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Abstract

Background: Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992–1993.
We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical Queensland, Australia
during the period 1993–2012.

Methods: Locally-acquired notified cases of dengue were collected for northern tropical Queensland from 1993 to 2012.
Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical
techniques.

Results: 2,398 locally-acquired dengue cases were recorded in northern tropical Queensland during the study period. The
areas affected by the dengue cases exhibited spatial and temporal variation over the study period. Notified cases of dengue
occurred more frequently in autumn. Mapping of dengue by statistical local areas (census units) reveals the presence of
substantial spatio-temporal variation over time and place. Statistically significant differences in dengue incidence rates
among males and females (with more cases in females) (x2 = 15.17, d.f. = 1, p,0.01). Differences were observed among age
groups, but these were not statistically significant. There was a significant positive spatial autocorrelation of dengue
incidence for the four sub-periods, with the Moran’s I statistic ranging from 0.011 to 0.463 (p,0.01). Semi-variogram analysis
and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not
homogeneous across the northern Queensland.

Conclusions: Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study
demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty
years in northern tropical Queensland, Australia. Therefore, this study provides an impetus for further investigation of
clusters and risk factors in these high-risk areas.
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Introduction

Dengue is emerging and resurging as a worldwide public health

problem since the 1950s, affecting more than 110 countries today,

and is a leading cause of hospitalisation and morbidity among

children in the tropics and subtropics [1]. It is a mosquito-borne

viral disease caused by one of four dengue viruses transmitted by

Aedes mosquitoes. Currently mosquito control is the only available

mitigation strategy but Wolbachia and the genetic manipulation of

mosquitoes to lead to male sterility, may change this in the

intermediate future. Aedes aegypti is the most common dengue-

transmitting mosquito in the state of Queensland in Australia.

Aedes albopictus (Asian tiger mosquito) another mosquito able to

transmit dengue is currently threatening the Australian mainland

having been detected on a number of Torres Strait islands [2]. Ae.

aegypti typically breeds in human-made container habitats such as

water storage jars in and around human settlements including

those in dense urban areas [3]. Ae. albopictus breeds in the same

containers as Ae. aegypti but also breeds in natural containers in the

bush such as tree holes, cut bamboo, banana trees and coconut

shells. However, both these mosquitoes breed in fresh waters, but

not in swamps or creeks. The recent arrival of the exotic species Ae.

albopictus is of great concern because, if Ae. albopictus colonises the

mainland, it could extend to the southern states due to its tolerance

of more temperate conditions [2].

In Australia, dengue re-emerged in north Queensland during

1992–1993, after disappearing for about 10 years, i.e., 1981–1991

[4]. Since then, outbreaks and epidemics of dengue, with locally-
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acquired cases, were reported in Cairns and Port Douglas [4].

These are located in the north-east (urban tropical) coastal regions

in Queensland. From January 1993 to June 2012, a total of 2,398

locally-acquired cases were documented in Queensland by

Queensland Health. Outbreaks of dengue occur primarily in

areas where Ae. aegypti mosquitoes are found. Dengue viruses may

be introduced into areas by travellers who become infected while

visiting other areas of the tropics where dengue commonly exists

[5].

Most mosquito-borne diseases exhibit spatial and temporal

variations in their distribution [6]. Spatial analyses using

geostatistics such as spatial autocorrelations, variograms, interpo-

lations, and temporal analyses using chi-squared statistics and time

series models are commonly applied to highlight patterns of

disease incidence [7,8].

Geographic information systems (GIS) play an important role in

disease surveillance and control of the mosquito-borne diseases as

they assist in the analysis of potential risk factors associated with

the disease through the geo-coding processes [8] and facilitate

maps that are useful for the identification of spatially and

temporally localised areas of potential high-risk populations [7–

11]. The visualised information represented in different types of

maps based on GIS enables simultaneous observation of both the

attribute and geographical relationships [12–14]. Maps also help

policy decision-makers and public health officials to communicate

with the public and policy decision-makers about complex

information in an easily interpretable format [15,16].

GIS can provide not only an opportunity to improve our

understanding of the distribution patterns of dengue, but can also

provide an environmentally and socially informed platform to

develop the elements of an early warning system towards control

and prevention of dengue [8]. The advancement of geographical

information systems (GIS) and spatial statistics has greatly

improved the understanding of dengue dynamics, including its

dependence on ecological factors. Hence, in this study, we

examined the spatial and temporal patterns of locally-acquired

dengue transmission in northern Queensland, Australia using GIS

tools and geostatistical techniques.

Methods

Study area
Queensland is the third largest state by population size in

Australia (after New South Wales and Victoria), occupying a total

area of 1,723,936 km2 with a total population of 4.56 million

people (20% of Australia’s total population) and is the fastest

growing state with 23.9% of population growth in Australia to

June 2012 [17]. Northern Queensland, a tropical region which is

100 km north of the Tropic of Capricorn (Figure 1) is selected as

the study area as it had the largest total number of recorded

notifications (n = 2,273) in Queensland, and the largest compared

any other Australian state and territory, during the period 2005–

2012 [18]. Northern Queensland has a tropical climate, with

average temperatures in summer ranging from 24–33 degrees

Celsius, and in winter 14–26.

Data collection
Dengue data. Dengue is a notifiable disease and all positive

cases are required to be reported by laboratories to the state

government (Queensland Health), by the Public Health Act 2005.

These records are archived by the Data Custodians, Communi-

cable Disease Branch (CDB) unit in Queensland Health under the

National Notifiable Disease Surveillance System (NNDSS). The

NNDSS was established in 1990 under the auspices of the

Communicable Diseases Network Australia. Vector-borne diseases

notified to the NNDSS include mosquito-borne diseases caused by

alphaviruses, such as Ross River virus (RRV), Barmah Forest virus

(BFV) and the flavivirus, Dengue.

In Australia, dengue outbreaks are a combination of locally-

acquired and overseas- or imported-cases. According to govern-

ment of Queensland Health, a dengue outbreak is declared when

there is one or more locally-acquired dengue cases are confirmed.

An overseas- or imported-case is defined as someone who is

infected with dengue overseas (i.e., viraemic traveller) and arrives

Australia with the virus in their blood [19]. A locally-acquired case

is defined as when a local dengue mosquito bites this overseas

dengue infected person and it passes the virus on to other people

by biting them [19].

We obtained computerised and anonymous notification data

(data that does not contain any identifiers such as name, street and

house number or Medicare number or other medical insurance

number) on locally-acquired dengue cases from January 1993 to

June 2012 (approximately 20 years) for the study area from the

CDB, Queensland Health. Dengue data included date of

notification, age group (e.g., ,1, 1–4, 5–9, 10–14 etc.), gender,

post code of residence and statistical local area (SLA) (census unit)

name. SLA is an Australian Standard Geographical Classification

(ASGC) defined area which consists of one or more collection

districts (the smallest geographical unit) in Australian census.

Therefore, we have analysed the data based on age group.

Population data. Population data for the SLAs for the

national census years 2001, 2006 and 2011 were obtained from the

Australian Bureau of Statistics. For the remaining years during

1993 to 2012, the annual population data were estimated based on

linear interpolation. We have adjusted SLA boundaries to match

earlier censuses.

The study was approved by the Data Custodians, Human

Research Ethics Committee under Chapter 6, Part 4, Section 280

of the Public Health Act 2005, CDB of Queensland Health and

following the ethical considerations of the Research Ethics Unit,

Queensland University of Technology (Number: 1100001110).

Statistical analyses
The study period was divided into four time periods, with five

years in each time period for the ease of the analysis and to

visualise the spatial and temporal patterns more clearly and

precisely: Period 1: 1993–1997, Period 2: 1998–2002, Period 3:

2003–2007 and Period 4: 2008–2012. Population data for each

period were attached to each SLA in the maps and these were

used as the denominator in the computation of incidence rates.

Period-wise distribution maps were produced on dengue cases and

incidence rates by SLA. MapInfo Professional (version 11)

incorporated with Vertical Mapper (version 3.7) was used to

produce the final outputs as tables and maps.

Spatial and temporal analyses
To investigate the spatial and temporal patterns of dengue

disease and to determine the risk of dengue disease, monthly

incidence rates were calculated at both SLA and state levels.

Incidence rates for each age group and gender were also

calculated from the total number of dengue cases notified in each

age group for each SLA in different time periods, divided by the

respective total person-years and then multiplied by 100,000.

These incidence rates were expressed as: total number of dengue

cases/total population*100,000. Differences between age- and

gender-specific incidence rates were tested using chi-square

analyses (SPSS version 21).

Spatial Analysis of Locally-Acquired Dengue
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Age- and gender-standardised incidence rates (SIRs) were

calculated for each SLA, using the direct method (based on

Queensland population as a ‘‘reference’’), adjusted for differences

in the age and gender distribution. For example, dengue was high

among the 25–29 year old age group so a SLA with a higher

proportion of this age group would have a higher overall incidence

rate of dengue. The equation for calculating SIR is:

SIR~

P
ei

P
d

(comparison)
i

(expressed per 100,000 people)

Where
P

ei is the total number of expected cases generated

using the reference population rates for each SLA;
P

d
(comparison)
i

is the total population in the comparison group.

Further, the SIR estimates were mapped to identify the spatial

differences. A significant difference between the observed and

expected number of cases is indicated if the confidence interval

(CI) does not contain zero. Differences between observed and

expected number of cases for age and gender were tested using

chi-square analyses.

Spatial analysis. We conducted spatial analysis comprising

three components: 1) spatial autocorrelations, 2) semi-variogram

models and 3) interpolations of SIR values (kriging).

Spatial autocorrelations. The global Moran’s I test statistic

was used to assess the presence of significant spatial autocorrela-

tion of dengue overall incidence rates in each of the four time

periods of 1993–1997, 1998–2002, 2003–2007 and 2008–2012.

Moran’s I ranges from 21 to 1: a value close to 0 indicates spatial

randomness while a positive value indicates positive spatial

autocorrelation, and a negative one indicates a negative autocor-

relation, that is clustering of observations, and similarly a negative

value indicates negative spatial autocorrelation, that is, repulsive

behaviour between observations. Statistical significance was tested

using randomisation based on 999 permutations [20]. The

neighbourhood matrix used for the computation of spatial

autocorrelation statistics, was based on Queen contiguity and

Euclidean distance [20].

Semi-variogram analysis. We used semi-variogram model-

ling analysis to explore the spatial structure and spatial autocor-

relation of SIRs of dengue and age. The semi-variogram is a

graphical representation of the variation among observations as

the distance between the observations increases. If the variation,

measured in terms of semi-variance, is distinctly small for low

values of lag distance, it is considered as an indication of positive

spatial autocorrelation, i.e., values at short distance from each

other are more alike than those at larger distances. The best-fit

semi-variogram model was identified by using Vertical Mapper

within MapInfo Professional to identify the smallest differences in

the model [21].

Kriging interpolation. Since the semi-variogram illustrates

the spatial dependency between the observed measurements as a

function of the distance between them, it allows us to estimate the

SIR value of dengue at any point from the observed data. This

interpolation was based on the best-fit semi-variogram using a

kriging method [22–24] with inverse distance weighting [25].

Inverse distance weighting interpolation has been employed in

other analyses of mosquito-borne diseases [26–28]. The kriged

SIR values were obtained using the interpolation method in

Vertical Mapper within MapInfo Professional and mapped to

better visualise the distribution of spatially related patches of

dengue.

Temporal analysis. To examine temporal patterns, epidem-

ic curves were produced by calculating the annual incidence rate

of dengue (annual dengue cases for each year divided by total

population for each year * 100,000 people) and monthly cases of

dengue during the period 1993–2012. Monthly differences

between incidence rates for the study period were tested using

Chi-square test. The statistical significance was set at ,0.05.

Figure 1. Study area showing the spatial distribution of dengue cases in northern Queensland, Australia, 1993–2012.
doi:10.1371/journal.pone.0092524.g001

Spatial Analysis of Locally-Acquired Dengue
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Results

Descriptive statistics
Table 1 shows summary descriptive statistics for the dengue

cases for the four time periods across SLAs in northern Queens-

land, Australia. Overall, the average number of dengue cases was

6.82 cases per year in northern Queensland. The SLAs notified

with dengue cases varied over the four time periods. There were

13 SLAs with dengue cases (n = 34) in 1993–1997, 11 SLAs in

1998–2002 (n = 130 cases), 58 SLAs in 2003–2007 (n = 1042 cases)

and 58 SLAs in 2008–2012 (n = 1192 cases). In all these periods,

seasonal differences were observed between the dengue cases

(Table 1). During 1998–2002 and 2008 to 2012, higher number of

dengue cases (n = 86 and 773, respectively) were documented in

summer whereas during 1993–1997 and 2003 to 2007, higher

number of dengue cases (n = 29 and 625, respectively) were

recorded in autumn.

Figure 2 shows the age- and gender-specific distribution of

dengue incidence rates (per 100,000 people) during 1993–2012 for

northern Queensland. The age and gender distributions are

comparable with the last national population census data in 2011

[29]. The median age of the dengue cases was 44 years (range ,1–

80 above years). The incidence rate increased steadily with

increasing age (children aged 5–9 years to those aged 50–54 years).

Females in the younger (20–25 year) age groups had slightly higher

incidence rates than males in the same age groups whereas in all

other age groups males had slightly higher incidence rates

compared with females. This difference was statistically significant

(x2 = 15.17, d.f. = 1, p,0.01). Differences were observed among

age groups, but these were not statistically significant.

Temporal analysis
Figure 3 displays the temporal epidemic patterns of dengue

cases and incidence rates for four time periods in northern

Queensland, including four major outbreaks in 2003, 2004, 2005

and 2009. The annual incidence rates fluctuated from 5.65 per

100,000 people (in 2000) to 82.84 per 100,000 people (in 2005).

The distribution of dengue cases and incidence rates was highly

seasonally sensitive over the whole study period and in each of the

four time periods. The incidence rates of dengue for the years

1993 to 2012 in northern Queensland indicates a strong seasonal

pattern (x2 = 8.357, d.f. = 1, p,0.01), with a peak in Autumn (i.e.,

March) and reduction in Winter (i.e., August), with striking

differences (Fig 4) among the four time periods. This supports the

observed differences in cases in Table 1.

Spatial analysis
Figure 5 depicts the spatial patterns of dengue incidence rates in

the four time periods during 1993–2012. Overall and in each

period, the far north Queensland regions had the highest

incidence rates: SLAs with highest incidence rates were Torres

followed by Cairns City (central suburbs) for the years 2008 to

2012. Other relatively large incidence rates were reported in south

Townsville and Cairns central suburbs. In all the time periods,

incidence rates were high in Torres, Cairns City (central suburbs),

Cairns - Mt Whitfield, South Townsville, Currajong, North Ward

- Castle Hill, South Flinders and Rowes Bay - Belgian Gardens.

Overall, dengue appears to have spread dramatically from Cairns

regions to north Queensland regions during 1993–2012. In

general, dengue occurred for 15 consecutive years from 1998

primarily in the same SLAs along the coastal northern Queensland

regions and gradually expanded into newer SLAs, with the highest

number of cases (n = 956) reported in 2009 during January to

April.

Spatial autocorrelation. Table 2 shows the results of the

calculation of global autocorrelation statistics for dengue cases for

the four time periods in northern Queensland. The results of the

global Moran’s I tests for dengue incidence rates for all four

periods are statistically significant and indicate spatial heteroge-

neity. There was an increase in spatial autocorrelation over the

period 2003–2007, reaching the highest value during 2008–2012.

Standardised incidence rates. Standardised incidence rates

(SIRs) of dengue for each SLA in northern Queensland over the

the study period were calculated and mapped (Fig 6). Geograph-

Table 1. Descriptive statistics of dengue cases among SLAs in northern Queensland, Australia, 1993–2012.

Indicators 1993–1997 1998–2002 2003–2007 2008–2012 Total

No. of SLAs positive 13 11 58 58 140

Total cases in all SLAs 34 130 1042 1192 2398

In summer 3 86 233 773 1095

In autumn 29 43 625 350 1047

In winter 1 0 50 17 68

In spring 1 1 134 52 188

doi:10.1371/journal.pone.0092524.t001

Figure 2. Dengue incidence rates by age and gender in
northern Queensland, Australia, 1993–2012.
doi:10.1371/journal.pone.0092524.g002
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ically, the largest SIRs were observed in the coastal areas; with the

peak SIR of 180/100,000 for Cairns City (central suburbs) while

the average SIR in northern Queensland was 2.06/100,000.

Semi-variogram analysis and kriging. Spatial dependence

of dengue SIRs was evaluated using semi-variograms. A quadratic

model was fitted to the semi-variogram using a sill and nugget of

400 and 0, respectively and a range of 5 degrees (Fig 7). This best-

fit semi-variogram model was then used in the kriging procedure

to map the SIRs. The map of the kriged SIR is shown in Figure 7.

This provides visual confirmation that the pattern of SIRs of

dengue disease is not homogeneous across the northern Queens-

land.

Discussion

This study reveals the spatial and temporal characteristics of

dengue in northern Queensland using GIS tools and geostatistical

analytical techniques. These methods have been applied to other

vector-borne infectious diseases to study the distribution patterns

of the disease, to identify the high-risk areas or hot spots, and to

determine the risk factors for the transmission of the disease

[26,30–35]. Locally-acquired dengue cases only occurred in

northern Queensland where the vector was common and where

the virus was commonly introduced by viraemic travellers [36].

Our results indicate that dengue incidence rates had an uneven

spatial distribution in northern Queensland and thus the disease

was spatially heterogeneous. In addition, the GIS maps clearly

revealed spatial expansion of dengue transmission in northern

Queensland over recent years (i.e., 2008–2012). For example,

Figure 3. Temporal distribution of dengue cases (depicting bar) and incidence rates (depicting line) for different time periods (A:
1993–1997, B: 1998–2002, C: 2003–2007 and D: 2008–2012).
doi:10.1371/journal.pone.0092524.g003

Figure 4. Box-plots showing the seasonal distribution of dengue cases for the different periods: A: 1993–1997, B: 1998–2002, C:
2003–2007 and D: 2008–2012.
doi:10.1371/journal.pone.0092524.g004
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dengue transmission has increasingly spread from Cairns regions

to a wider area.

Temporally, significant differences were noticeable across

different time periods in the study area. Our findings demonstrate

that the annual incidence rates fluctuated considerably, with the

two largest peaks in 2003 and 2009 (see Fig 2). It is important to

understand the influence of annual seasons on transmission cycles.

Our results also show that there has been an increasing trend in

the incidence rates of dengue during the study period. The overall

temporal pattern of dengue incidence in northern Queensland

indicates two general peaks per annum: the first short peak in

summer (i.e. extending for two months in November and

December), and a second long peak in autumn (i.e. four months

from January to April). These two peaks may be preceded by

peaks of mosquito densities in December and May, following the

normal typical wet season. Our findings strongly support previous

studies that have suggested an increase in mosquito population in

summer, with a lagged impact on the seasonal variation of dengue

[37,38]. However, whether this corresponds to the peaks of tourists

who might introduce the virus is still unknown.

The study results indicate that dengue outbreaks usually occur

during the rainy season (i.e., November to April) in northern

tropical Queensland, which generally has a lower temperature by

a few degrees and higher humidity than during the hot dry season.

These small environmental fluctuations may possibly increase the

female mosquito longevity and survival, thus increase the

likelihood of dengue transmission. Our findings strongly support

previous studies that have reported a strong seasonal pattern of

dengue [2,37,39].

The spatial and temporal differences may due partly to

occurrence of epidemics due to introduced cases, mosquito

distribution, local changes in climate and people’s culture and

behaviour towards personal protection, human adaptation to

forecasted drought (e.g., water storage facilities) and housing

conditions and life-style activities [2,40] and partly to local vector

control programs such as dengue mosquito management plan and

dengue alert response team activities [4]. Thus, further research is

needed to investigate the social mobilisation, entomological

surveillance, vector biology, dengue viruses, local people’s

behaviour and the local climatic factors on the transmission of

dengue in the northern Queensland region.

In this study, locally-transmitted dengue was reported in a small

number of SLAs across the study area. The study results reveal

that quite a few numbers of SLAs had the highest incidence rates

and SIRs (see Figs 4 & 7). This may be due to the several

conditions that favour vector, density, distribution, survival and

longevity [2,39,41]. A combination of flooding and heavy rainfall

has resulted in dengue epidemics across Australia [2,4,40]. In

addition, local factors such as the climate and socio-ecological

conditions may be more suitable for the local mosquitoes and thus

the transmission of dengue. Therefore, it is evident that further

studies on the environmental and socio-ecological factors on

dengue mosquitoes and dengue virus would assist in identifying the

reasons behind this phenomenal variation.

In this study, dengue incidence occurred in all age groups, but

was highest among males and females of age group 25–29 (see

Fig 3). The reasons for the differences in incidence rates among

age and gender groups are unknown, but may include different

exposure rates or other behavioural risk factors such as increased

internal (domestic) travel, immigration, work and leisure related

activities [29], however, this kind of information is unavailable in

this study. The possible reasons could be increased levels of time

spent outdoors for recreation (e.g., fishing and walking) and leisure

(e.g., sport and exercise) activities and internal (within the state)

travel due to work and family commitments. Clearly, the

relationships between the incidence rate of dengue, age and

gender needs to be understood in order to better manage and

reduce incidence spikes in certain age groups.

Epidemiologists normally use the ratio of case numbers at a

particular time to past case occurrences using the mean or median

[42]. However, since dengue cases vary from one place to another,

the spatial and temporal component must also be taken into

consideration. In disease surveillance and public health surveys,

spatial and temporal patterns are one of the most important

components influencing the distribution of diseases. Although

spatial analytical techniques rarely provide reasons for the

occurrences of spatial patterns, they do identify the geographical

locations of the occurrence of spatial pattern. Within this realm, it

provides a useful means to hypothesise about factors that may

influence health outcomes or to identify spatial issues that need to

be further investigated [43]. The evaluation of spatial distributions

as a measure of disease risk may provide etiological insights [44].

Regular time series models are difficult to fit to our data, given the

epidemic and irregular seasonal patterns of dengue incidence.

Thus, we haven’t pursued these models in this study.

In this study, the global Moran’s I statistic is used to measure the

degree of spatial autocorrelation and map the geographic patterns

of the areal units. To appropriately use dengue notification data

aggregated according to SLAs, it is important to choose the spatial

autocorrelation technique for the specification of local neighbour-

hoods. This is defined by the spatial weights matrix. In general, the

spatial autocorrelation may be the strongest between the nearest

neighbours. As the neighbourhoods increase in number, this

autocorrelation weakens. However, a recognised guide for

choosing a proper spatial weight matrix has not yet been

developed. In this study, an appropriate spatial weight matrix

was chosen after a comparison of the connectivity distributions of

neighbours obtained with the distance-based contiguity and the

first order Queen’s contiguity methods [20].

Spatial autocorrelation and semi-variogram analysis are valu-

able tools to study spatial patterns over time. The semi-variogram

estimators used in this paper directly account for population size,

attenuating the influence of less reliable rates recorded in sparsely

populated areas. Maps created from kriging interpolation revealed

that dengue was spatially and temporally distributed. Further

studies of local environmental and socio-environmental factors

that operate at fine spatial scales are crucial for improving the

Figure 5. Maps showing the dengue incidence rates by SLA over different periods (A: 1993–1997, B: 1998–2002, C: 2003–2007 and
D: 2008–2012).
doi:10.1371/journal.pone.0092524.g005

Table 2. Moran’s I values for the dengue incidence rates in
northern Queensland, Australia, 1993–2012.

Period Moran’s I value p-value

1993–1997 0.0116 0.03

1998–2002 0.0019 0.001

2003–2007 0.1362 0.001

2008–2012 0.4639 0.001

doi:10.1371/journal.pone.0092524.t002

Spatial Analysis of Locally-Acquired Dengue
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understanding of the spatial and temporal patterns of dengue.

Moreover, further investigation is warranted to understand the

effect of climatic and topographic factors on dengue local

transmission in the study area.

Vector-borne infectious diseases such as dengue present

complex and dynamic transmission patterns, which include vector

related factors such as type, density, distribution, breeding places

and human related factors such as population density, behaviour

and immunity, and virus related factors such as circulating

multiple virus serotypes DENV 1 to DENV 4, and environmental

factors such as temperature and rainfall [1,11,45]. Several dengue

outbreaks by different serotypes may occur in the same

population, and there is a large range of factors in intra-urban

areas which may favour the maintenance of potential breeding

sites of mosquitoes.

Figure 6. Map showing the standardised incidence rates of dengue by SLA in northern Queensland, Australia, 1993–2012.
doi:10.1371/journal.pone.0092524.g006
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Figure 7. The smoothed map of standardised incidence rates of dengue using kriging (Panel A) and a semi-variogram model (Panel
B).
doi:10.1371/journal.pone.0092524.g007
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We acknowledge that there could be issues in monitoring and

reporting dengue locally-acquired notification data. For this study,

the clinically proven cases on dengue were provided by Queens-

land Department of Health. Dengue is one of the notifiable

diseases in Australia, and is required to be reported to the local

health, by law. Data reliability issues for mosquito-borne diseases

have previously been discussed by Russell [46]. Underreporting is

also likely to occur when people infected with dengue do not seek

medical attention. For example, it is likely that there was

considerable underreporting in 1992 and 1993 but we have

evidence to suggest that in more recent epidemics the publicly

notified cases are not a gross underestimate of the total number of

cases. Nevertheless, these issues cannot entirely account for the

geographic distribution of dengue across northern Queensland.

This study has three major strengths. Firstly, this is the first

study to examine the geographic variation of dengue across geo-

political borders (i.e., SLAs) in northern Queensland using GIS

tools and geostatistical techniques. This study is an impetus for

future investigations on the spatial and temporal risk factor

analysis of dengue including multiple factors on environmental,

entomological, ecological and socio-demographic variables. Sec-

ondly, the results of this study demonstrate that GIS mapping

techniques may be used as a tool to quickly display information

and generate maps to highlight dengue risk-prone areas for

developing strategies towards dengue management. The maps

could be used by policy-decision makers to suggest particular

geographical localities or communities where further investigation

should be focused, to identify whether increased disease surveil-

lance measures or possible control activities are warranted.

Moreover, the corresponding statistical analyses can limit over-

reaction or unwarranted action based on purely visual assessment,

for example unsubstantiated identification of so-called ‘clusters’ of

cases and putative source identification. Finally, dengue data used

in this study are quite comprehensive, covering northern Queens-

land for approximately 20 years.

The study has also two key limitations. First, the quality of the

dengue surveillance system may vary with place and time as the

awareness of dengue among medical professionals and public may

have increased over recent years. However, spatiotemporal

variation of dengue infers that the dengue distribution is unlikely

to be entirely accounted for by a detection/surveillance. Second,

the exact place/location (i.e., residential address) where dengue

cases were notified may vary from those where they were infected/

acquired (i.e., exact place/location), particularly during holiday

periods. However, all the cases involved in this study were locally-

acquired and were not imported.

The maps produced in this study would provide useful

information to health authorities and could assist in focusing and

implementing control and preventive activities to monitor and

control the incidence of dengue precisely and effectively, especially

in the event when there is no report on dengue cases. The study

suggests that local surveillance teams should be vigilant at all times,

particularly after the wet season, not only in the epidemic period,

as dengue mosquitoes live with the human population. Further-

more, this study provides a new dimension to the health authorities

in northern Queensland, specifically in the potential of using GIS

applications to develop locally appropriate and eco-environmen-

tally friendly strategies for the implementation of preventive and

control activities, not only for dengue, but also for other vector-

borne diseases in Queensland.

In conclusion, this study has revealed that the spatio-temporal

patterns of dengue differ significantly in northern Queensland and

the study has highlighted that there are different transmission

patterns in SLAs between regions. This study has also concluded

that the spatial distribution of dengue appears to have expanded

over recent years. This is based on the results (see Tables 1 & 2)

and on the observation that dengue has spread from Cairns

regions to a wider area during 1993–2012. Autocorrelation

function can be beneficial for public health officials or policy-

developers to visualise and understand the distribution and trends

of diffusion patterns of dengue and to prepare warnings over high-

risk areas only rather than for a whole state or a whole region. This

may save time and cost and make public health authorities efforts

more efficient.

Future research should focus on the spectrum of dengue risk

factors and the prediction of future dengue transmission which are

necessary to improve the effectiveness and efficiency of dengue

local prevention and control programs.
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