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Abstract

Protein-RNA complexes play key roles in several cellular processes by the interactions of amino acids with RNA. To
understand the recognition mechanism, it is important to identify the specific amino acids involved in RNA binding. Various
computational methods have been developed for predicting RNA binding residues from protein sequence. However, their
performances mainly depend on the training dataset, feature selection for developing a model and learning capacity of the
model. Hence, it is important to reveal the correspondence between the performance of methods and properties of RNA-
binding proteins (RBPs). In this work, we have collected all available RNA binding residues prediction methods and revealed
their performances on unbiased, stringent and diverse datasets for RBPs with less than 25% sequence identity based on
structural class, fold, superfamily, family, protein function, RNA type, RNA strand and RNA conformation. The best methods
for each type of RBPs and the type of RBPs, which require further refinement in prediction, have been brought out. We also
analyzed the performance of these methods for the disordered regions, structures which are not included in the training
dataset and recently solved structures. The reliability of prediction is better than randomly choosing any method or
combination of methods. This approach would be a valuable resource for biologists to choose the best method based on
the type of RBPs for designing their experiments and the tool is freely accessible online at www.iitm.ac.in/bioinfo/RNA-
protein/.
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Introduction

Protein-RNA interactions play significant roles in many

biological processes such as mRNA stabilization and processing

[1], protein synthesis [2], post translational modification [3], [4],

assembly and function of ribosomes [5], eukaryotic spliceosomes

assembly [6] and replication of virus [7], [8]. The specific

interactions between amino acids and RNA provide valuable

information to enhance our knowledge to understand the

recognition mechanism of protein-RNA complexes. The binding

sites in protein-RNA complex structures can be identified with

atomic distance between the interacting residues in protein and

RNA [9], solvent accessible area of bound and unbound protein

[10] and energy based approaches [11]. Due to the experimental

constraints in solving protein-RNA complex structures and the

availability of large number of sequences [12], several methods

have been proposed to identify the RNA binding sites from amino

acid sequence using computational algorithms [13]–[24].

Wang and Brown (2006) proposed a Support vector machine

(SVM) model trained with biochemical features of protein

sequence and structure such as molecular mass, hydrophobicity,

side chain pKa values, etc., for predicting the binding sites [15].

Further, they improved the prediction accuracy using evolutionary

information in the form of position specific scoring matrices [22].

Kumar et al. (2008) utilized the composition of amino acids,

residue pairs and PSSM profiles for identifying the binding sites

[20]. Cheng et al. (2008) proposed a method based on smoothed

PSSM along with dependency of neighboring residues [21]. NAPS

[23] employed an ensemble based method using three algorithms

such as C4.5, bootstrap aggregation and cost-sensitive learning to

predict the binding sites. Ma et al. (2011) combined predicted

secondary structure, polarity, hydrophobicity and evolutionary

information for prediction [25]. Puton et al. (2012) developed a

meta-predictor using the combination of three best performing

methods, which outperforms all the three predictors [26]. Walia et

al. (2012) reviewed the available prediction approaches and

reported that the methods which use PSSM based sequence

representation outperform smoothed PSSM and amino acid

identity representation based methods [24]. Recently, Wang et

al. (2013) utilized an extended naı̈ve-Bayes-classifier for de novo

prediction using protein and RNA sequence information [27]. The

average accuracies of these methods are reported to be 70% to

80%. However the accuracy depends on the type of the RBP,

features and algorithm. For example, the best performing method

in one class/fold is poor in another type of class/fold (see below).

Hence, it is important to reveal the correspondence between the

type of a protein and performance of prediction methods.

In this work, we have classified the protein-RNA complexes into

three broader categories based on (i) protein structure, (ii) RNA
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structure and (iii) protein function. The proteins belonging to these

categories are further grouped into subclasses such as fold,

superfamiliy and family based on protein structure; RNA

conformation, strand and type based on RNA structure; protein

functions such as enzymes, regulatory proteins and structural

proteins. On the other hand, we have collected all the available

prediction methods, which have either on-line tool or standalone

program for identifying the RNA binding residues. We have

developed necessary in-house programs for analyzing the perfor-

mance of all the available methods in all the data sets. We have

related the performance of each method with different datasets

and revealed the correspondence between them. The results

obtained from our analysis would be helpful to the researchers to

choose the best method for their protein(s) of interest to design

experiments and opens up the necessity of new/refinement of

methods for certain type of RBPs. Further, the performance of

methods in specific subtypes of RBPs will be discussed.

Materials and Methods

Data sets
We have collected all the protein-RNA complexes (1472 entries)

available in Protein Data Bank (PDB) [30] (last accessed on 17th

July 2013) and classified them into three major categories based on

(i) protein structure, (ii) RNA structure and (iii) protein function.

We followed the classification of SCOP [31] for categorizing them

into different classes, folds, superfamilies and families. The RBPs

in these categories have been culled with the sequence identity of

less than 25% to avoid the bias in the analysis. Final dataset

contains 172 protein chains from 8 classes, 90 folds, 100

superfamilies and 126 families.

RNA structures are classified on three aspects: (i) RNA

conformation such as A, RH, T and U, (ii) strand of RNA (single

stranded and double helical) and (iii) type of RNA. The structural

details of RNA have been obtained from Nucleic acid database

(NDB) [32]. The final dataset contains 185, 186 and 110 protein

chains with the sequence identity of less than 25% based on RNA

conformation, strand and type, respectively.

The functional classification is based on enzymes, regulatory

proteins and structural proteins, which are obtained from NDB.

The final dataset contains 64 enzymes, 23 regulatory proteins and

76 structural proteins with the sequence identity of less than 25%.

Computational methods for RNA binding residues
prediction

We have collected all the available methods for predicting the

binding sites in RBPs from amino acid sequence, which have

either online services or available standalone program. The

methods are BindN [15], Pprint [20], RNAProB [21], BindN+
[22], NAPS [23] and RNABindR v2.0 [24]. The details regarding

name, features, technique, reference and link for the methods used

in the present work are listed in Table S1. These methods used

different datasets and their reported accuracies lie in the range of

70–80%.

Identification of RNA interacting residues
In this approach, we used two different distance based criteria to

identify the RNA binding residues to analyze the performance of

prediction methods. A residue in a RBP is identified as binding if

the distance between any of its heavy atoms and a heavy atom in

RNA is #3.5 Å (or #6.0 Å). Based on the distance criteria, we

have developed in-house programs for identifying RNA binding

residues for all the protein-RNA complexes in all the datasets.

Generally, distances in the range of 3.5 Å to 6.0 Å is used in the

literature and most of the prediction methods used the cutoff of

3.5 Å for identifying the binding site residues [15], [22], [23]. It is

advised to use #3.5 Å for stringent prediction and #6.0 Å for

flexible prediction in consideration with the experimental noise.

Assessing the performance of prediction methods
We have assessed the performance of different methods using

various measures such as sensitivity, specificity, accuracy and

Matthews correlation coefficient (MCC). Sensitivity depicts the

correct prediction of RNA binding residues, specificity reveals the

ability of excluding non-binding residues and accuracy provides

the overall performance. Accuracy2 (or balanced accuracy) is the

mean of sensitivity and specificity, which avoids overestimating the

prediction performance of methods on imbalanced datasets.

Hence, we used Accuracy2 to select the best method in all the

classifications. We also considered cutoff value of .60% for both

sensitivity and specificity. Other measures accuracy and MCC

were treated with less priority.

Sensitivity~TP=(TPzFN) ð1Þ

Specificity~TN=(TNzFP) ð2Þ

Accuracy1~(TPzTN)=(TPzTNzFPzFN) ð3Þ

Accuracy2~(SensitivityzSpecificity)=2 ð4Þ

MCC~

((TP|TN){(FP|FN))
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p ð5Þ

In these equations, TP is the number of true positives (binding

residues predicted as binding), TN is the number of true negatives

(non-binding residues predicted as non binding), FP is the number

of false positives (non-binding residues predicted as binding) and

FN is the number of false negatives (binding residues predicted as

non binding).

Results and Discussions

Structural classes
Protein-RNA complexes are classified into 8 classes such as all-

a, all-b, a+b, a/b, multi domain proteins, small proteins, peptides

and low resolution structures. The prediction performances of all

the methods in these classes are shown in the Table 1. The

methods BindN+ and Pprint showed the best performance in most

of the classes for #3.5 Å and #6.0 Å distance criteria, respec-

tively. RNABindR v2.0 performed well with the accuracy of more

than 70% in six of the eight classes using the cutoff distance of

3.5 Å. However, the accuracy is less than 60% in small proteins.

The method NAPS has the accuracy of less than 60% in six of the

eight structural classes using the cutoff distance of 6.0 Å.

Interestingly, the performance of different methods varies with

cutoff distance. With 3.5 Å distance cutoff, BindN+ uniformly

performs well in all the classes. On the other hand, with 6.0 Å

distance cutoff the best prediction method depends on the class. For

example, RNABindR v2.0 showed the highest accuracy in all-a
class whereas Pprint has the best performance in all-b class proteins.

RNA Binding Residues Prediction
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Table 1. Prediction accuracy (%) of binding sites in different structural classes.

Method Average all-a all-b a+b a/b Low resolution Multidomain Peptides Small proteins

Distance cutoff #3.5 Å

BindN 66.14 62.74 63.52 62.80 64.91 72.11 65.26 66.66 71.08

BindN+ 75.71 75.37 75.50 73.58 75.20 81.64 74.59 76.81 74.77

NAPS 64.46 63.12 60.39 60.64 63.19 64.67 60.22 82.97 60.45

Pprint 72.70 70.40 71.12 70.13 73.10 70.55 70.10 84.78 71.35

RNABindR v2.0 72.00 75.40 67.22 70.93 73.25 70.76 73.74 89.13 55.63

RNAProB 66.53 66.05 70.13 65.61 71.58 71.69 61.43 68.12 57.59

Distance cutoff #6.0 Å

BindN 60.99 59.68 59.95 59.62 60.95 69.07 59.50 57.69 61.49

BindN+ 69.95 69.35 69.70 67.90 67.69 79.11 64.38 69.95 71.50

NAPS 60.12 59.72 57.33 57.96 58.34 60.62 57.27 70.67 59.03

Pprint 73.46 70.71 71.23 69.89 73.51 76.90 68.04 79.09 78.28

RNABindR v2.0 69.51 73.33 66.95 68.55 70.59 72.50 67.81 78.37 57.98

RNAProB 64.54 62.52 64.88 63.36 65.06 69.39 56.97 78.37 55.76

Accuracy = (sensitivity+specificity)/2.
doi:10.1371/journal.pone.0091140.t001

Figure 1. Prediction performance of computational methods in various folds, superfamilies and families.
doi:10.1371/journal.pone.0091140.g001

RNA Binding Residues Prediction

PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e91140



Folds, superfamilies and families
We have analyzed the prediction performance of all the

computational methods in 90 folds, 100 superfamilies and 126

families and the results are presented in the Figure 1. In all the

three classifications (folds, superfamilies and families), BindN+ and

Pprint showed the best performance in .40% of folds, superfam-

ilies and families using the distance cutoff of 3.5 Å and 6.0 Å,

respectively. In addition, other methods also performed well in few

folds, superfamilies and families (Figure 1). These results showed

the importance of different methods with different levels of

performance.

Further, we have identified methods, which have the best and

least performance in each fold, superfamiliy and family and the

results are represented in Table S2 in Tables S1. Table 2 lists

few typical examples from each category. BindN+ and Pprint

showed the best performance in the fold type of NSP3 homodimer

and ribosomal proteins with an accuracy of 91% and 90%,

respectively. However, methods NAPS and RNAProB showed a

poor performance with accuracy of about 60–61%. We also

presented two examples of poorly predicted folds in Table 2. The

best accuracy of Nucleoplasmin-like fold is just 63% with the

sensitivity and specificity of 31% and 95%, respectively.

Among the superfamilies, Rho N-terminal domain-like and

tRNA-binding arm are predicted with the accuracy of .90% by

RNAProB whereas the lowest accuracies are 50% and 61%,

respectively. The proRS and poly A polymerase are the examples

of poorly predicted superfamilies with the sensitivity of less than

45%. Although BindN+ performs well in many superfamilies, it is

identified as the least accuracy method in poly A polymerase

superfamily. The families SM motif of SNRNP and L23p are

predicted with the highest accuracy of 89% and 92% whereas

RNB domain-like and Comoviridae-like VP are poorly predicted

with accuracy of 66% and 59%, respectively. These results showed

that the prediction methods are complementing each other in

different types of RBPs.

Disordered regions
We have collected the disordered regions by comparing the

proteins in free and complex forms and identified the binding sites

using the complex structures. These information have been used to

evaluate the performance of different prediction methods in

disordered regions. The results obtained in disordered regions of

33 protein chains are presented in Figure 2 and Table S3 in
Tables S1. Interestingly, all the methods except RNAProB

perform well with an average accuracy of more than 60%.

Further, BindN+ showed an average accuracy of 81%, which is

remarkably higher than that obtained in DNA binding proteins,

which have the average accuracy of 65% [28], [29].

RNA structure
We have classified protein-RNA complexes based on the types

of RNA strand such as single strand and double helical RNA. We

observed that RNABindR v2.0 has the best performance in double

helical RNA. In single stranded RNA, BindN+ and Pprint

predicted well in #3.5 Å and #6.0 Å distance, respectively. The

methods RNAProB and NAPS have poor performance with the

accuracy of less than 60% in double helical RNA.

We have grouped the protein-RNA complexes into 8 different

groups based on the type of RNA. The best and least accuracy

method in all the RNA types is shown in Table 3 and Table S4 in
Tables S1. We noticed that RNABindR v2.0 has the best

performance in mRNA and siRNA with an accuracy of about

79% and 80%. In the rRNA type, BindN+ and Pprint are showed

the best performance at the cutoff distance of 3.5 Å and 6.0 Å,

respectively. The accuracy is more than 75% with a balance

between sensitivity and specificity. This might be due to the fact

that rRNA type has more number of structures and are well

trained for prediction. Viral RNA has 12 proteins and the highest

accuracy in this type is 66% with the low sensitivity of 49%.

The best performance of prediction methods in each RNA

conformation is shown in Table S5 in Tables S1. Most of the

RNA structures have the conformation type of U-type and less

Table 2. Typical examples of best and least predicted folds, superfamilies and families.

Fold/superfamily/family Distance (Å) Best Method Sensitivity Specificity Accuracy1 Accuracy2 MCC
Lowest
Accuracy2 Method MCC

Fold

NSP3 homodimer (1) # 3.5 BindN+ 93.75 89.86 90.26 91.81 0.65 60.28 NAPS 0.14

Ribosomal proteins (2) # 6.0 Pprint 90.62 88.73 91.40 89.68 0.79 61.60 RNAProB 0.32

Nucleoplasmin (3) # 3.5 RNAProB 31.11 94.79 94.09 62.95 0.22 43.81 RNABindR v2.0 0

IF3-like (1) # 6.0 Pprint 38.46 84.13 82.88 61.30 0.10 47.91 BindN 0

Superfamily

Rho N-terminal domain(1) # 3.5 RNAProB 100.00 97.25 97.46 98.62 0.85 49.70 NAPS 0

tRNA-binding arm (1) # 6.0 RNAProB 88.89 99.72 99.46 94.31 0.89 61.39 NAPS 0.07

proRS (1) # 3.5 BindN+ 44.44 91.59 90.70 68.02 0.17 48.60 RNAProB 0

Poly A polymerase (1) # 6.0 RNABindR v2.0 42.86 78.82 76.61 60.84 0.12 47.87 BindN+ 0

Family

SM motif of SNRNP (1) # 3.5 RNAProB 83.33 93.94 93.06 88.63 0.65 43.94 BindN+ 0

L23p(1) # 6.0 Pprint 88.57 95.65 92.59 92.11 0.85 62.86 RNAProB 0.41

RNB domain (1) # 3.5 RNABindR v2.0 61.76 70.61 70.17 66.19 0.15 48.02 RNAProB 0

Comoviridae (2) # 6.0 NAPS 42.11 76.35 74.59 59.23 0.09 46.72 Pprint 0

Accuracy1 = (TP + TN)/(TP + TN + FP + FN).
Accuracy2 = (sensitivity + specificity)/2.
doi:10.1371/journal.pone.0091140.t002
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structures are available with RH-type. The method RNABindR

v2.0 showed the best performance in A-type and RH-type. In U-

type, BindN+ and Pprint showed the highest accuracy of 72% and

69% at the distance cutoff of 3.5 Å and 6.0 Å, respectively.

Protein function
Based on protein functions, we have grouped the protein-RNA

complex structures into three major categories such as enzymes,

regulatory and structural proteins and the prediction results are

presented in Tables S6-S8 in Tables S1. The structures in the

enzyme group are further divided into 9 groups with 58 chains.

The binding sites of most of the enzymes are well predicted with

an accuracy of more than 70% using BindN+, RNABindR v2.0

and Pprint. We observed similar results in regulatory proteins. In

structural proteins, RNAProB predicted well in two of the four

cases.

Performance of prediction methods in different datasets
We have evaluated the performance of methods using two

different and independent datasets: i) dataset of structures, which

are not included in the training dataset for developing individual

prediction methods and ii) dataset of recently solved protein-RNA

complex structures (since June 2012). The prediction results of

each method in these two datasets were presented in the Table 4.

The accuracy of all the methods in both datasets lies between 55–

71%. BindN+ and RNABindR v2.0 showed the best performance

Table 3. Prediction accuracy of binding sites in different RNA types (3.5 Å cutoff).

RNA type Best Method Sensitivity Specificity Accuracy1 Accuracy2 MCC Lowest Accuracy2 Method MCC

mRNA (7) RNABindR v2.0 77.03 80.48 80.48 78.76 0.35 56.74 NAPS 0.07

Pre miRNA(2) BindN 80.00 81.38 81.20 80.69 0.19 45.70 RNAProB 0

rRNA(54) BindN+ 83.01 74.65 79.08 78.83 0.52 63.62 NAPS 0.24

sRNA(1) RNAProB 61.90 96.81 90.43 79.36 0.66 60.81 BindN 0.23

siRNA(3) RNABindR v2.0 82.64 77.89 79.82 80.27 0.48 60.93 Pprint 0.19

snRNA(3) BindN+ 90.11 91.15 90.65 90.63 0.66 73.64 NAPS 0.20

tRNA(28) RNAProB 59.86 93.74 91.49 76.80 0.44 59.25 NAPS 0.09

viral_RNA(12) BindN+ 49.21 83.38 81.90 66.29 0.17 57.60 NAPS 0.07

Accuracy1 = (TP + TN)/(TP + TN + FP + FN).
Accuracy2 = (sensitivity + specificity)/2.
doi:10.1371/journal.pone.0091140.t003

Figure 2. Prediction performance of computational methods in disordered regions.
doi:10.1371/journal.pone.0091140.g002
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in both datasets at the distance cutoff of #3.5 Å and #6.0 Å,

respectively. Pprint and NAPS performed well with an average

accuracy of 66% and 61%, respectively. The performance of the

method RNAProB is poor for the newly crystallized protein-RNA

complex structures with the average accuracy of 55%.

We have classified the prediction methods into three groups

such as i) additive ii) PSSM iii) non-PSSM. The performances of

these three groups in all our datasets are given in Table S9 in
Tables S1. From the results, it is clearly seen that the PSSM

group performs very well in all the 13 datasets with the accuracy of

more than 60%. This trend is similar to the prediction of DNA

binding residues [28] and other reports in the literature [24].

Comparison between ensemble method and best
methods

We have performed an ensemble based prediction, which is

based on the majority of voting among six methods used in this

work. We have compared the ensemble based prediction results

with the best methods in all the datasets and the results are shown

in the Table 5. Interestingly, the best methods identified in each

classification outperformed the ensemble based prediction in most

of the datasets. For example, ensemble based prediction has the

highest accuracy in 17 out of 126 families whereas it is 109 using

the best methods identified in this work. The average accuracy has

been improved up to 8% using the best method. Further, the

comparison of prediction accuracies in all the 290 RNA binding

protein chains showed that 68% and 57% of the complexes has

been better predicted with the accuracy of at least 5% using the

method identified in this work than the ensemble based method at

the cutoff of 6 Å and 3.5 Å, respectively. The comparison

demonstrated the importance of using the best method to predict

RNA binding residues.

Web application
We have developed a user friendly web application using

PERL-CGI modules for back end and HTML and JavaScript for

front end. This application is designed to provide the best method

for any RBP based on its structural class, fold, superfamily, family,

RNA strand, RNA type, RNA conformation and protein function.

It takes structural/functional information of a query RBP/RNA

and displays the best method and corresponding link to access the

method in the output. The web application is freely available and

can be accessed at www.iitm.ac.in/bioinfo/RNA-protein/. For

example, in the superfamily of Zn-binding ribosomal protein,

BindN and Pprint are the best methods at the distance cutoff of

#3.5 Å and #6.0 Å, respectively (Figure 3). We also included

Table 5. Comparison between ensemble method and best methods in different datasets.

Data set
Number of sub
groups Number of sub groups predicted with highest accuracy

#3.5 Å #6.0 Å

Ensemble Best method Ensemble Best method

Class 8 2 (76.03) 6 (77.48) 0 (69.69) 8 (74.06)

Fold 90 11 (74.09) 79 (80.93) 4 (68.69) 86 (76.87)

Superfamily 100 13 (74.08) 87 (80.94) 4 (68.68) 96 (76.85)

Family 126 17 (73.67) 109 (80.67) 5 (68.15) 121 (76.63)

RNA conformation 4 0 (70.69) 4 (75.23) 0 (65.35) 4 (71.22)

RNA strand 2 0 (67.48) 2 (71.31) 0 (63.57) 2 (68.56)

RNA type 8 0 (70.61) 8 (78.95) 0 (64.48) 8 (72.48)

Protein function 21 1 (68.11) 20 (75.74) 0 (62.48) 21 (70.79)

Average accuracies (%) are given in parentheses.
doi:10.1371/journal.pone.0091140.t005

Table 4. Prediction performance of different methods in two independent datasets.

Method Data set 1 Data set 2

#3.5 Å #6.0 Å #3.5 Å #6.0 Å

Accuracy1 Accuracy2 MCC Accuracy1 Accuracy2 MCC Accuracy1 Accuracy2 MCC Accuracy1 Accuracy2 MCC

BindN 74.88 64.00 0.23 70.35 61.26 0.21 75.49 62.78 0.21 71.26 60.98 0.20

BindN+ 79.45 70.65 0.34 77.43 66.93 0.33 78.75 68.01 0.30 76.77 65.46 0.30

NAPS 66.29 60.89 0.17 63.58 58.36 0.15 66.61 62.80 0.18 64.55 60.61 0.16

Pprint 70.74 66.22 0.25 73.82 66.59 0.31 70.70 64.80 0.21 72.05 65.17 0.26

RNABindR v2.0 65.95 68.78 0.27 71.28 67.38 0.32 65.12 66.90 0.22 70.47 66.72 0.28

RNAProB 82.21 60.15 0.22 73.43 58.47 0.21 80.48 55.71 0.13 71.03 55.20 0.13

Data set 1: List of protein-RNA complexes analyzed in this work and are not used in the respective methods.
Data set 2: List of protein-RNA complexes published since June 2012, after the publication of analyzed prediction methods.
doi:10.1371/journal.pone.0091140.t004
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separate links for accessing all the datasets used in this work for

evaluating the prediction methods and the list of analyzed methods

with appropriate details.

Conclusions

Computational methods provide consensus as well as conflict

prediction results on identifying the RNA binding site residues. It

is essential to reveal the best and reliable method for a query RBP.

Based on the structure and function of the interacting protein and

RNA, we have analyzed the available RNA binding sites

prediction methods using stringent, unbiased and diverse data

sets. We revealed the one-to-one correspondence between

prediction performance of methods and the type of RBPs. We

have also developed a web application to choose the best method

for any RBP of interest. The results obtained in this work would

aid biologists to design experiments efficiently. Secondly, the

analysis pointed out the subgroup of RBPs, which requires new

method or refinement of methods. Further, the performance of

PSSM based methods are better than other features based on

physio-chemical characteristics of amino acid residues.
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Prediction performance of methods in different RNA conforma-

tion. Table S6. Prediction performance of methods in each

enzyme. Table S7. Prediction performance of methods in each

regulatory protein. Table S8. Prediction performance of methods

in each structural protein. Table S9. Prediction performance of

three groups of methods in all the datasets.
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