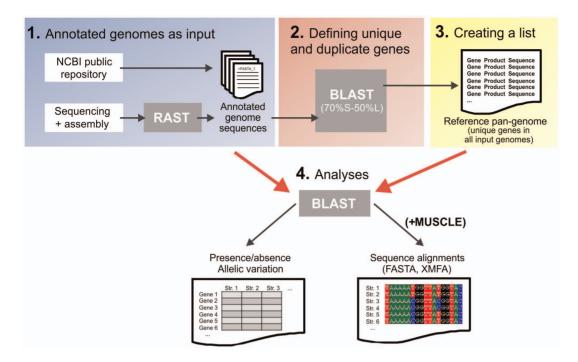
Characterizing the reference pan genome

The reference pan-genome approach combines the genomes of several reference strains into a single list of genes for those isolates. This gene list was then used for genome comparisons with the larger sample collection (Figure 1). Different numbers of reference strains can be used depending on the genome size and diversity of the accessory genome, but it is important to note that the pan-genome size will influence computation time for downstream applications. For species where finished annotated genomes are not available the reference pan-genome list can be assembled from whole genome contiguous sequence files from several isolates with automatic annotation, for example using RAST [25]. The list of genes from the various reference genomes was then screened to remove genes that appeared more than once, to create the reference pan-genome. Homologous genes were defined using BLAST as those that had >70% sequence similarity over >50% of the sequence length to another gene in the list. In

Campylobacter, the average core genome nucleotide sequence divergence between *C. jejuni* and *C. coli* is around 12.5% [6], corresponding to approximately 87.5% nucleotide sequence identity which is considerably higher the BLAST match criteria. Duplicate genes were then removed. The BLAST threshold can be altered depending on the bacterial species used and on the desired stringency.

To most effectively capture genetic variation within *C. coli* and *C. jejuni*, and therefore construct a representative reference pangenome, lineages were selected to represent the known genetic diversity based on published genealogies (**Table 1** [6,7]). In *Campylobacter*, annotated published reference genomes were available for both *C. coli* and *C. jejuni* that reflected diversity. The resulting *Campylobacter* reference pan-genome was based upon 7 published genomes: *C. jejuni subsp. jejuni* strains NCTC11168 [26], 81–176 [27], 81116 [28] and M1 [29]; *C. jejuni subsp. doylei* strain 269.97 (Genbank: NC_009707.1); *C. coli* strains 76339 (Genbank: NC_022132.1) and CVM N2970 [30] (**Table 1**). These genomes included both *C. coli* and *C. jejuni* species, two *C. jejuni* subspecies *jejuni* and *doylei*) and 6 clonal complexes defined as sharing 4 or more identical alleles at 7 MLST housekeeping gene loci.

Reference pan-genome analyses


Genetic variation at pan-genome loci was investigated in 192 *C. jejuni* and *C. coli* genomes from previously published studies (**Table S1** [6,7]). These isolate genomes were compared to the pangenome locus list using BLAST. Variation within the population genomic sample was catalogued one gene at a time with gene presence defined as a match with >70% sequence identity to >50% of a locus. The result was a matrix recording the presence or absence of each gene by comparison with reference pangenome gene sequences and each new gene sequence variant was assigned a unique arbitrary allele number in order of description. These analyses were implemented in the BIGSdb database platform [13,14].

Rarefaction and accumulation curves

The rarefaction and accumulation curves for core and pangenome size estimations were created using a R software script (**File S1**), and were inferred from a matrix of presence/absence of loci from the reference pan-genome list in all 192 genomes. The input was a matrix of gene presence and absence of the 7-isolate reference pan-genome. These genes were identified in the 192 sample genomes by BLAST comparison (as described above). The number of core genes shared by all isolates, and the cumulative number of different genes was calculated as the number of genomes sampled increased. Randomized calculations were carried out with 100 repeats, randomizing the order of the genomes each time to obtain mean core and pan genome size estimates and standard errors.

Phylogenetic analyses

Gene homologs were aligned on a gene-by-gene basis using MUSCLE [31] and then concatenated into contiguous sequence for each isolate genome including gaps for missing nucleotides (or entire genes) (**File S2**). A phylogeny of core genome alignments was reconstructed using FastTree v2.1.7 [32] with an approximation of the maximum-likelihood algorithm (**Figure 2**). The tree was created using 61,844 variable sites for a total of 378,003 shared sites from 1,035 loci.

Figure 1. The reference pan-genome approach. Conceptual pipeline showing the approach to generate a list of unique genes from more than one reference strain. Step 1: Compiling a gene list from reference genomes reflecting strain diversity from public repositories such as NCBI, or after automatic annotation on assembled contiguous segments (for example using RAST). Step 2: Comparative list analysis to remove duplicate genes that show \geq 70% sequence identity over \geq 50% of the sequence of another gene in the list. Step 3: Creating a final reference pan-genome list. doi:10.1371/journal.pone.0092798.g001

Results and Discussion

Core and accessory genome variation

The 7 reference genomes used to assemble the reference pangenome list contained 12,178 genes with a total length of more than 11 Mbp. The resulting pan-genome list, after removal of duplicate genes present in more than one reference genome, consisted of 3,933 genes, with a total coding sequence length of 3.72 Mbp (Table 2). There were 8,245 duplicate genes. Core and pan-genome sizes were estimated using rarefaction and accumulation curves (Figure 3). As expected, the number of genes shared by all isolates (Figure 3A) decreased as the number of sample genomes in the dataset increased, with 660 genes present in all 192 genomes. The estimated core genome of C. coli was 1,042 genes in 62 genomes. The estimated core genome of C. jejuni was 947 genes in 130 genomes (Figure 3A). Our estimates are consistent with previous studies where core genome size of C. jejuni was estimated to range from 847 genes [33] and 1,001 genes [34] to a maximum of 1,295 genes [29]. However, it is interesting to note that the core genome size does not reach a clear plateau, even when about 200 genomes are sampled, which indicates that if more diverse samples were added to this analysis, even fewer genes would be shared, something that has also been shown for *Escherichia coli* [35].

The pan-genome size was characterized for *C. jejuni* and *C. coli* by quantifying the number of reference pan genome genes as the number of sample genomes increased. The total pan-genome for 130 *C. jejuni* genomes contained 3,648 genes (**Figure 3B**). Ninety-two percent of this total was identified from comparison of only 7 genomes ($3,388\pm31$ genes), and 99% of the pan-genome size estimate was reached after comparing 75 genomes (**Figure 3B**). The pan-genome was smaller in *C. coli* with an estimated 3,520 genes identified in 62 sample genomes. A very similar proportion of the pan-genome genes were detected by comparison of 7

genomes (93%, 3267 ± 50 genes), and comparison of 40 genomes captured 99% of the total reference pan-genome (**Figure 3B**). When a single reference genome comparison was used, rather than the 7 isolate reference, the pan genome was greatly underestimated (**Figure 3C**). Almost all genes present in 11168 were found to be present in just 5 sample genomes of *C. jejuni* and *C. coli* (**Figure 1C**).

Comparative genomics approaches based on the alignment to a single genome will ignore genetic variation that is not present in this reference genome. For example, the C. jejuni strain NCTC11168 - which has a well annotated genome [26] - is commonly used in comparative genome studies [6,7]. This strain belongs to the ST-21 clonal complex, and while 93% (1,521/ 1,623) of its genes are present in all ST-21 clonal complex isolates, this number drops to 88% (1,424/1,623) for ST-45 clonal complex isolates and 69% (1,121/1,623) for C. coli Clade 1 isolates. Core genome analyses may not be affected by this issue, as only the shared genes between all strains are examined. However, 263 accessory genes, identified using the reference pan-genome approach in this study, are absent in C. jejuni 11168 but present in the ST-45 complex. Amongst this accessory genome there could be genes associated with important adaptive traits such as virulence or colonization factors linked to metabolism or hostassociation [7,36].

Variation in functional gene categories

By investigating variation in functional categories of genes in the reference pan-genome, some inference can be made about putative phenotype differences between species and lineages. To maximize the available genome annotation information beyond that which is available for the *C. jejuni* NCTC11168 isolate [26], all the genes comprising the pan-genome were concatenated and submitted to the RAST automatic annotation server, to attribute

Table 1. Publicly-available genomes used to produce a Campylobacter reference pan-genome.

Strain name	Lineage	Annotated genes	Genome size (Mbp)	NCBI Accession
C. jejuni subsp. jejuni NCTC11168	ST-21 complex	1,670	1.64	NC_002163.1
C. jejuni subsp. jejuni 81-176	ST-42 complex	1,812	1.7	NC_008787.1
C. jejuni subsp. jejuni 81116	ST-283 complex	1,681	1.63	NC_009839.1
C. jejuni subsp. jejuni M1	ST-45 complex	1,675	1.62	NC_017280.1
C. coli 76339	Clade 3	1,556	1.58	NC_022132.1
C. coli CVM N29710	Clade 1	1,747	1.73	NC_022347.1
C. jejuni subsp. doylei 269.97	ST-1845	2,037	1.85	NC_009707.1
Total size	-	12,178	11.75	-
Campylobacter reference pan-genome size	-	3,933	3.72	-

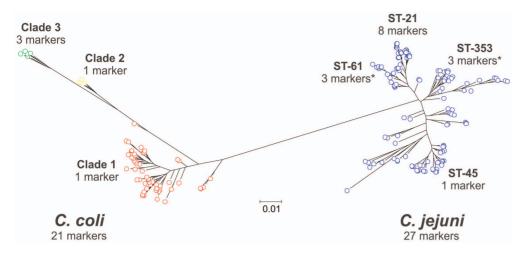
doi:10.1371/journal.pone.0092798.t001

putative function (**Table 2**). From a total of 1,623 genes, 1,431 (88%) were assigned to functional categories. Among these, the categories with most genes were associated with protein metabolism, the cell wall and capsule, cofactors and vitamins and amino-acids and derivatives (**Table 2**). The proportions of the various functional categories attributed by RAST to the reference pangenome list were different from those of *C. jejuni* NCTC11168 ($\chi^2 = 40.09$, d.f. = 25; p = 0.0286). Higher proportions for genes involved in cell wall and capsule and virulence factors were found in the pan-genome compared to *C. jejuni* NCTC11168, indicating that these genes functions are better represented in the pan-genome gene list.

Lineage specific genes in C. jejuni and C. coli

Comparison of patterns of gene presence/absence in the pangenome genes of 192 *C. jejuni* and *C. coli* genomes was performed to identify genes that segregated by species or lineage. Segregation was either: complete, with genes present in one group and absent in the other; or frequency dependent, where genes were significantly more frequent in one lineage. Consistent with the aim of discovering informative epidemiological markers, we focused on accessory genes that were the most specific to each of the 7 examined lineages of *C. coli* and *C. jejuni*. Of the 3,933 genes of the pan-genome, there were 20 genes specific to each of the 7 lineages (**Figure 2**).

Forty-eight genes were found to be differentially present in the species *C. jejuni* and *C. coli* (**Table 3**). It is interesting to note that the genes present in *C. coli* (62/62, 100%) but not *C. jejuni* (0/130, 0%) are all present in the *C. coli* 76339 reference genome used to compile the pan-genome, and none were present in the *C. jejuni* reference strain NCTC 11168. This highlights the fact that if a typical single strain reference approach, based on a NCTC 11168, had been used to identify genetic markers specific to *C. coli*, all of these genes would have been missed. Twenty-seven genes were found to be present in all *C. jejuni* (130/130, 100%) and absent in all *C. coli* (0/62, 0%).


There were several genes that segregated according to 3-clade structure in *C. coli* [37] (**Figure 2, Table 4**). One gene (*CcCVMN29710_G157_03450*), annotated as encoding a reductase involved in fatty acid biosynthesis, was present in all *C. coli* clade 1 isolates (47/47) but was absent from isolates in the other *C. coli* clades (0/9) and from *C. jejuni* (0/130). Similarly, one gene (*Cc76339_10830*), encoding a hypothetical protein was present in *C. coli* clade 2 (4/4) but absent elsewhere (0/188). Three genes

were present in all 5 genomes of *C. coli* clade 3 and absent in all other *C. coli* (0/57) and most *C. jejuni* (2/130) except for 2 environmental isolates. These genes putatively encoded a biotin sulfoxide reductase, a secreted serine protease and a cytochrome C-type periplasmic protein,

Within *C. jejuni*, accessory gene specificity for particular lineages was not complete with every gene present in high frequency in one of the major lineages also being present in minor lineages. This is not surprising as the genetic distance between clonal complexes is less than between species or the *C. coli* clades leading to increased gene flow because of the homology dependence of recombination [38]. There were, however, genes that could be associated with the ST-21 and ST-45 clonal complexes which are frequently isolated from multiple hosts [39], and the ST-353 and ST-61 complexes that are more host restricted.

Eight genes were present in 41/41 ST-21 clonal complex isolates, absent in *C. jejuni* ST-45, ST-61 and ST-353 complexes (0/89), but present in *C. coli* clade 1 (up to 43/47 isolates). This is consistent with previously reported gene flow between *C. coli* and *C. jejuni* [6,21]. These genes were also present in less frequent lineages of our dataset, notably ST-257 (in all 3 isolates) and ST-354 (in all 3 isolates) clonal complexes. One gene (*cj81116_1569*), encoding a putative periplasmic protein, was present at high frequency in the ST-45 clonal complex (28/28 isolates) and was absent from all other *C. jejuni C.* and *C. coli* isolates. The genes that are differentially present in ST-21 and ST-45 clonal complexes, provide support to the idea that while these lineages occupy the same hosts, they may have characteristics that differentiate them.

There were fewer lineage-specific genes in the chicken and cattle host associated ST-353 and ST-61 clonal complexes. Three genes were found to be present in all ST-353 clonal complex isolates (7/7, 100%) and not in the other most common C. jejuni clonal complexes in our dataset (Table 3). They were, however, present in 11(32%) of C. coli Clade 1 isolates and in the ST-257, ST-354, ST-508 and ST-573 clonal complexes. An interesting observation is that when these three genes were present in C. jejuni, it was mostly in isolates from chicken (17/21, 81%). As the ST-353 clonal complex is a chicken associated lineage [20], it can be expected that genes associated with this clonal complex may also be present in other chicken-associated lineages. Three other genes were found to be associated with the ST-61 clonal complex (Table 4), also without absolute specificity as the genes were commonly found in C. coli and some other C. jejuni clonal complexes.

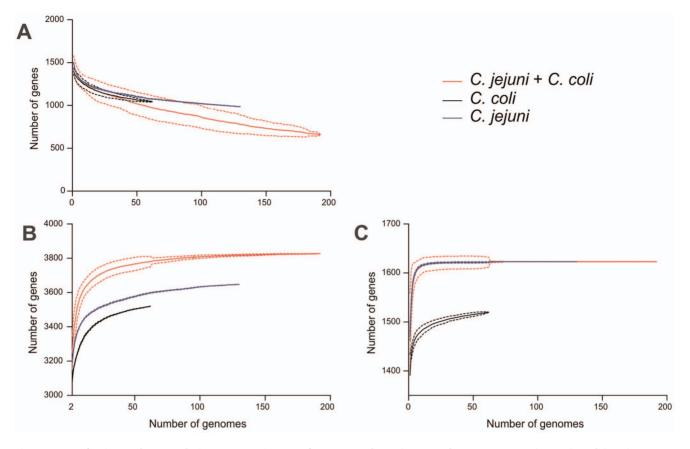

Figure 2. Phylogenetic tree of 192 *Campylobacter* **genomes and novel epidemiological markers.** Maximum-likelihood tree of 130 *C. jejuni* and 62 *C. coli* genomes. Isolates belonging to *C. jejuni* are shown in blue, and those belonging to *C. coli* clade 1 are indicated in red, clade 2 in yellow, and clade 3 in green. The scale bar indicates the estimated number of substitutions per site. Example genomes from *C. coli* clades 1-3 and *C. jejuni* ST-21, ST-353 and ST-61 clonal complexes were used to define the 7 isolate reference pan-genome gene list. The number of epidemiological markers from this list is indicated for each lineage. The asterisk indicates that markers were not found to be absolutely specific to that lineage, but were also present at low frequency in other lineages. Details about the markers are shown in Table 2 and Table 3. doi:10.1371/journal.pone.0092798.q002

Table 2. Functional categories of genes present in the reference p	ban-genome and in the reference genome of C. jejuni
NCTC11168.	

Functional category	Reference pan-genome	C. jejuni NCTC11168
Protein Metabolism	328 (12.2%)	213 (14.9%)
Cell Wall and Capsule	318 (11.8%)	125 (8.7%)
Cofactors, Vitamins, Prosthetic Groups, Pigments	285 (10.6%)	134 (9.4%)
Amino Acids and Derivatives	283 (10.5%)	181 (12.6%)
Virulence, Disease and Defense	167 (6.2%)	67 (4.7%)
Respiration	155 (5.8%)	72 (5.0%)
Motility and Chemotaxis	155 (5.8%)	86 (6.0%)
DNA Metabolism	148 (5.5%)	66 (4.6%)
RNA Metabolism	132 (4.9%)	65 (4.5%)
Carbohydrates	111 (4.1%)	62 (4.3%)
Membrane Transport	106 (3.9%)	51 (3.6%)
Iron acquisition and metabolism	96 (3.6%)	43 (3.0%)
Fatty Acids, Lipids, and Isoprenoids	92 (3.4%)	64 (4.5%)
Stress Response	76 (2.8%)	42 (2.9%)
Nucleosides and Nucleotides	63 (2.3%)	52 (3.6%)
Cell Division and Cell Cycle	38 (1.4%)	21 (1.5%)
Regulation and Cell signaling	33 (1.2%)	16 (1.1%)
Phosphorus Metabolism	30 (1.1%)	20 (1.4%)
Nitrogen Metabolism	21 (0.8%)	13 (0.9%)
Potassium metabolism	20 (0.7%)	16 (1.1%)
Regulons	12 (0.4%)	5 (0.3%)
Secondary Metabolism	7 (0.3%)	4 (0.3%)
Sulfur Metabolism	5 (0.2%)	5 (0.3%)
Miscellaneous	4 (0.1%)	4 (0.3%)
Metabolism of Aromatic Compounds	3 (0.1%)	3 (0.2%)
Dormancy and Sporulation	1 (0.0%)	1 (0.1%)
Total number of genes assigned to a known function	2689	1431

doi:10.1371/journal.pone.0092798.t002

I

Figure 3. Rarefaction and accumulation curve estimates of *C. jejuni* **and** *C. coli* **core and pan-genomes.** The number of shared genes (A), and the total number of genes (B and C), were determined as genome sampling increased. Comparisons were made based on matrices of gene presence/absence, derived from the reference pan-genome list, for *C. coli* (62 genomes), *C. jejuni* (130 genomes) and the two species combined (192 genomes). Randomized genome sampling was carried out 100 times to obtain the average number of genes for each sample comparison number (plain lines) and standard deviations (dotted lines). Pan-genome size estimates were calculated using the reference pan-genome (B) or the NCTC11168 annotation (C).

doi:10.1371/journal.pone.0092798.g003

Functional grouping of discriminating genes

Campylobacter uses short-chained fatty acids as nutrients, which are typical by-products of acetate and lactate metabolism by many gastrointestinal bacteria [40]. As in other bacteria [41,42], one of the β -oxidation by-products of fatty acids chains is metabolized via the methylcitrate cycle. Interestingly, 4 genes specifically found in *C. coli* and not *C. jejuni* were involved in the methylcitrate cycle (**Table 3**), which could highlight a preference or enhanced ability of *C. coli* strains to grow on odd-chained fatty acids compared to *C. jejuni*. With more focused development, this observation could potentially lead to the development of specific fatty-acid-rich media designed to discriminate more efficiently between *C. jejuni* and *C. coli*, or to improve isolation frequency of *C. coli* in the laboratory.

Another functional characteristic that differed between the two species was described by genes involved in copper and iron acquisition and homeostasis, which absolutely segregated between *C. jejuni* and *C. coli* in our dataset (**Table 3**). This could indicate that while these functions are important for both species, the genes involved in them are divergent, maybe indicative of convergent evolution, or compensatory systems. Additionally, we observed that the genes preferentially found in the ST-21 complex of *C.* *jejuni* were involved in the metabolism of various compounds (**Table 3**) such as L-rhamnose, L-fucose or aromatic compounds, as previously suggested [43]. The metabolism of L-fucose has been shown to be associated with gastrointestinal fitness in *C. jejuni* [36], but also enriched in ST-21 clonal complex isolates [43] and in introgressed Clade 1 *C. coli* [6]. This could potentially indicate that isolates from the ST-21 complex could have a higher metabolic plasticity compared to others.

Conclusion

The reference pan-genome approach, in this case based on 7 diverse *C. jejuni* and *C. coli* isolate genomes, was useful for investigating patterns of species- and lineage-specific genetic variation. Enhanced estimates of the core and accessory genome size were possible and several genes that were differentially present in the species and lineages were identified. The genetic segregation varied among lineages and was more pronounced for the 3 *C. coli* clades than within *C. jejuni*, where absolute segregation was rarely observed because of frequent genetic exchange. However, it was possible to identify genes that may provide information about some of the putative differences between species, clades and clonal complexes. As well as informing studies based on gene function,

Gene identifier	Description	Detailed functional categories	Gene prevalence	ralence								Species association
			C. coli			C. jejuni e	<i>C. jejuni</i> clonal complex	nplex		All <i>C. coli</i> (n = 62)	All <i>C. jejuni</i> (n= 130)	I
			Clade 1 (n = 47)	Clade 2 (n=4)	Clade 3 (n=5)	ST-21 (n = 41)	ST-45 (n = 28)	ST-353 (n = 7)	ST-61 (n = 6)			
Cc7633900005c	Methyl-accepting chemotaxis protein, putative		47	4	2	0	0	0	0	62	0	C. coli
Cc7633901340	Cytolethal distending Cytolethal toxin subunit C distending	toxins	47	4	Ŋ	0	0	0	0	62	0	C. coli
Cc7633901460c	2-methylcitrate dehydratase (EC 4.2.1.79)	Methylcitrate cycle	47	4	2	0	0	0	0	62	0	C. coli
Cc7633901470c	2-methylcitrate synthase (EC 2.3.3.5)	Methylcitrate cycle	47	4	5	0	0	0	0	62	0	C. coli
Cc7633901480c	Methylisocitrate lyase (EC 4.1.3.30)	Methylisocitrate lyase Methylcitrate cycle 4 (EC 4.1.3.30)	47	4	5	0	0	0	0	62	0	C. coli
Cc7633901490c	Propionate—CoA ligase (EC 6.2.1.17) / Acetyl-coenzyme A synthetase (EC 6.2.1.1)	Methylcitrate cycle; 47 Pyruvate metabolism .1)		4	2	0	0	0	0	62	0	C. coli
Cc7633901750	Highly acidic protein	,	47	4	5	0	0	0	0	62	0	C. coli
Cc7633902240	Integral membrane protein TerC		47	4	5	0	0	0	0	62	0	C. coli
Cc7633903250	hypothetical protein	I	47	4	5	0	0	0	0	62	0	C. coli
Cc7633904670	probable periplasmic protein Cj0093, putative	1	47	4	Ŋ	0	0	0	0	62	0	C. coli
Cc7633909670	Hypothetical protein Cj1162c	,	47	4	5	0	0	0	0	62	0	C. coli
Cc7633910710	Small hydrophobic protein		47	4	5	0	0	0	0	62	0	C. coli
Cc7633910950	FIG00469427: hypothetical protein		47	4	5	0	0	0	0	62	0	C. coli
Cc7633911130	Putative periplasmic protein		47	4	5	0	0	0	0	62	0	C. coli
Cc7633911470	Uncharacterized protein Cj0990c	,	47	4	5	0	0	0	0	62	0	C. coli
Cc7633911500c	Surface-exposed lipoprotein JlpA	Adhesion	47	4	5	0	0	0	0	62	0	C. coli
Cc7633912660c	Zinc ABC transporter, periplasmic-binding protein ZnuA	1	47	4	2	0	0	0	0	62	0	C. coli

Table 3. Prevalence of C. coli and C. jejuni associated genes from a comparison of 192 genomes.

Cc76339_12670 Peroxide Cc76339_12670 Peroxide uptake r protein Cc76339_12940 CoA-bin protein Cc76339_15800 (cobalan indepen indepen indepen	Description	functional categories	Gene prevalence	valence								Species association
0 9 9 ¥			C. coli			C. jejuni c	<i>C. jejuni</i> clonal complex	plex		All <i>C. coli</i> (n = 62)	All <i>C. jejuni</i> (n=130)	
0 0 0 0			Clade 1 (n = 47)	Clade 2 (n=4)	Clade 3 (n=5)	ST-21 (n=41)	ST-45 (n = 28)	ST-353 (n = 7)	ST-61 (n = 6)			
9 9 8	Peroxide stress regulator / Ferric uptake regulation protein	Oxidative stress; Iron Metabolism	47	4	ъ	0	0	0	0	62	0	C. coli
0 0	CoA-binding domain - protein		47	4	S	0	0	0	0	62	0	C. coli
00	Methionine synthase II- (cobalamin- independent)	-	47	4	2	0	0	0	0	62	0	C. coli
	FIG00469900: hypothetical protein		47	4	2	0	0	0	0	62	0	C. coli
and : prote to tra	Periplasmic dsDNA and ssDNA-binding protein contributing to transformation	1	0	0	0	41	28	7	9	0	130	C. jejuni
11168_Cj0090 Putat	Putative lipoprotein	1	0	0	0	41	28	7	9	0	130	C. jejuni
11168_Cj0135 Hypothe Cj0135	etical protein	1	0	0	0	41	28	7	6	0	130	C. jejuni
11168_Cj0186c Integ	Integral membrane protein TerC		0	0	0	41	28	7	9	0	130	C. jejuni
11168_Cj0327 Putat initiat yjgF 1	Putative translation initiation inhibitor, yjgF family		0	0	0	41	28	7	9	0	130	C. jejuni
11168_Cj0339 Putative transmer transport	Putative transmembrane transport protein		0	0	0	41	28	7	9	0	130	C. jejuni
11168_G0340 Inosir prefe hydro	Inosine-uridine Purine conversi preferring nucleoside Queuosine- hydrolase (EC 3.2.2.1) Archaeosine Biosynthesis	Purine conversions; 0 Queuosine- Archaeosine Biosynthesis	0	0	0	41	28	7	9	0	130	C. jejuni
11168_Cj0414 FIG00 hypot	FIG00471287: hypothetical protein		0	0	0	41	28	7	9	0	130	C. jejuni
11168_Cj0454c mem	membrane protein	ı	0	0	0	41	28	7	9	0	130	C. jejuni
11168_Cj0494 FIG00 hypor	FIG00469900: hypothetical protein	1	0	0	0	41	28	7	9	0	130	C. jejuni
11168_Cj0873c Cytochro protein	me c family		0	0	0	41	28	7	9	0	130	C. jejuni

Gene identifier	Description	Detailed functional categories	Gene p	Gene prevalence								Species association
			C. coli			C. jejuni	<i>C. jejuni</i> clonal complex	nplex		All <i>C. coli</i> (n = 62)	All <i>C. jejuni</i> (n=130)	
			Clade 1 (n = 47)	I Clade 2 (n=4)	Clade 3 (n=5)	ST-21 (n= 41)	ST-45 (n = 28)	ST-353 (n = 7)	ST-61 (n=6)			
11168_Cj0900c	Small hydrophobic protein	,	0	0	0	41	28	7	9	0	130	C. jejuni
11168_Gj1021c	Putative periplasmic protein	ı	0	0	0	41	28	7	9	0	130	C. jejuni
11168Cj1036c	FIG00469427: hypothetical protein	I	0	0	0	41	28	7	9	0	130	C. jejuni
11168_Cj1060c		1	0	0	0	41	28	7	9	0	130	C. jejuni
11168_Gj1162c	Hypothetical protein Cj1162c	1	0	0	0	41	28	7	9	0	130	C. jejuni
11168_Cj1666c	CopG protein	Copper homeostasis0	sis0	0	0	41	28	7	9	0	130	C. jejuni
11168_Cj1714		I	0	0	0	41	28	7	9	0	130	C. jejuni
11168_ctsT	Transformation system- protein	-w	0	0	0	41	28	7	6	0	130	C. jejuni
11168_kdpD	Osmosensitive K+ channel histidine kinase KdpD (EC 2.7.3)	Potassium homeostasis 3	0	0	0	41	28	7	Q	0	130	C. jejuni
11168_tonB2	Ferric siderophore transport system, periplasmic binding protein TonB	Iron Metabolism	0	0	0	41	28	2	9	0	130	C. jejuni
Cj_81-176_1820	Putative transmembrane transport protein	1	0	0	0	41	28	~	9	0	130	C. jejuni
Cj_81-176_6530	FIG00469465: hypothetical protein	ľ	0	0	0	41	28	7	9	0	130	C. jejuni
Cj_81-176_8530		ı	0	0	0	41	28	7	9	0	130	C. jejuni
Cj_81-176_8535			0	0	0	41	28	7	9	0	130	C. jejuni
Cj81116_1523		,	0	0	0	41	28	7	9	0	130	C. jejuni
Cjdoleyi_26997_0913	Small hvdrophobic		С	C	0	11	28	7	9	C	130	C ioinni

March 2014 | Volume 9 | Issue 3 | e92798

Novel Epidemiological Markers in Campylobacter

Early Early <t< th=""><th>Gene identifier</th><th>Description</th><th>Detailed functional categories</th><th>Gene prevalence</th><th>ralence</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Species/clade association</th></t<>	Gene identifier	Description	Detailed functional categories	Gene prevalence	ralence								Species/clade association
Glad Clad Clad Clad Find Clad Clad Find Find <th< th=""><th></th><th></th><th></th><th>C. coli</th><th></th><th></th><th>C. jejuni clo</th><th>nal complex</th><th></th><th></th><th>All <i>C. coli</i> (n = 62)</th><th>All <i>C. jejuni</i> (n=130)</th><th></th></th<>				C. coli			C. jejuni clo	nal complex			All <i>C. coli</i> (n = 62)	All <i>C. jejuni</i> (n=130)	
Instruction Bosonofiaction Fary Acid Value O				Clade 1 (n = 47)	Clade 2 (n = 4)	Clade 3 (n=5)	ST-21 (n= 41)	ST-45 (n = 28)	ST-353 (n = 7)	ST-61 (n = 6)			
30 Horhetical • 0 4 0 0 0 0 0 0 80 Bein sufficient • 0 0 0 0 0 0 0 80 Bein sufficient • 0 0 0 0 0 0 0 80 Putative screted • 0 0 0 0 0 0 0 90 Putative • 0 0 0 0 0 0 0 0 90 Putative • 0 0 0 0 0 0 0 0 10 Functione Undertified • 0 0 0 0 0 0 11 Putative Undertified • 0 0 0 0 0 0 11 Putative • 0 0 0 0 0 0 0 12 Undertified • 0 0 0 0 0 0 13 Putative • 0 0 0 0 0 0 14 Undetiter • 0	CcCVMN29710_G157_03450	3-oxoacyl-[acyl- carrier protein] reductase	Fatty Acid Biosynthesis	47	4	0	0	0	0	0	53	0	C. coli Clade 1
60 Both suffoxide - 0 0 0 0 0 70 Purples secreted - 0 0 0 0 0 70 Purples secreted - 0 0 0 0 0 0 70 Purples secreted - 0 0 0 0 0 0 0 70 Purples secreted - 0 0 0 0 0 0 0 70 Purples secreted - 0 0 0 0 0 0 0 70 Purples - 0 0 0 0 0 0 0 70 Purples - 0 0 0 0 0 0 0 70 Purples - 0 0 0 0 0 0 0 70 Purples - 0 0 0 0 0 0 70 Purples - 1 0 0 0 0 0 70 Purples - 1 0 0 0 0 0 70 Purples	Cc7633910830	Hypothetical protein		0	4	0	0	0	0	0	4	0	C. coli Clade 2
00 Parative secreted - 0	Cc7633904060	Biotin sulfoxide reductase	1	0	0	2	0	0	0	0	Ŋ	-	C. <i>coli</i> Clade 3
70 Putative Certification Continue - 0	cc7633907680c	Putative secreted serine protease		0	0	2	0	0	0	0	Ŋ	۲	C. <i>coli</i> Clade 3
Idenvice denvicional denviciona	c7633904070	Putative cytochrome C-type haem- binding periplasmic protein		0	0	Ŋ	0	0	0	0	Ś	-	C. <i>coli</i> Clade 3
r Transcriptional Momatic 38 0 <td>1168_ald′</td> <td>Aldehyde dehydrogenase</td> <td>L-rhamnose utilization</td> <td>43</td> <td>0</td> <td>0</td> <td>41</td> <td>0</td> <td>0</td> <td>0</td> <td>48</td> <td>59</td> <td>C. <i>jejuni</i> ST-21</td>	1168_ald′	Aldehyde dehydrogenase	L-rhamnose utilization	43	0	0	41	0	0	0	48	59	C. <i>jejuni</i> ST-21
Putative - 43 0 0 1 0	1168_Cj0480c	Transcriptional regulator	Aromatic compound degradation	38	0	0	41	0	0	0	43	58	C. <i>jejuni</i> ST-21
Fucose permease L-fucose utilization 43 0 0 10 0 0 0 Predicted metal - - 42 0 0 11 0	1168_Cj0485	Putative oxidoreductase	1	43	0	0	41	0	0	0	48	59	C. <i>jejuni</i> ST-21
Predicted metal- - 42 0 0 1 0	1168_Cj0486	Fucose permease	L-fucose utilization	43	0	0	41	0	0	0	48	59	C. <i>jejuni</i> ST-21
Hypothetical - 43 0 0 1 0 <	1168_CJ0487	Predicted metal- dependent hydrolase of the TIM-barrel fold	ı	42	0	0	41	0	0	0	47	59	C. jejuni ST-21
Putative lyase - 43 0 0 0 0 0 0 Altronate D- 43 0 0 41 0 0 0 Altronate D- 43 0 0 41 0 0 0 Altronate D- 43 0 0 0 0 0 0 Valoate D- Galacturonate 0 0 0 0 0 0 Utilization Utilization 0 0 0 0 0 0 0 0 Pathie - 0	1168Cj0488	Hypothetical protein	1	43	0	0	41	0	0	0	48	59	C. <i>jejuni</i> ST-21
Altronate D- 43 0 0 0 0 hydrolase Galacturonate and D- galacturonate 0 0 0 and D- Glucuronate und D- glucuronate 0 0 0 Putative - 0 0 0 0 0	1168_dapA	Putative lyase	,	43	0	0	41	0	0	0	48	59	C. jejuni ST-21
Putative - 0 0 0 0 28 0 0 periplasmic	1168_uxaA'	Altronate hydrolase	D- Galacturonate and D- Glucuronate Utilization		0	0	41	0	0	0	48	59	C. jejuni ST-21
protein	j81116_1569	Putative periplasmic protein	1	0	0	0	0	28	0	0	0	48	C. jejuni ST-45

Gene identifier	Description	Detailed functional categories	Gene preve	prevalence								Species/clade association
	-		C. coli			C. jejuni clor	<i>C. jejuni</i> clonal complex			All <i>C. coli</i> (n = 62)	All <i>C. jejuni</i> (n=130)	
			Clade 1 (n = 47)	Clade 2 (n=4)	Clade 3 (n=5)	ST-21 (n= 41)	ST-45 (n = 28)	ST-353 (n = 7)	ST-61 (n = 6)			
Cjdoleyi_26997_0954	Hypothetical protein	1	15	0	0	0	0	7	0	16	27	C. jejuni ST-353
Cjdoleyi_26997_0958	hypothetical protein	,	11	0	0	0	0	7	0	12	21	C. jejuni ST-353
Cjdoleyi_26997_0959	Death-on-curing family protein	1	Ŋ	0	0	0	0	7	0	Q	21	C. jejuni ST-353
CcCVMN29710_G157_08075	Hypothetical protein	1	33	m	0	-	0	0	9	42	11	C. jejuni ST-61
CcCVMN29710_G157_06925	Membrane protein	1	40	-	0	2	0	0	9	46	20	C. jejuni ST-61
CcCVMN29710_G157_06930	Membrane protein	1	38	-	0	2	0	0	9	44	20	C. <i>jejuni</i> ST-61
doi:10.1371/journal.pone.0092798.t004	2798.t004											

these genes can potentially act as epidemiological markers for differentiating strains.

Supporting Information

Table S1List of 192 genomes used in this study.(DOCX)

File S1 Scripts to calculate core genome rarefaction and pan-genome accumulation. The file contains R scripts and an example input file.

(ZIP)

File S2 Core genome alignment (FASTA format) for the 192 genomes used in this study. Core genes shared by all 192

References

- Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, et al. (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252: 1651–1656.
- Olsvik O, Wahlberg J, Petterson B, Uhlen M, Popovic T, et al. (1993) Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae O1 strains. J Clin Microbiol 31: 22–25.
- Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK, et al. (2010) Evolution of MRSA during hospital transmission and intercontinental spread. Science 327: 469–474.
- Katz LS, Petkau A, Beaulaurier J, Tyler S, Antonova ES, et al. (2013) Evolutionary dynamics of Vibrio cholerae O1 following a single-source introduction to Haiti. MBio 4.
- Rohde H, Qin J, Cui Y, Li D, Loman NJ, et al. (2011) Open-source genomic analysis of Shiga-toxin-producing *E. coli* O104:H4. N Engl J Med 365: 718–724.
- Sheppard SK, Didelot X, Jolley KA, Darling AE, Pascoe B, et al. (2013) Progressive genome-wide introgression in agricultural Campylobacter coli. Mol Ecol 22: 1051–1064.
- Sheppard SK, Didelot X, Meric G, Torralbo A, Jolley KA, et al. (2013) Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc Natl Acad Sci U S A 110: 11923– 11927.
- Young BC, Golubchik T, Batty EM, Fung R, Larner-Svensson H, et al. (2012) Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease. Proc Natl Acad Sci U S A 109: 4550–4555.
- Hall N (2007) Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol 210: 1518–1525.
- Gutacker MM, Mathema B, Soini H, Shashkina E, Kreiswirth BN, et al. (2006) Single-nucleotide polymorphism-based population genetic analysis of Mycobacterium tuberculosis strains from 4 geographic sites. Journal of Infectious Diseases 193: 121–128.
- Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnac P, et al. (2010) Versinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet 42: 1140–1143.
- Zhang W, Qi W, Albert TJ, Motiwala AS, Alland D, et al. (2006) Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms. Genome Research 16: 757–767.
- Sheppard SK, Jolley KA, Maiden MCJ (2012) A Gene-By-Gene Approach to Bacterial Population Genomics: Whole Genome MLST of Campylobacter. Genes 3: 261–277.
- Jolley KA, Maiden MC (2010) BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11: 595.
- Maiden MC, van Rensburg MJ, Bray JE, Earle SG, Ford SA, et al. (2013) MLST revisited: the gene-by-gene approach to bacterial genomics. Nature Reviews Microbiology 11: 728–736.
- Sheppard SK, Dallas JF, MacRae M, McCarthy ND, Sproston EL, et al. (2009) Campylobacter genotypes from food animals, environmental sources and clinical disease in Scotland 2005/6. Int J Food Microbiol 134: 96–103.
- Sheppard SK, Dallas JF, Strachan NJ, MacRae M, McCarthy ND, et al. (2009) Campylobacter genotyping to determine the source of human infection. Clinical Infectious Diseases 48: 1072–1078.
- Kessel AS, Gillespie IA, O'Brien SJ, Adak GK, Humphrey TJ, et al. (2001) General outbreaks of infectious intestinal disease linked with poultry, England and Wales, 1992-1999. Commun Dis Public Health 4: 171–177.
- Humphrey T, O'Brien S, Madsen M (2007) Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol 117: 237–257.
- Sheppard SK, Colles FM, McCarthy ND, Strachan NJ, Ogden ID, et al. (2011) Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species. Mol Ecol 20: 3484–3490.
- Sheppard SK, McCarthy ND, Falush D, Maiden MC (2008) Convergence of Campylobacter species: implications for bacterial evolution. Science 320: 237– 239.

isolates were aligned in a gene-by-gene manner (see methods) and concatenated.

(GZ)

Acknowledgments

We acknowledge Dr. Caroline P.A. de Haan, Prof. Marja-Liisa Hänninen and Dr. Mirko Rossi (University of Helsinki) for their kind help and access to unpublished genomes.

Author Contributions

Conceived and designed the experiments: GM SKS. Performed the experiments: GM KY LM. Analyzed the data: GM. Contributed reagents/ materials/analysis tools: BP MCJM KAJ. Wrote the paper: GM SKS.

- Sheppard SK, McCarthy ND, Jolley KA, Maiden MC (2011) Introgression in the genus Campylobacter: generation and spread of mosaic alleles. Microbiology 157: 1066–1074.
- Griekspoor P, Colles FM, McCarthy ND, Hansbro PM, Ashhurst-Smith C, et al. (2013) Marked host specificity and lack of phylogeographic population structure of Campylobacter jejuni in wild birds. Mol Ecol 22: 1463–1472.
- 24. Gripp E, Hlahla D, Didelot X, Kops F, Maurischat S, et al. (2011) Closely related Campylobacter jejuni strains from different sources reveal a generalist rather than a specialist lifestyle. Bmc Genomics 12: 584.
- Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
- Gundogdu O, Bentley SD, Holden MT, Parkhill J, Dorrell N, et al. (2007) Reannotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. Bmc Genomics 8: 162.
- Hofreuter D, Tsai J, Watson RO, Novik V, Altman B, et al. (2006) Unique features of a highly pathogenic Campylobacter jejuni strain. Infection and Immunity 74: 4694–4707.
- Pearson BM, Gaskin DJ, Segers RP, Wells JM, Nuijten PJ, et al. (2007) The complete genome sequence of Campylobacter jejuni strain 81116 (NCTC11828). Journal of Bacteriology 189: 8402-8403.
- Friis C, Wassenaar TM, Javed MA, Snipen L, Lagesen K, et al. (2010) Genomic characterization of Campylobacter jejuni strain M1. PLoS One 5: e12253.
- Chen Y, Mukherjee S, Hoffmann M, Kotewicz ML, Young S, et al. (2013) Whole-genome sequencing of gentamicin-resistant Campylobacter coli isolated from U.S. retail meats reveals novel plasmid-mediated aminoglycoside resistance genes. Antimicrob Agents Chemother 57: 5398–5405.
- Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.
- Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximumlikelihood trees for large alignments. PLoS One 5: e9490.
- Snipen L, Almoy T, Ussery DW (2009) Microbial comparative pan-genomics using binomial mixture models. Bmc Genomics 10: 385.
- Biggs PJ, Fearnhead P, Hotter G, Mohan V, Collins-Emerson J, et al. (2011) Whole-genome comparison of two Campylobacter jejuni isolates of the same sequence type reveals multiple loci of different ancestral lineage. PLoS One 6: e27121.
- Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, et al. (2008) The pangenome structure of *Escherichia coli*: comparative genomic analysis of *E. coli* commensal and pathogenic isolates. Journal of Bacteriology 190: 6881–6893.
- Stahl M, Friis LM, Nothaft H, Liu X, Li J, et al. (2011) L-fucose utilization provides Campylobacter jejuni with a competitive advantage. Proc Natl Acad Sci U S A 108: 7194–7199.
- Sheppard SK, Dallas JF, Wilson DJ, Strachan NJ, McCarthy ND, et al. (2010) Evolution of an agriculture-associated disease causing Campylobacter coli clade: evidence from national surveillance data in Scotland. PLoS One 5: e15708.
- Fraser C, Hanage WP, Spratt BG (2007) Recombination and the nature of bacterial speciation. Science 315: 476–480.
- Sheppard SK, Colles F, Richardson J, Cody AJ, Elson R, et al. (2010) Host association of Campylobacter genotypes transcends geographic variation. Appl Environ Microbiol 76: 5269–5277.
- Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, et al. (2004) Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 91: 915–923.
- Upton AM, McKinney JD (2007) Role of the methylcitrate cycle in propionate metabolism and detoxification in Mycobacterium smegmatis. Microbiology 153: 3973–3982.
- Munoz-Elias EJ, Upton AM, Cherian J, McKinney JD (2006) Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 60: 1109–1122.
- de Haan CP, Llarena AK, Revez J, Hanninen ML (2012) Association of Campylobacter jejuni metabolic traits with multilocus sequence types. Appl Environ Microbiol 78: 5550–5554.