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Abstract

Electrical stimulation (ES) devices interact with excitable neural tissue toward eliciting action potentials (AP’s) by specific
current patterns. Low-energy ES prevents tissue damage and loss of specificity. Hence to identify optimal stimulation-
current waveforms is a relevant problem, whose solution may have significant impact on the related medical (e.g.
minimized side-effects) and engineering (e.g. maximized battery-life) efficiency. This has typically been addressed by
simulation (of a given excitable-tissue model) and iterative numerical optimization with hard discontinuous constraints - e.g.
AP’s are all-or-none phenomena. Such approach is computationally expensive, while the solution is uncertain - e.g. may
converge to local-only energy-minima and be model-specific. We exploit the Least-Action Principle (LAP). First, we derive in
closed form the general template of the membrane-potential’s temporal trajectory, which minimizes the ES energy integral
over time and over any space-clamp ionic current model. From the given model we then obtain the specific energy-efficient
current waveform, which is demonstrated to be globally optimal. The solution is model-independent by construction. We
illustrate the approach by a broad set of example situations with some of the most popular ionic current models from the
literature. The proposed approach may result in the significant improvement of solution efficiency: cumbersome and
uncertain iteration is replaced by a single quadrature of a system of ordinary differential equations. The approach is further
validated by enabling a general comparison to the conventional simulation and optimization results from the literature,
including one of our own, based on finite-horizon optimal control. Applying the LAP also resulted in a number of general ES
optimality principles. One such succinct observation is that ES with long pulse durations is much more sensitive to the
pulse’s shape whereas a rectangular pulse is most frequently optimal for short pulse durations.
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Introduction

Electrical stimulation (ES) today is an industry worth in excess

of 3 G$. ES devices interact with living tissues toward repairing,

restoring or substituting normal sensory or motor function [1].

The rehabilitation-engineering applications scope is constantly

growing: from intelligent limb prosthetics and deep-brain stimu-

lation (DBS) to bi-directional brain-machine interfaces (BMI),

which are no longer just about recording brain activity, but have

also recently used ES toward closed-loop systems, [2–5].

Application-specific current patterns need to be injected toward

reliably eliciting action potentials (AP’s) in target excitable neural

tissue. To prevent tissue damage or loss of functional specificity,

the employed current waveforms need to be efficient. This may

significantly impact the biomedical effects and engineering

feasibility. Hence, an optimization problem of high relevance to

the design of viable ES devices is to minimize the energy required

by the stimulation waveforms, while maintaining their capacity for

AP triggering toward achieving the targeted functional effects.

A number of recent studies of ES optimality are based on

extensive model simulation and related numerical methods

through the wider spread of high-performance computing, e.g.

[6–9]. The model dynamics to iterate can be arbitrarily complex

and nonlinear. This implies lengthy numerically-intensive compu-

tation, irregular convergence and constraints that may be difficult

to enforce - e.g. that an AP is an all-or-none phenomenon. Thus,

any function of membrane voltage will suffer dramatic disconti-

nuities at parameter-space manifold boundaries where intermit-

tent AP’s are likely to be elicited.

Hence, such an iterative approach is not only computationally

expensive, but its solution quality is highly uncertain and model-

specific. The long-lasting iteration may converge to shallow local

energy-minima. Such numerical misdemeanor of the approach is

well known to its frequent users.

In this work we follow the ES pioneers - we use physical

reasoning and related mathematics toward a more theoretical

treatment of the subject.

Below we summarize very briefly our historical premises. ES’

theoretical cornerstones were laid a century ago by experimental-

ly-driven assumptions and models, [10–12]. Various constant ES

current levels and durations were tried systematically. E.g. Louis

and Marcelle Lapicque spent many years performing such lab

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e90480

http://creativecommons.org/licenses/by/4.0/


experiments with multiple physiological preparations [13,14]. This

classical work led to concepts like strength-duration curve (SD),
i.e. the function of threshold (but still AP-evoking) ES current

strength on duration. The first mathematical fit to this empirical

results is usually attributed to Weiss, [10,15]

ITHR(T)~b(1zc=T) ð1Þ

where T is the stimulus duration, b is called the rheobase (or

rheobasic current level) and c is the chronaxie.

The most expedite way of introducing the rheobase and

chronaxie would be to point to eqn. (1) and notice that:

lim
T??

ITHR(T)~b ð2Þ

and

ITHR(c)~2b ð3Þ

i.e. the rheobase is the threshold current strength with very long

duration, and chronaxie is the duration with twice the rheobasic

current level. In the pioneering studies electrical stimulation was

done with extracellular electrodes.

Eqn. (1) is the most simplistic of the 2 ‘simple’ mathematical

descriptors of the dependence of current strength on duration, and

leads to Weiss’ linear charge-transfer progression with T,

Q(T)~T|ITHR~b|(Tzc): Both Lapicque’s own writings -

[11–13], and more recent work are at odds with the linear-charge

approximation. Already in 1907 Lapicque was using a linear first-

order approximation of the cell membrane, modeled as a single-

RC equivalent circuit with fixed threshold:

ITHR(T)~
b

1{e{T=t
~bz

be{T=t

1{e{T=t
ð4Þ

with time constant t~C=g; C and g~1=R are the membrane

capacity and conductance respectively.

The second form of eqn. (4) is easily obtained by subtracting/

adding the term be{T=t. From it, when t&T (and hence

e{T=t?1):

ITHR(T)&b(1zt=T)

which accounts for the hyperbolic shape of the classic Lapicque

SD curve.

Originally, eqn. (4) described the SD relationship for extra-

cellular applied current. However, the single-RC equivalent circuit

with fixed threshold, where I is the electrode current flowing

across the cell membrane

C _vvzv=R~I ð5Þ

can be used with either extra- or intra-cellular stimulation.

v~(V{Vrest) is the reduced membrane voltage with Vrest the

resting value of V : From eqns. (4) and (5), one may also see that

b~g(VTHR{Vrest), where VTHR is the attained membrane

voltage at the end of the stimulation (at time T ).

Notice that the chronaxie c is not explicitly present in eqn. (4).

Notice also that - with very short duration T%t, by the Taylor

series decomposition of the exponent (around T~0), one may

have either ITHR(T)&bt=T or ITHR(T)~b½1zt=T �: Note that

these two different simplifications (and esp. the latter) are

‘historical’ and depend on which of the two right-hand sides

(RHS’) of eqn. (4) is used. In the second case only the denominator

is developed to first order, while the numerator is truncated at

zero-order. The second approximation throws a bridge to Weiss’

empirical formula of eqn. (1). I.e. the latter is a simplification of a

simplification (i.e. of the 1st-order linear membrane model),

capturing best the cases of shortest duration. On the other hand,

ITHR(T)&bt=T leads to a constant-charge approximation.

Interestingly, the latter may fit well also more complex models

of the excitable membrane, which take into account ion-channel

gating mechanisms, as well as intracellular current flow, which

may be the main contributors for deviations from both simple

formulas. These ‘subtleties’ are all clearly described in Lapicque’s

work, but less clearly by one of the most recent accounts in [16].

Before we continue, it is in order to examine the practical value

of numerical optimization to identify energy-efficient waveforms.

It is limited for the following reasons. First, it is subject to the

rigorous constraints of quantitative equivalence between the model

used and the real preparation to which the results should apply. A

noteworthy example is provided by the very practice of numerical

simulations: often a minute change in parameters precludes the

use of a just computed waveform, which is no longer able to elicit

an AP in the targeted excitable model. Alas, the same or similar

applies hundredfold to the real ES practice.

Second, in the search for minimum-energy waveforms, using

numerical mathematical programming algorithms, there is no

guarantee about obtaining a globally optimal solution.

Finally, such an approach sheds very little light with respect to

the major forces that are at play, and the key factors which

determine excitability, such as - for example, the threshold value of

membrane potential, whose crossing triggers an AP.

However, the problem at hand is also reminiscent of the search

for energy-efficiency in many other physical domains - e.g.

ecological car driving. For centuries, physics has tackled similar

problems through an approach known as the Least-Action
Principle (LAP) [17].

Thus, we first used simple models to derive key analytical

results. We then identified generally applicable optimality princi-

ples. Finally, we demonstrate how these principles apply also to far

more complex and realistic models and their simulations.

The modeling and algorithmic part of this work is laid out in the

next section. First, we introduce a simple and general model

template. Next we present four most popular specific ionic-current

models. Each of these can be plugged in the template to describe

an ES target in a single spatial location in excitable-tissue (or

alternatively - a space-clamped neural process).

We then examine the conditions for the existence of a finite
membrane-voltage threshold for AP initiation. The introduced

ionic-current model properties are analyzed to gain important

insights into the solution of the main problem at hand.

Two very different ways to identify energy-efficient waveforms

are presented in the last two subsections of the Methods. The first

relies on a standard numerical optimal-control (OC) approach.

The second outlines the LAP in its ES form, which is used to

derive a general analytic solution for the energy-optimal trajec-

tories in time of the membrane-potential and stimulation-current.

The Results section presents the model-specific results, applying

OC or the LAP. We perform a detailed optimality analysis for

both the simple and more realistic models. Comparisons between

the two types of approaches, and the quality of their solutions, are

made.

Commonly used abbreviations are summarized in Table 1 and

symbols - in Table 2.

Energy-Optimal Electrical-Stimulation
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Methods

A General Excitability Model Template
For the equivalent circuit of Fig. 1, IS is the stimulation current.

IC is the capacitive current, whose direction is as shown on the

Figure when the excitable-membrane’s potential is being depolar-
ized. The algebraic sum of all the ionic and all axial currents is

represented by IS~IIONzIaxial , where Iaxial stands for the

algebraic difference (divergence) of in- and out-going axial

currents. In the sequel we will use the notation u(t)~IS(t) for

the stimulation-current waveform. The latter is our system input,
which will be the leverage to refine in order to achieve desirable

outcome - reliable triggering of APs in the excitable system. It is

customary in the control literature to denote such a signal u(t):
Thus, all the currents are linked by the first Kirchhoff circuit

law:

u(t):IS(t)~IC(t)zIS½V (t),x(t)�~Cm
_VVzIS(V ,x) ð6Þ

where - in the most general form, IS depends on membrane

voltage V (t) and on the state vector of the ionic channels’ gate

variables. Unless ambiguous, below we will simplify notation by

writing IS(V ):

Cm (typically around 1 mF=cm2, [18]) and V (t) (in mV ’s) are

the excitable-membrane’s capacitance and potential. Equation (6)

can be rewritten as:

Cm
_VV~u(t){IS(V ) ð7Þ

Clearly according to eqn. (7), an outgoing total ionic current

opposes the effects of cathodic stimulation, since not all of u(t) is

employed toward the main goal of maximizing the V (t) growth,

which the reader may have also already deduced from the

equivalent circuit of Fig. 1. Conversely, ingoing total current assists
the effects of stimulation. Hence, in such a case u(t) may be lower

Table 1. Commonly used abbreviations.

Symbol Description

0D zero-dimensional, i.e. single-compartment or space clamp
models; whose spatial extents are confined to a point

1D cable-like, multi-compartment spatial structure; homo-morphic
to line

2D etc. two- or more dimensional, refers to the number of states that
describe the excitable system’s dynamics

AIS the axon’s initial segment

AP Action potential

ASA Adjoint Sensitivity Analysis

BCI brain-computer interface

BMI brain-machine interface

BVP Boundary-value [ODE solution] problem

BVDP the Bonhoeffer-Van der Pol oscillator-dynamics model; also
known as the Fitzhugh-Nagumo model

DBS Deep-brain stimulation

ES Electrical stimulation

FHOC Finite-Horizon Optimal-Control

FP Fixed point of system dynamics R vanishing derivative(s)

HH or HHM Hodgkin and Huxley’s [model of excitable membranes]

IM the Izhikevich model

LM the Linear sub-threshold model; also known in computational
neuroscience as leaky integrate & fire

MRG the McIntyre, Richardson, and Grill model

OC Optimal-Control

ODE Ordinary Differential equation; see also PDE

PDE Differential equation involving partial derivatives; see also ODE

LAP the Least-Action Principle

RN Ranvier-node

RHS right-hand side

SD strength-duration [curve]

W.R.T. with respect to

doi:10.1371/journal.pone.0090480.t001

Table 2. Commonly used symbols.

Symbol Description

C or Cm membrane capacity

Dt the temporal precision of a model’s simulation

g or gm membrane conductance; see also Rm

gX nominal (max.) conductance for ion X

GE the growing-exponent stimulation pulse

IS stimulation current, see also u(t)

IC the capacitive current, see also Cm

ITHR(T) threshold current for duration T to elicit an AP; see
TSTIM

Iaxial algebraic sum of in and out axial currents

Iion(V (t)) ionic current function of membrane voltage; see V (t)

Iion,0(V ) resting-state approximation; see x0

Iion,?(V ) asymptotic-state approximation; see x?(V )

cable spatial constant

R or Rm membrane resistance; see also gm

P and P(T) power for u(t) as function of duration; see u(t), TSTIM

Q and Q(T) charge-transfer

SQR square (rectangular) waveform

TCR critical duration; see TSTIM

TSTIM or TS or T duration of stimulation

t or tm membrane time constant

tion or tX gate time constant for ion X

u(t) stimulation waveform

u�(t) optimal current stimulation waveform

V membrane voltage

Vr or Vrest resting V

v~V{VR voltage difference w.r.t. rest

_VV or dV=dt first time-derivative of the membrane voltage

V (t) temporal pattern of V

V�(t) optimal V (t)

VTHR AP triggering V threshold

VTHR,0 resting-state VTHR

VTHR,? the asymptotic-state VTHR

x0~x?(Vr) gate resting state for ion X ; see Vr

x?(V )~ lim t??x(tjV ) gate asymptotic state for ion X

doi:10.1371/journal.pone.0090480.t002
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than when it is estimated assuming the absence of membrane

conductivity. Let us elucidate right away by providing typical

examples.

Specific Single-compartment (Space-clamp) Models
The models here are zero-dimensional (0D). Their spatial

extents are confined to a point. This may be contrasted to the

multi-compartment cable-like models that we will discuss later,

and whose spatial structure is one-dimensional (1D) - i.e. homo-

morphic to a line.

For single-compartment models there are no axial currents.

Hence, IS~IION .

Linear Sub-threshold model (LM).

IION (V )~gm(V (t){Vr) ð8Þ

gm is the excitable-membrane’s resting (V~Vr ~ 270 mV )

conductance - in milli-Siemens per unit membrane surface area

- e.g. 1 mS=cm2. Substituting IION (V ) from eqn. (8) into eqn. (6)

yields a linear first-order model with t~Cm=gm~RmCm the

familiar expression for the time constant of such a dynamic model.

This model predicts a reasonable resting t& 1 ms.

As pointed out in the introduction, this type of model

was extensively used by the ES pioneers, [12]. They

were particularly concerned with the derivation of analytic

expressions for the experimentally observed strength-duration
(SD) curves. The latter describe the threshold (minimal)

current strength (ITHR), which if maintained constant (i.e.

through a rectangular waveform) for a given duration T is

likely to elicit an AP in excitable-tissue (see the introductory

section).

Even if it may account for a significant part of the sub-threshold

variation of the membrane’s potential, the linear model lacks a

paramount feature - it cannot fire AP’s as the latter are due to the

highly nonlinear properties of the excitable-membrane’s conduc-

tance around and beyond the firing threshold.

The Hodgkin-Huxley-type model (HHM). Hodgkin and

Huxley (HH) not only proposed a novel way to model ionic-

channels but also introduced ionic-channel-specific parameters to

fit experimental data [19]. Since, HH-type models have been

proposed for many ionic-channels for cardiac to neuroscience

applications.

We present one such model from the literature - [20], which has

been used to fit experimental data from the central nervous system

and particularly the neocortex.

IION (V ,x)~gNam3h(V{ENa)zgK n(V{EK )

zgleak(V{Eleak)
ð9Þ

See Tables 3 and 4, which define all the model’s variables and

parameter values. We consider specifically the Naz
v1:6 sodium

channel subtype, to which the axon initial segment (AIS) owes its

higher excitability [20,21].

The dynamics of a gate-state variable x(t) (where x(t) stands for

one of m(t),h(t),n(t)) are described by:

Figure 1. Excitability model template: The equivalent circuit represents the simplified electro-dynamics of an excitable membrane.

IS is the intra-cellular stimulation current. IC~C _VV is the capacitive current. The direction of the latter is for a case of depolarizing the membrane’s
voltage (i.e. the inside of the cell wall becoming more positive). The algebraic sum of all the ionic and all axial currents is represented by
IS~IIONzIaxial , where Iaxial stands for the algebraic difference (divergence) of in- and out-going axial currents.
doi:10.1371/journal.pone.0090480.g001
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tx(V ) _xxzx~x?(V ) ð10Þ

Eqns. (6), (9) and (10) define a system of four coupled ODE’s -

with respect to the four dynamic variables ½V ,m,h,n�(t).
Further simplification may reduce the model complexity,

maintaining only V (t) as the single dynamic variable. Gate-

variable states are factored out by introducing appropriate non-

dynamic functions of the membrane potential. E.g. in eqn. (9), the

fast m gates may be assumed to reach instantaneously m?(V ),
while the far slower h and n gates remain at their resting values

(corresponding to a membrane at its resting equilibrium potential

Vr ).

The Izhikevich model (IM).

IION (V ,w)~w{0:04V2{5V{140 ð11Þ

This model [22] has a second-order nonlinearity, compared to its

predecessor - the BVDP model [23], which contains a cubic

nonlinearity. The IM will therefore not auto-limit. As in the

BVDP, there is a slow second dynamic variable w(t) called the

‘recovery current’ and its dynamics is described by:

_ww=c~bv{w ð12Þ

The IM responds to supra-threshold stimulation with a wide

variety of AP-firing patterns, depending on the particular choices

of parameters. Interested in the sub-threshold regimen, we have

chosen the ‘‘Spike Latency’’ set: b~0:2,c~0:02 [24]. Hence,

tw~1=c is equal to 50 ms. At the time-scale of a single

stimulation pulse (lasting at most a few milliseconds), w is virtually

a constant.

Here, it may be important to remind the reader that the

state of simplest models like the IM needs to be artificially reset
after an AP event. However in more complex models (e.g. the

HHM), channels that are responsible to revert the system to

its resting potential will have a significant effect on the

optimal waveform. We will see this in more detail in the results

section.

Multi-compartment Models
To expand the scope of our analysis and the applicability of

its results, it is essential to also address models of AP initiation

and propagation along spatial neural structures. A popular

example is the McIntyre, Richardson, and Grill model

(MRG002). It was originally used to simulate the effects of ES

in the peripheral nervous system and specifically the myelin-

ated axons that form nerve bundles [25]. An adapted version

of the same model was recently used to simulate the effects of

DBS [7].

Myelinated axon has been pinpointed as the most excitable

tissue with extracellular stimulation [26–28]. Therefore models

like the MRG’02 are of particular interest. Moreover, this

model facilitates the illustration of optimality principles as it

has only one excitable compartment type - the Ranvier-nodes

(RN). The paranodal and other compartments that form

the myelinated internodal sections are all modeled as a

passive double-cable (due to the myelin sheath that

insulates the extracellular periaxonal space) structure, see

Fig. 2.

Table 3. Definition and notation for the key HHM variables.

Notation Variable description and units Typical value (*1

Potentials, in mV :

Vm Membrane voltage (*3

Vrest Membrane resting voltage 277

EK Kz Nernst potential 290

ENa Naz Nernst potential 60.0

ELeak Leak reversal potential 270

Membrane capacitance, in mF=cm2 :

c Membrane capacitance 1

Maximum (*2 conductances, in mS=cm2 :

gK Kz conductance 150

gNa Naz conductance 300

gLeak Leak conductance 0.033

Currents, in mA=cm2 :

IK Kz Ionic Current (*4 gK |n|(Vm{EK )

INa Naz Ionic Current gNa|m3h|(Vm{ENa)

ILeak Leak Current gLeak|(Vm{ELeak)

Notes:
(*1 Typical values are for the Nav1:6 model, [20]; see also Table 4.
(*2 These are dependent on (grow with) temperature, the values listed are for T~23

0
C.

(*3 Membrane voltage is either at its resting value Vrest ; is depolarized (grows due to stimulation and/or activated sodium Naz ion channels); is repolarized (decays
back to Vrest , due to the potassium Kz ion channels).
(*4 Ionic currents depend on both the membrane voltage and the dynamic state of the ion channels’ gates. See Table 4.
doi:10.1371/journal.pone.0090480.t003
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The RN compartment is a model of the HH-type:

Iion(V ,x)~gNa,f m3h(V{ENa)zgNa,pp3(V{ENa)

z K n4(V{EK )z leak(V{Eleak)
ð13Þ

Here two different Naz ion channel subtypes are modeled

(please see Table 5 for all the details). The fast subtype (with

maximum conductance parameter gNa,f ) is controlled by the

opening m and closing h gate states. The persistent subtype (with

maximum conductance gNa,p) is controlled by the p gates. As its

name suggests, it has no gate-inactivating states and is non-

inactivating. In addition, this model has very slow s gates,

associated to its Kz ion channel and very fast m gates.

Below we call a fixed point (FP) every VFP value s.t.

IION (VFP)~0. From eqn. (7) with u~0,

_VV
��
VFP

~0

The nonlinear dynamics behavior of the RN compartment

taken in isolation is quite unlike that of the specific single-

compartment HHM example we provided above. None of its four

FPs are stable. Around its unstable ‘resting’ state (Vr = 280 mV ),

the zero-dimensional RN’s of MRG’02 model yield depolarizing

Table 4. Gate-state dynamics parameters.

Notation Variable description Value

Temperature dependence:

Q10 Q10 constant (*1 2.3

Kz : n-gate (*2

an n-gate max opening rate 0.02

bn n-gate min closing rate 0.002

Vn,1=2 half-min/max in/activation rate voltage 25 mV

kn n-gate voltage constant k 9

Naz
v1:6 : m-gate (*2

am m-gate max opening rate 0.182

bm m-gate min closing rate 0.124

Vm,1=2 half-min/max in/activation rate voltage 41 mV

km m-gate voltage constant k 6

Naz
v1:6 : h-gate (*2

ah h-gate max opening rate 0.024

bh h-gate min closing rate 0.0091

Vh,1=2,a half-max activation rate voltage 48 mV

Vh,1=2,b half-min inactivation rate voltage 73 mV

kh h-gate voltage constant k 5

kh,? (*3 asymptotic gate-state voltage constant k? 6.2

Vh,1=2,? 50% open gates voltage 70 mV

Notes:
(*1 Temperature dependence is linear and with a slope kT ~Q

(T{T0)=10
10 , where T0~23

0
C.

(*2 For a given gate type y of the Kz and Naz
v1:6 ionic channels, the fractions of open and closed gates are given by the general (Boltzmann-Energy like) template

formulae:

ay(w)~ayw=(1{e{w=ky ) by(w)~{byw=(1{ew=ky ) where

w~Vm{V1=2 .

Thus, the corresponding rates of opening day=dw and closing dby=dw are sigmoidal functions of w s.t.

lim
w?{?

ay~ lim
w??

by~0 lim
w??

ay~ay lim
w?{?

by~{by

The actual position of the inflection point (w~0) is determined by the V1=2 parameter. For the m and n gates, by the l’Hospital-Bernoulli rule, it can be seen that at

Vm~V1=2 , the opening or closing rates attain half of their max or min, respectively.

(*3 For the inactivating gate h of the Naz
v1:6 ionic channel:

h?(V )~1=(1zewh=kh,? ) wh~Vm{Vh,1=2,?

doi:10.1371/journal.pone.0090480.t004
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ionic current. I.e. not only does IION not resist moving away from

the resting state, but it actually contributes to automatic firing,

with or without any external current!

The addition of the passive myelinated spatial structures around

the RN’s makes the resting state stable, and the problem at hand

(of identifying the LAP-optimal ES waveforms) tractable only

within a spatial structure. However, this also comes with bonuses.

First, the active-passive association brings a very clear-cut picture

of the factors at hand that influence AP initiation and propagation.

Second, the myelinated double-cable has a very low spatial

constant, which provides for a straightforward extension of the

single-compartment analysis.

Namely, consider the second term in the more general

expression for IS~IIONzIaxial in eqn. (7). Since around the

resting state IION is always there as a depolarizing factor, it is Iaxial

that needs to be closely considered, see Box in Fig. 2.

The numerical results presented for the MRG’02 in the

literature [7,8] often target the mid-cable (center) RN in their ES

simulations. This motivated us to use of the method of mirrors to

double the model’s dimensions at the same computational cost.

We consider a long axon (with 41 RN’s), which has a relatively

low length constant (l2
~1=(gara)). See also Tables 4 and 5. For

the RN’s l = 167.5 mm vs respectively 2129.7 and 443.2 mm, for

the myelinated and the MYSA (paranode) sections. These are

paired to significant differences in the passive membrane time

Figure 2. The MRG’02 myelinated axon model (See also Table 4) Box: Equivalent circuit for current injection into the center RN
(#1).
doi:10.1371/journal.pone.0090480.g002
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constant (t~ci=ga). For the RN’s t = 0.29 ms vs respectively 20

and 2 ms, for the myelinated and paranode sections. The cable

end-conditions are formed by virtual compartments with

membrane at rest Vr = 280 mV . This choice is further motivated

by the results of model simulations - namely the relatively little

spread of potentials at the end of stimulation lasting up to a few

milliseconds (see Fig. 3).

We studied extensively all the published accounts of

the MRG’02 model and its use for ES modeling [7,8,25]. We

also carefully compared parameter values (see Tables 5 and 6)

to the ones in the official NEURON models database

(senselab.med.yale.edu/modeldb/ShowModel.asp?mo-

del = 3810).

Our model implementation originally for [29,30] was done

in Matlab (the Mathworks, ver. 7 and above). The code uses

CVODES (the Lawrence Livermore National Laboratory,

Release 2.7.0) to reliably and robustly solve the related multi-

dimensional system of ODEs. The implementation was

validated through extensive comparisons and personal corre-

spondence with the authors of the original model - W.M.

Grill [31] and A.G. Richardson, regarding specifically the

mismatch between the 2002 publication and its NEURON

implementation.

Preliminary Analysis: On the Existence of the AP-firing
Threshold

The above ionic-current descriptions differ largely in form and

complexity. Yet each of them is capable of capturing some of the

essential dynamics properties of excitable living tissues.

In order to elicit an AP through electric stimulation, the

membrane’s potential V (t) needs to first be driven (depolarized,
_VVw0) to some threshold value VTHR, beyond which assisting ionic

channels are massively engaged to produce the AP upstroke

without the need of any further ES intervention. From eqn. (6) in

order to do so, the stimulation waveform needs to be positive and

superior to IS(V ,x) at most times - i.e. u(t) needs to overcome the

opposing currents.

A VTHR value is hiding inside each of the above nonlinear

flavors of IS(V ,x). Predictably, it is easiest to find the VTHR value

associated with the IM. Above we saw that the variable w in the

IM reacts slowly to changes in V . Hence, one may approximate it

by its value at rest: wr~bVr. The resting membrane potential Vr is

then obtained from the condition Iion,0(Vr)~0, where the

subscript 0 indicates that we have assumed w(t)~wr.

The resting potential Vr is one of the zeroes of the 2nd-order

polynomial in V (t), which characterizes the ionic current. The

second zero is VTHR. Beyond this threshold the total ionic current

Table 5. MRG’02 double-cable model-axon electrical parameters.

Notation Parameter description Value

Shared parameters:

Vrest Resting potential 280 mV

ra Axoplasmic resistivity 70 V

rp Periaxonal resistivity 70 V

Nodal compartments:

cn Membrane capacitance 2 mF=cm2

EK Kz Nernst potential 290 mV

ENa Naz Nernst potential 50.0 mV

ELeak Leak reversal potential 290 mV

gK ,s Maximum slow Kz conductance with opening s and no closing gate states 0.08 S=cm2

gNa,f Maximum fast Naz conductance with opening m and closing h gate states 3.0 S=cm2

gNa,p Maximum persistent Naz conductance with opening p and no closing gate states 0.01 S=cm2

gLeak Leak conductance 0.007 S=cm2

Internodal compartments:

ci Membrane capacitance 2 mF=cm2

EPsv Passive-compartment Nernst potential

Passive (leak) membrane conductance by segment type:

ga MYSA 0.001 S=cm2

gf FLUT 0.0001 S=cm2

gi STIN 0.0001 S=cm2

Myelin parameters:

cmy Capacitance 0.1 mF=cm2

gmy Conductance 0.001 S=cm2

Notes:
See also Table 6.
doi:10.1371/journal.pone.0090480.t005
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switches its sign. So eqn. (11) becomes:

IION,0(V )~{0:04V2{5VzbVr{140

~{0:04(V{Vr)(V{VTHR)
ð14Þ

Hence, Vr = 270 mV and the resting threshold is VTHR,0 = 2

55 mV.

We will utilize this simple nonlinear model to complete the

picture. If w(V ,t)wwr - i.e. the membrane is not at rest, the point

where the total ionic current IION (V ) switches sign is shifted

rightward toward a higher VTHR value. For example, for very long

durations T??, w?bV :

Iion,?(V )~{0:04V2z(b{5)V{140

~{0:04(V{Vr)(V{VTHR)
ð15Þ

The subscript ? indicates that we have assumed w(t)~bV (t).
Predictably, this does not affect the resting potential, since

Iion,?(Vr)~Iion,0(Vr). However, VTHR,? = 250 mV is higher

than the resting threshold VTHR,0.

This reflects the lowering of excitability shortly after an AP, and

once the post-AP membrane re-polarization takes place. This is

known as refractoriness, which can be either absolute - i.e. no AP

can be elicited regardless of how large the stimulation, or relative -

i.e. larger stimulation current is required - to reach a higher

threshold VTHR.

Some models of the HH-type have even more complex

IION,?(V ) and thence VTHR behavior. This complexity is due to

the multiple gate states, which may have very different time
constants and hence reach their asymptotic states at different

times. In addition, the HH models involve inactivating sodium

(Naz) channels. Hence, excitability may be conditional on

attaining the firing threshold within a specific time window. Then

VTHR may exist only with durations %?. Hence, even over

arbitrarily long duration, an arbitrarily low (non-zero) current may

never elicit AP’s, and may also damage the tissues and the

electrodes as irreversible chemical reactions take place.

So, wide stimulation pulses lasting well over some critical

duration TCR may not be able to elicit any AP. This is due to the

comparable temporal scales of duration TSTIM and the time

constant tion of the closing gates associated with depolarizing ionic

currents and of the opening gates associated with re-polarizing

currents.

Therefore, let us assume that the excitable-membrane’s

potential is at its resting value Vr. Hence, in principle an action

potential (AP) can be elicited by stimulation of the fixed duration

TvTCR. Therefore stimulation takes place over a finite time-

horizon.

Finite-Horizon Optimal-Control (FHOC)
In this approach, the current waveform is the unknown system

input signal complying with specific optimality criteria. The

optimal pattern u�(t) for t[½0,T � is sought as a solution of the

following constrained minimization problem:

u�~ arg min H(X(T))z

ðT

t~0

f0(X,u)dt

� �
ð16Þ

d

dt
X~F(X,u) Vu(t)[½L,R�

where L and R are the constant lower and upper bounds on the

values for each u(t) sought.

The computational model’s dynamical system is introduced in

the optimization problem of eqn. (16) in the form of a set of

equality constraints. The vector function F(x,u)[Rn describes the

dynamics of the array of system state-variable trajectories

xi(t),i~1 . . . n, resulting from given initial state X(0) and control

signal u.

The example developed in the Results section uses the

Izhikevich model - eqns. (6) and (11) - with n~2.

The minimized functional, contains the integration term f0(X,u)
and a final-time (also known as penalty) term H(X(T)) - pulling

toward the desired final state X�(T). The specific f0 expression

yields minimum electric stimulation power:

f0(X,u)~u(t)2=2 ð17Þ

The penalty term is a convenient way to express the desirable

stimulation’s outcome - the membrane voltage reaching some pre-

defined threshold-level VTHR:

H(x(T))~
Kpenalty

2 VTHR{V (T)ð Þ2
ð18Þ

Using a general constrained parametric optimal-control ap-

proach (e.g. [32]), the objective and equality constraints in eqn.

(16) are combined into the Lagrangian:

L~H(x(T))z

ðT

t~0

f0(X,u)dt{ 0(
d

dt
X{F(X,u))

� �
dt

~H(x(T))z 0X½ �Tt~0z

ðT

t~0

Hz
d

dt
0 X

� �
dt

ð19Þ

where (t) are the Lagrange multipliers, associated to each of the

n equality constraints in eqn. (16) and (:)0 stands for the

vector-matrix transpose operator. H~f0(x,u)z 0F(X,u) is known

as the Hamiltonian.

The necessary conditions for optimality require that all partial

derivatives of the Lagrangian by the system states vanish at the

optimal solution to the problem of eqn. (16) - i.e.:

LL
LX(t)

~0 Vt[½0,T � ð20Þ

Here the ‘vector-matrix’ notations Lw=LX or LF=LX, where

X[Rn, mean respectively Lw=Lxi or Lfi=Lxj , Vi,j~1 . . . n.

This development is known as mathematical sensitivity analysis
and its main purpose is to reveal the impact of a given system

parameter (such as u(t) or its initial state X(0)) on the resulting

dynamics.

From eqns. (19) and (20):

d

dt
~{

LH

LX
ð21Þ

(T)~
LH

LX(T)

where

LH

LX
~

Lf0

LX
z

LF

LX

0

Energy-Optimal Electrical-Stimulation

PLOS ONE | www.plosone.org 9 March 2014 | Volume 9 | Issue 3 | e90480



Notice that eqn. (21) describes the adjoint dynamic system

iterated in reverse time with a terminal condition provided by the

derivative of the h(X(T)) term. To solve the ODE system of eqn.

(21), the achieved forward dynamics of eqn. (16) needs to be

already computed.

Similarly, all partial derivatives of the Lagrangian by

u(t),Vt[½0,T � vanish at the optimal solution to the problem of

eqn. (16) - i.e. Vk~0 . . . m{1:

LL
Luk

~

ðT

t~kDt

LH

Lu
dt ð22Þ

where Dt is the sampling time, uk~u(kDt) and

LH

Lu
~

Lf0

Lu
z

LF

Lu

0

Hence, eqn. (22) yields all components of the gradient w.r.t.

u(kDt), which enables the use of gradient-based quasi-Newton

search routines (e.g. fmincon from the Matlab optimization

toolbox).

Moreover, one sees from eqn. (19) that the array (0) is the

sensitivity (i.e. the gradient) w.r.t. initial state X(0), i.e.:

Figure 3. Propagating AP’s and spatial profile of the membrane voltage V (t,z) & intracellular potential Wa(TSTIM ,z) (at the end of
stimulation, please also see Fig. 2); z is the 1D axonal spatial coordinate. The peaks of V at the Ranvier nodes are due to the direct exposure
to the extracellular medium, which is unlike that of the myelinated sections in the double-cable MRG’02 model.
doi:10.1371/journal.pone.0090480.g003
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(0)~
LL

LX(0)

A boundary-value problem (BVP), with known initial conditions

for X(0) and terminal conditions for l(T), is solved numerically.

However, it should also be noted that such solutions may also

converge to shallow local minima. For example, the Newton

search is guaranteed to produce the ‘true’ solution when the

problem at hand involves a quadratic cost. Here the objective

function not only may be non-quadratic, but also may be non-

convex in some manifolds of its high-dimensional parametric

space.

Above we described the continuous-time FHOC. The

CVODES toolbox readily provides adjoint sensitivity analysis

(ASA) capabilities. FHOC is one of the common applications of

the latter. Analogously, a discrete-time version may be formulated

and solved (see the Results section, where a specific example is

developed).

Solving the Problem Analytically: The PLA in ES
Through calculus of variations, here we establish a general form

for the energy-optimal current waveform u�(t). This approach

applies the Principle of Least Action to ES.

Let us assume that T%tION , where tION is the time-constant

that determines the behavior of the slow gate states of the modeled

ionic-channels. Hence, the fast gate states may be approximated

by their asymptotic values x?(V )~ lim t??x(tjV ), while the slow
gate states - by their resting values x0~x?(Vr).

Then an AP can readily be evoked by stimulation from the

resting state, and the threshold potential VTHR to reach at time T

is finite and assumed (without loss of generality) to be known. The

energy-efficiency of driving the excitable-tissue membrane poten-

tial V (t) from its resting value Vr to VTHR through a stimulation of

fixed duration T satisfies:

u�(t)~ arg min
u

P(u) P(u)~1=2

ðT

0

u(t)½ �2dt ð23Þ

Since from eqn. (6), u(t)~Cm
_VVzIS(V ):

P(u)~S(V jT ,u)~1=2

ðT

0

Cm
_VV (t)zIS(V )

� �2
dt ð24Þ

As done in the calculus of variations let us perturb the energy-

optimal time-course V�(t) by the infinitesimal perturbation Eg(t),
where g(t) is an arbitrary function of time and E is an infinitesimal

scalar.

V (t)~V�(t)z g(t)

IS(V )~IS(V�)z
LIS(V�)

LV
g(t)

ð25Þ

Table 6. MRG’02 double-cable model-axon geometric parameters, in mm.

Notation Parameter description Value

Shared parameters:

D Fiber Diameter 16.0

DZ Node-node separation 1500

Nmy Number of myelin lamellae 150

Nodal compartments:

Ln Node length 1.0

dn Node diameter 5.5

MYSA (myelin attachment paranode)

LM length 3.0

dM diameter 5.5

dM periaxonal width (Membrane-to-Myelin gap) 0.004

FLUT compartments (main section of paranode)

LF length 60.0

dF diameter 12.7

dF periaxonal width 0.004

STIN compartments (internodal section, 3+3 total in 1 internode, see Fig. 2)

LS length 228.8 (*1

dS diameter 12.7

dS periaxonal width 0.004

Notes:
(*1 LS~

DZ{Ln{2(LMzLF )

6
:

doi:10.1371/journal.pone.0090480.t006
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From eqn. (25), Vt[½0,T � the integrand in eqn. (24) becomes:

(Cm
_VVzIS(V ))2~(Cm

_VV
�
zIS(V�))2

z2 (Cm
_VV
�
zIS(V�))(Cm _ggzgI ’S(V�))

z 2(Cm _ggzgI ’S(V�))2

ð26Þ

From eqns. (24) and (26), and since u�(t)~Cm
_VV�zIS(V�).

P( )~S(V�)z

ðT

0

u�(t)(Cm _ggzgI 0S(V�))dt

z 2F (V�,g)

ð27Þ

The necessary condition for S(V ) to have a minimum at E~0
for any g(t) is:

GE~P0( )j ~0~

ðT

0

u�(t)(Cm _ggzgI 0S(V�))dt~0 ð28Þ

To deal with the u�(t) _gg term of eqn. (28), it is integrated by parts :

GE~Cm u�(t)g(t)½ �T0 {

ðT

0

½Cm _uu�{u�I 0S(V�)�g(t)dt~0 ð29Þ

Since the perturbation g(t) respects the boundary-value

problem (BVP) with known initial and terminal conditions for

V�(t) - i.e. g(0)~g(T)~0, then the first RHS term above

vanishes. Hence, the only way that eqn. (29) will hold for any g(t)
is that we have the Euler-Lagrange-type equation:

Cm _uu�~I 0S(V�)u� ð30Þ

Equation (30) can also be attained directly using the continuous

version of the standard OC formalism [32] (please see also the just

presented FHOC subsection above).

Here the Hamiltonian is.

H~u2=2z (u{IS(V ))=Cm: ð31Þ

Figure 4. LAP energy-optimal V�(t) and u�(t) for the LM: for TSTIM respectively 10 ms and 5 ms; the time constant t~C=g was varied
as indicated in the legend; membrane capacity was constant - C = 1 mF=cm2, while membrane (leak) conductance g was respectively
0.2, 1 and 5 mS=cm2; The 3 solutions shown correspond to the nominal t = 1 ms (cyan trace) or 5-fold shorter (thin red dash-dot), or
5-fold longer (thick dashed black) t respectively; (thin dashed black) rectangular pulse with amplitude k�~(VTHR{Vr)=TSTIM .
doi:10.1371/journal.pone.0090480.g004
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The necessary conditions for optimality require that.

LH=Lu~0 ð32Þ
_~{LH=LV ð33Þ

From eqns. (32) and (31) =Cm~{u. Then from eqn. (33).

Figure 5. LAP optimal waveforms V �(t) and u�(t) for the 0D IM: The 3 solutions shown correspond to the nominal IM opposing
current (cyan trace), twice higher (thin red dash-dot), or twice lower (thick dashed black) IS respectively. The IION,0(V ) approximation
of the ionic current is used for a case of very short duration (TSTIM = 10 ms) and the IION,?(V ) approximation is used for a case of long duration
(TSTIM = 5 ms). It is important to notice that - as with the LM model above, u�(t)&k�zIION (V ), where k�~(VTHR{Vr)=T (see the Box) Box:
Resting-state IION,0(V ) and asymptotic-state IION,?(V ) ionic currents for the 0D IM; Markers are inserted at the resting and threshold membrane-
voltage points, respectively VREST = 270, VTHR,0 = 255 and VTHR,? = 250 mV .
doi:10.1371/journal.pone.0090480.g005
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Cm _uu~LH=LV~{ =CmI 0S(V )~uI 0S(V )

which is the same as eqn. (30).

From eqns. (6) and (30) we have that.

_uu�(t)~Cm
€VV�zI 0S(V�) _VV�~I 0S(V�)u�=Cm

and thence:

Figure 6. LAP optimal waveforms V�(t) and u�(t) for the 0D HHM: The IION,0(V ) approximation of the ionic current is used for a case
of very short duration (TSTIM = 10 ms) and the IION,?(V ) approximation is used for a case of long duration (TSTIM = 5 ms) (see the Box).
As with the IM, bvp4c was used to numerically solve the BVP of eqn. (34). The figure follows a quite similar format to Fig. 5. IS(V ) can also be
assumed higher or lower. All the maximal ionic conductances in the HHM (see also Table 3) are temperature-dependent and are linearly proportional
to the coefficient kT . The 3 solutions shown correspond to the ionic current at ToC½37oC� (cyan trace), twice higher (thin red dash-dot), or twice
lower (thick dashed black) IS respectively. From eqn. (42) we can see that kT = 1.6047 (half the nominal) at 28:70C, and kT = 6.4188 (twice the
nominal) for at 45:30C. Box: Resting-state IION,0(V ) and asymptotic-state IION,?(V ) ionic currents for the 0D HHM; Markers are inserted at the
resting and threshold membrane-voltage points, respectively VREST = 277 mV , VTHR,0 = 264.55 mV and VTHR,? = 252.35 mV .
doi:10.1371/journal.pone.0090480.g006

Energy-Optimal Electrical-Stimulation

PLOS ONE | www.plosone.org 14 March 2014 | Volume 9 | Issue 3 | e90480



C2
m

€VV�~I 0S(V�)½u�{Cm
_VV��:

And finally, from eqn. (6).

C2
m

€VV�~IS(V�)|
LIS(V�)

LV
ð34Þ

Equation (34) is a rather simple system of ordinary differential

equations (ODE) that can readily be solved for a given current

model IS(V�) to compute the energy-optimal membrane voltage

profile V�(t). The energy-efficient current waveform u�(t) is then

computed from eqn. (6).

In the Results section below we illustrate the use of eqn. (34)

with several frequently encountered current models.

Results

Here, we first derive some key analytical results using the

simplest and clearest models. We then identify generally applicable

optimality principles. Finally, we demonstrate how these principles

apply also to more complex and realistic models and their

simulations.

Part I - Specific Point-model Results, Applying the LAP
For the zero-dimensional (single-compartment, space clamp)

models introduced in the Methods, here we describe the LAP-

optimal waveforms V�(t) and u�(t), stemming from the general

(model-independent) LAP result of eqn. (34).

These simple cases readily illustrate some rather key optimality

principles resulting from a LAP perspective. We will discuss these

optimality principles as we go, and will summarize them at the end

of this subsection.

Linear sub-threshold model. Replacing IS(V�) in eqn. (34)

with IION (V ) from eqn. (8):

t2 €VV~V ð35Þ

t~Cm=gm~RmCm is the membrane’s time constant and for

expediency V:V� and Vr = 0.

The general solution of eqn. (35) is:

V (t)~C1e
{t
t zC2e

t
t ð36Þ

Given the boundary conditions V (0)~0 and V (T)~VTHR:

V�(t)~VTHR
sinh (t=t)

sinh (T=t)
ð37Þ

A result similar to eqn. (37) is obtained by [33], using a slightly

different (less direct or general) optimal-control approach.

From eqn. (37) one can see that V�(t)=VTHR~

sinh (t=t)= sinh (T=t)~t=T - i.e. it has a linear rise, especially

with T%t. Here T = 100 ms and t = 1 ms (computed using typical
values from the literature for gm = 1 mS=cm2 and Cm = 1

mF=cm2).

Figure 4 presents the LAP energy-optimal stimulation profiles

V�(t) and u�(t) for a short and a long stimulus duration TSTIM

and three membrane time constant t values.

Before we go on, it is useful to investigate the conditions for a

growing exponent (GE) waveform to outperform the SQR
waveform.

First, u�GE(t) has a very rapid rise. Hence, its optimal duration

T�GE will be short. Second, it is noteworthy that in [33] t = 30.4

micro-seconds! Hence, injected current rapidly leaks out. However

even with the above extreme t value, at its optimal duration T�SQR

the SQR wave does just 22% worse, which means that the SQR is

among the best candidates for its robustly good performance.

Second, in multiple cases, the energy-optimal LAP waveform

u�(t) looks a lot like a ‘classical’ rectangular waveform. From eqn.

(8), we may also see that, with Vr = 0, VTHR = 1, the max. value of

IION (V ) is equal to 1 and is attained as the membrane potential

reaches the threshold V (T)~VTHR. If we then replace

Figure 7. The LAP vs or with numerical optimisation for the 0D
IM, with TSTIM = 2 ms: see also Fig. 5 which shows that an initial
g u e s s ûu�(t), b a s e d o n t h e l i n e a r - g r o w t h r a t e
k�~(VTHR{Vr)=TSTIM is still valid with TSTIM = 2 ms and
VTHR = 250 mV . panel A: discrete-time IM and FHOC panel B:
continuous-time IM and FHOC, using CVODES adjoint sensitivity analysis
capabilities upper plots: (dashed black) a rectangular pulse with
amplitude k� ; (thick cyan) the LAP ûu�(t)~k�zIION,?(V ); (thick black)
the best FHOC u(t) lower plots: (dashed black) linear-growth evolution
of the membrane potential from Vr at t~0 to VTHR at t~TSTIM ;
(dotted gray) the desired threshold value VTHR = 250 mV; (thick cyan)
the resulting LAP V�(t); (thick black) the resulting FHOC V (t).
doi:10.1371/journal.pone.0090480.g007
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IION (V )&0 in eqn. (6), we see that a waveform u(t) - that brings

V (t) from Vr to VTHR at a constant rate, is the time-constant

waveform u(t)~k�~(VTHR{Vr)=T . For this example, k�~
10&IION (V ), which explains why u�(t) is that close to a

rectangular waveform.

As a matter of fact, for very short stimulation times, the k� tend

to be high, while IION (V ) tends to be linear. Hence, the ‘classic’

rectangular (or square, SQR) waveform tends to also be close to

energy-optimal.

Such facts are rather important as they lead us below (as

evidence is accumulated) to a general form not only of V�(t), but

also of u�(t).
Comparative properties the V(t) growth profiles. The

GE waveform may be an SQR waveform in disguise. I.e. some

linear growth of the membrane voltage may still fit the one

obtained upon ES with a GE. The motivation for this is in eqn.

(36), where the first term vanishes with T&t.

Finally, the total electric charge conveyed by the ES source may

have to be considered. For example, in the LM of eqn. (8) the total

charge consists of a capacitive charge to raise the membrane

voltage by a given amount (to VTHR), and resistive chargeÐ TSTIM

0
V (t)=Rdt. A similar situation occurs in the MRG002 model

due to the opposing axial currents.

So let us solve the following auxiliary problem:

Find a linear fit V̂V (t)~ max½a(t{b),0� to the growing exponent

V (t)~(et=t{1)=(eTSTIM=t{1), so that the ES source conveys the

same resistive charge in the time interval t[½0,TSTIM �. I.e. we want

that:

ðTSTIM

0

V̂V (t)dt~

ðTSTIM

0

V(t)dt~t{
TSTIM

eTSTIM =t{1

Here, for simplicity (and without any loss of generality) we have

assumed Vr~0 and VTHR~1.

For example with t~TSTIM=4, we obtain b&0:54|TSTIM , i.e.

the linear-growth equivalent has more than twice shorter duration

- e.g. with TSTIM~5, b&2:7.

The latter result promotes intuition: with large opposing

currents optimal ES cannot afford to last long. The transition of

the membrane voltage from its rest to a threshold value is best

performed rapidly. Hence, the shape of the V (t) growth profile

depend on the TSTIM=t ratio. As seen, for TSTIM%t, the optimal

u(t) is close to rectangular, while with TSTIM&t, the GE is in

effect equivalent to doing nothing for at least half of the duration,

and then to a SQR waveform of at least doubled amplitude.

With quite similar reasoning, one can demonstrate that a 1st-

order membrane voltage growth profile V (t)~(1{et=t)=

(1{eTSTIM=t) in the time interval t[½0,TSTIM � is suboptimal and

equivalent to linear growth, which has about twice longer

duration.

Izhikevich model. Replacing IS(V�) in eqn. (34) with the

IION (V ) approximations from eqn. (14) or (15), see Box in Fig. 5:

C2
m

€VV~0:042(V{Vr)(V{VTHR)½2V{(VrzVTHR)� ð38Þ

As in the preceding model V:V�. Note that the dynamics of

eqn. (38) has all FP’s of IION (V ), as well as a third FP at

V~0:5(VrzVTHR), contributed by the derivative term I 0ION (V).

Equation (38) can be solved analytically. However, it provides

the solution in an implicit form and involves an incomplete elliptic

integral of the first kind. Hence, we used the Matlab bvp4c BVP

solver with boundary conditions V�(0)~Vr and V�(TSTIM )~
VTHR.

Figure 5 illustrates the energy-optimal LAP solution u�(t) and

the corresponding membrane voltage profile V�(t). The IION,0(V )

approximation of the ionic current is used for a case of very short

duration (TSTIM = 10 ms) and the IION,?(V ) approximation is

used for a case of long duration (TSTIM = 5 ms).

It is important to notice that - as with the LM model above,

u�(t)&k�zIION (V ), where k�~(VTHR{Vr)=T (see the Box in

Fig. 5).

According to eqns. (14) and (15) the opposing current in the IM

can be presented in the general form:

Figure 8. The MRG’02 model: Toward upper bounds on
VTHR(TSTIM ): the figure presents a family of ionic current
IION (V ,Z) approximations at the target site (Z~0), for a set of
durations TSTIM . For each of the durations it is assumed that the
membrane voltage trajectory V (t) evolves according to a linear ramp
from rest Vr to threshold VTHR (the unknown). For each V value on the
horizontal (independent-variable) axis of the figure, a V (t)~kt ramp
was assumed and the corresponding ionic current IION (V ) was
computed, based on approximate gate states (see the Box). Note: for
the sake of better visibility, a |10 gain is applied to the approx.
IION (V ) for the case of TSTIM = 5 ms. Box: For a chosen TSTIM = 5 ms
and as V (t) is linearly ramped up, for each gate state the plots show the
ratio x̂x(V ,T)=x?(V ), where x̂x is given by eqn. (46) to its asymptotic
value - both functions of V . Legend for gate states: opening m and
closing h gates for the fast Naz ion-channel subtype; p persistent Naz

channel gates; s slow Kz gates.
doi:10.1371/journal.pone.0090480.g008
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IS(V�)~gain|ÎIION (V ) ð39Þ

where the nominal gain = 1, and ÎIION (V )~0:04(V{Vr)
(V{VTHR).

To see how the optimal ES is affected by the level of opposing

current, it is more than tempting to experiment with different gain

values.

Hence, 3 gain cases are plotted in Fig. 5 - for the nominal gain

(cyan traces) and two additional cases: the opposing current

IS(V�) is either doubled (gain = 2, red traces) or decreased two-

fold (gain = 1/2, black traces). As could be intuitively expected

from the general equation (24), when IION (V )?0 (very low ionic

currents):

ðTSTIM

0

u2dt*
ðTSTIM

0

_VV2dt ð40Þ

By the Cauchy-Schwartz inequality in the space of continuous

real functions, it is straightforward to show that the voltage

trajectory V�(t) that minimizes eqn. (40) is such that _VV�(t)~k�,
where k� is determined from the boundary conditions satisfied by

V�(t). Hence:

Figure 9. The actually computed V �THR as a function of TSTIM : Notice how the computed VTHR value is rather similar (almost
matched) between the linear and exponential cases, for TSTIM respectively 2 and 5 ms; and between the 1st-order and linear cases,
for TSTIM respectively 0.2 and 0.5 ms. see also Fig. 10.
doi:10.1371/journal.pone.0090480.g009

Table 7. Minimal VTHR(TSTIM )½mV � values for the MRG’02 model, obtained for each V (t) trajectory class.

TSTIM Linear 1st-order Exponent.

0.020 225.649 237.602 24.963

0.050 241.838 250.515 224.311

0.100 250.852 257.366 237.032

0.200 257.061 261.506 247.137

0.400 260.588 263.558 254.124

0.500 261.247 263.889 255.731

1.000 262.378 263.960 259.255

2.000 261.950 262.578 260.977

5.000 259.273 259.094 261.249

doi:10.1371/journal.pone.0090480.t007
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k�~
VTHR{Vr

TSTIM

ð41Þ

Just as in the preceding model, it is also V�(t)=VTHR ~t=TSTIM

with the shorter durations - which justifies the use of the resting

approximation IION,0(V ).
HHM. Here the IS(V�) of eqn. (34) is replaced with the

resting-state - IION,0(V ), or asymptotic-state - IION,?(V ) ionic

current approximations (see the Box in Fig. 6).

Toward IION,0(V ) the gate-state variables are factored out as

follows: The fast state m(t)&m?(V ), while the slower variables

h(t)&hr~h?(Vr), and n(t)&nr~n?(Vr) are approximately at

rest, assuming very short durations. Conversely, and assuming

very long durations, toward IION,?(V ) all gate variables are

approximately at their asymptotic value, corresponding to a given

membrane voltage V (t) (see Methods).

As with the IM, we used bvp4c to numerically solve the BVP of

eqn. (34) with boundary conditions V�(0)~Vr and V�(TSTIM )~
VTHR.

Figure 6 follows a very similar format to Fig. 5.

Similarly to eqn. (39) above, IS(V ) can also be assumed higher

or lower. All the maximal ionic conductances in the HHM (see

also Table 3) are temperature-dependent and are linearly

proportional to the coefficient kT :

kT~Q
(T{T0)=10

10 ð42Þ

where Q10~2:3 and T0 = 23uC. Hence with T = 37uC, according

to eqn. (42) kT = 3.2094. Let this be our standard case (gain = 1).

As we did with the IM, 3 gain cases are plotted in Fig. 6 for

IS(V�)~gain|ÎIION (V ). For the two additional cases the

opposing current IS(V�) is either doubled (gain = 2, red traces)

or halved (gain = 1/2, black traces).

Once again - as with the LM and IM models above,

u�(t)&k�zIION (V ) (see the Box in Fig. 6).

Numerical model simulation and optimal control. The

IM was also evoked in the FHOC Methods section. It is therefore

interesting to contrast the results of the LAP and FHOC

approaches in identifying energy-optimal ES waveforms for the

same ionic current model. For such comparison, the IM has the

clear advantage of hiding no implementation specifics inside a

black box.

The FHOC formalism (see Methods) is computationally

efficient, but it is also subject to the similar limitations as most of

the ad-hoc search approaches. Iterative numerical optimization

requires an initial guess for the solution, and trying different

starting arrays u(0) may alleviate a bit the propensity to converge to

shallow local energy-minima.

Here it is also important to realize that in eqn. (16) the two

terms to minimize in the F (u) functional (a function of functions),

namely the energy cost (17) and the penalty (18) may conflict each

other. When the penalty gain Kpenalty in (18) is too low, the search

will identify a lower-energy solution u, which however does not

bring the membrane potential Vk up to the desired threshold value

- i.e. VM%VTHR. Conversely, a too high penalty gain Kpenalty will

identify a very high-energy solution u, which is not only costly, but

the membrane potential may also overshoot the threshold, since

Figure 10. The energy P and charge-transfer Q values as a function of TSTIM : The linear-ramp voltage profile yields the best P
performance for most of the durations. As in Fig. 8 notice that the P and Q values are quite similar for the linear and exponential cases, for
TSTIM respectively 2 and 5 ms; and also for the 1st-order and linear cases, for TSTIM respectively 0.2 and 0.5 ms. Toward the P values electrode
impedance of 1 MV is assumed. Contrasted: SQR stands for the square (or rectangular) stimulation waveform.
doi:10.1371/journal.pone.0090480.g010
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the ‘getting there’ is underestimated for the sake of the very last

simulation steps.

As seen from Fig. 7 Panel B (which uses the IION,?(V )

approximation of the ionic current for the relatively long duration

TSTIM = 2 ms), the linear growth profile is a reasonable estimate

for the optimal membrane voltage profile V�(t). Hence:

u�(t)&k�zIION,?(V ) ð43Þ

where k� is given by eqn. (41). When u(0) is close to the LAP

estimate u�(t) of eqn. (43), the FHOC iteration also consistently

ends close to there (see Fig. 7, panel B). The cyan traces on Fig. 7

are the u�(t) and the resulting V�(t). With the LAP estimate, the

FHOC approach resulted in a final membrane potential

reasonably close to the desired threshold value - i.e.

V (TSTIM )~{50:106&VTHR~{50, even if the IM was simu-

lated with the discretized LAP waveform u�(t) (Dt = 10 ms).

The black traces illustrate the FHOC solution, computed for

two different u(0) choices. For Panel A, u(0) was chosen to be all

zeros. When all time-step entries u(0) were chosen to be equal to

the upper bound U = 30 (data not shown), due to the (discontin-

uous) AP event occurring mid-way the temporal horizon, the

Matlab’s fmincon solver remains stuck to the initially provided

values.

Except for the case in Panel B, the Kpenalty meta-parameter had

to be kept high (Kpenalty = 70) in order to respect the terminal

constraint of V (TSTIM )&VTHR.

The total energy costs (all expressed as 2-norms of the obtained

best u(t)) are respectively 161, 153.2 and 423.4 (for the discrete-

time version) 186.7, 159.1 and 334.2 (for the continuous-time

version).

Comparing these to P(u�) = 153.2 (discrete-time) and = 157.4

(continuous-time), the LAP-based solution is comparable to or

superior than the FHOC solutions. The numerical FHOC solution

on Fig. 7, panel A has converged to a local extremum. Note that a

post-hoc correction (simple DC offset) is applied to the LAP-based

estimate, which adjusts for the overshoot of VTHR when simulating

the full (two-dimensional) IM. The overshoot is due to using the

one-dimensional approximation, eqn. (15).

The results obtained here nicely illustrate multiple aspects of

identifying energy-efficient waveforms through numerical model

simulation and optimization. Clearly, pairing theoretical insights

with numerical tools carries the best success potential.

Part I Results Summary
A number of more general observations on u�(t) can be made

looking at the results this far.

Probably, the most significant result is that the use of LAP

reduces the problem to the BVP, defined by eqn. (34), with

V�(0)~Vr and V�(TSTIM )~VTHR. We still need to have a very

good idea of both IS(V ) and VTHR to successfully solve for V�(t),
and thence for u�(t), in a given particular situation.

We identify also the following key and practice-oriented

optimality principles resulting from the LAP perspective.

1. The optimal sub-threshold membrane potential growth profile

with relatively short durations TSTIM and low membrane

conductivity:

First, in all simple models we used up to here, the solution V�(t)
of the ODE system, defined by eqn. (34), is quite close to a

linear growth from V�(0)~Vr to V�(TSTIM )~VTHR. Second,

with the total current IS(V )&0 (e.g. low leak), then from eqn.

(6), it follows that u(t) will be exactly proportional to the rate of

change of the membrane’s potential V(t). If _VV�(t)&const, then

u�(t) is close to a SQR waveform.

2. The energy-efficient waveform depends directly on the

temporal shape of currents at the AP initiation site.

3. The targeted VTHR membrane voltage threshold depends on

stimulation duration, with a tendency to increase with TSTIM .

4. The exponential growth membrane voltage profiles V (t) are

equivalent to linear growths of shorter duration.

Part II - Multiple-compartment Model Results
Here we first extend the general (model-independent) LAP

result of eqn. (34) to spatial-structure models (non-zero-dimen-

sional, multi-compartment), which involve membrane-voltage

distribution and propagation along cable structures.

LAP result generalization to multi-compartment

models. There is a combinatorial explosion in both the number

of parameters and the number of ways that multi-compartment

models can be put together and used. Hence, there is much more

than one way of generalizing the LAP result of eqn. (34).

Here we briefly present a variant, which appears to be one of

the most straightforward generalizations.

Table 8. Minimal Q(TSTIM )½pico{Coulomb� values for the MRG’02 model, obtained for each V (t) trajectory class.

TSTIM SQR Linear 1st-order Exponent.

0.0200 3.1180 0.1279 0.1671 0.1467

0.0500 1.2472 0.1630 0.1946 0.1642

0.1000 0.6236 0.1959 0.2212 0.1847

0.2000 0.3832 0.2369 0.2583 0.2121

0.4000 0.3426 0.3045 0.3191 0.2545

0.5000 0.2605 0.3440 0.3492 0.2937

1.0000 0.2143 0.5093 0.4736 0.3910

2.0000 0.1808 0.8640 0.6361 0.5855

5.0000 0.1411 2.1216 1.5673 1.2018

doi:10.1371/journal.pone.0090480.t008
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With a multi-compartment model, eqn. (7) can be rewritten as:

L
Lt

V (t,Z)~u(t,Z){IS(V ,Z) ð44Þ

Without loss of generality, we used the variable Z to represent

any ‘spatial’ model dimension. It could even stand for the

compartment index in a discretized implementation.

Now, eqn. (7) is a partial DE, depending both on the temporal

and the spatial model dimensions.

Assuming that we are free to manipulate u(t,Z) in every

compartment as we wish, the derivation sequence from eqn. (23) to

eqn. (30) (see the LAP subsection in the Methods) still applies

yielding a family of equations ‘parameterized’ by the location

coordinate Z.

Hence, we may obtain the generalization of eqn. (34) as:

C2
m

L2

Lt2
V�(t,Z)~IS(V�,Z)|

L
LV

IS(V�,Z) ð45Þ

Like the extended eqn. (44), eqn. (45) is a partial DE, depending

on both temporal and spatial boundary conditions. In particular,

VTHR becomes a function of Z. It is no longer a single variable,

but a whole spatial profile, subject to conditions such as the safety
factor for propagation introduced in the cardiac literature [34].

The MRG’02 model: Toward upper bounds on

VTHR(TSTIM ). Multi-compartment models add complexity

unseen with the single-compartment models. Wongsarnpigoon &

Grill [8] used the peripheral-axon MRG’02 model [25] in a

genetic-programming search for energy-efficient stimulation

waveforms. The approach was somewhat similar to the FHOC

described above. After thousands of iterations simulating the

MRG’02 model, the identified waveforms were reminiscent of

noisy truncated and vertically offset Gaussian’s (Fig. 2 in [8]). In

the light of analysis this far one might think that this reflects the

shape of IS(V ) for V ranging from the resting value (280 mV) to

some threshold VTHR.

In this work stimulation is assumed to be intracellular and at just

one spatial location (Z~0, the center RN, see Methods) along the

cable structure.

To suggest a version of optimal waveforms u�(t) for the

MRG’02 model, we first estimate the membrane voltage threshold

for each duration. One analytic way toward such estimates is

Figure 11. Optimal waveforms u�(t), TSTIM = 20, 200 ms: The
figure also provides the corresponding optimal SQR-like
linear-growth-related current Cm|k� (dashed black), as well
as the components of IS - respectively the IION (blue traces)
and Iaxial (red traces) current trajectories.
doi:10.1371/journal.pone.0090480.g011

Figure 12. Optimal waveforms u�(t): see also Fig. 11. Notes:

Since here Vt, _VV�(t)~k�, where k� is given by eqn. (41), from eqn. (6)
u�(t)~Cmk�zIS(V ). The figure is optimized to present clearly both
u�(t) and k� (*1) The dashed trace at the bottom plots log10 Cmk� as a
function of TSTIM (*2) Toward equally good plot visibility, for all
durations TSTIMv1ms, the waveforms u�(t) are rubber-banded to take
the same graph width as the 1 ms-waveform. This is illustrated by the
scale bars for the shortest duration TSTIM = 20 ms. (*3) The vertical scale
is the same for all plots, except for the logarithmic offset, as defined by
pt. (*1) above.
doi:10.1371/journal.pone.0090480.g012
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readily provided by the MRG’02 model. Recall also that with

simpler models VTHR showed a tendency to increase with TSTIM .

Figure 8 presents a family of ionic current IION (V ,Z)
approximations at the target site (Z~0), for a set of durations

TSTIM . For each of the durations we assume that the membrane

voltage trajectory V (t) evolves according to a linear ramp from

rest Vr to threshold VTHR. As the latter is unknown, we produced

one such ramp for each V value on the horizontal (independent-

variable) axis of the figure, and then computed the corresponding

ionic current IION (V ) as described next.

Toward gross estimates of VTHR, we first solve approximately

eqn. (10) for each gate-state:

x̂x(T)~x0z(x?(V ){x0)(1{e{T=tx( �VV )) ð46Þ

where x0 is the gate-state value at rest and �VV~(VrzV )=2 is the

average excursion from the resting membrane voltage.

Figure 8 shows the obtained approximate ionic currents

IION (V (t)) as a function of just V for three very different

durations - TSTIM = 0.02, 0.5 and 5 ms. For TSTIM = 5 ms, the

Box in the same figure illustrates the estimated proportions-to-rest

x̂x(TSTIM jV )=x?(Vr) for each of the 4 gate-state variables, at the

end of stimulation.

Why does such an analysis provide upper bounds on

VTHR(TSTIM )?

First, from the Box of Fig. 8 we can see that indeed the

dynamics of the fast Naz ion channel subtype evolves before that

of the other ion channels. Particularly, we see that the estimate for

inactivating h gates suggests they are completely closed for

TSTIM = 5 ms and once V reaches around 240 mV .

On the other hand from the main Fig. 8, one can see that this

analysis gives the intervals V[½Vrest,VUB� in which the approxi-

mate ionic currents IION (V )v0 (i.e. remain depolarizing).

Clearly if VTHR(TSTIM ) is not reasonably within ½Vrest,VUB�, no

miracle would yield an AP at the target location, since IION

becomes repolarizing outside of these bounds.

Interestingly, the analysis also predicts lowering of VTHR with

longer durations. This result is exactly the opposite of what was

observed with the simpler models of the HH-type, where IION was

repolarizing for V[½Vrest,VTHR�.
The numerical experiments we conducted were fully consistent

with the above predictions, and some upper bounds were also

quite tight.

The MRG’02 model: numerical experiments. We con-

ducted four series of numerical experiments in search of the

optimal waveforms u�(t) for the MRG’02 model. Each series was

computed for the same set of 9 durations TSTIM = 20, 50, 100,

200, 400 and 500 ms; 1, 2 and 5 ms (for the sake of better visibility,

only the most representative subsets are illustrated in full detail).

The four series differed by the chosen voltage-clamp temporal

growth profile V (t,0) at the targeted RN location and A baseline

series involved finding the threshold rectangular stimulation

amplitude. In all series, the constraint was to observe a

propagating AP at the latest within 1 ms after the end of

stimulation.

With DV~VTHR(TSTIM ){Vr, where the minimum VTHR was

found (with 0.001 mV tolerance) using the same type of golden-

section search algorithm as per the optimal SQR amplitude.

Table 9. Minimal P(TSTIM )½femto{Watt� values for the MRG’02 model, obtained for each V (t) trajectory class.

TSTIM SQR Linear 1st-order Exponent.

0.0200 1.9444 0.9620 1.4387 2.2993

0.0500 0.7778 0.6391 0.7765 1.1611

0.1000 0.3889 0.4596 0.5158 0.7325

0.2000 0.2937 0.3307 0.3692 0.4766

0.4000 0.2934 0.2693 0.3003 0.3352

0.5000 0.3392 0.2675 0.2913 0.3463

1.0000 0.4593 0.2934 0.2929 0.2954

2.0000 0.6535 0.4265 0.3321 0.3204

5.0000 0.9949 1.0339 0.9486 0.5263

doi:10.1371/journal.pone.0090480.t009

Figure 13. Propagating AP due to an optimal SQR (rectangular)
waveform, TSTIM = 100 ms: For the shortest durations, the plain
rectangular waveform outperforms by P the ones associated to
the linear-ramp voltage profile. One can see clearly that the steep
rise of the SQR waveform yields an early superlinear ramping of the
membrane voltage. However, the rectangular waveform requires a lot
more charge Q to be transferred (see Fig. 10).
doi:10.1371/journal.pone.0090480.g013
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And the three LAP-driven series were:

linear growth

V (t)~VrzDVt=TSTIM ð47Þ

exponential growth

V (t)~VrzDV(et=t{1)=(eTSTIM =t{1) ð48Þ

1-st order growth

V (t)~VrzDV (1{e{t=t)=(1{e{TSTIM =t) ð49Þ

The corresponding u(t,0) ES waveforms were computed from

eqn. (44) with Z~0.

The MRG’02 model: numerical results. Figure 9 and

table 7 illustrate the obtained VTHR as a function of TSTIM .

The computed optimal values of VTHR are often similar for two

adjacent durations either between the linear and 1-st order, or

between the linear and exponential growth (EG). 1-st order is

usually similar to its right-hand linear neighbor (for the next longer
duration). Conversely, EG is similar to its left-hand linear neighbor

(for the previous shorter duration).

This is consistent with and best interpreted in the light of our

growth-profiles comparison (see the dedicated subsection on page

13). There we saw that indeed an EG V (t) trajectory is

approximately equivalent to linear growth of about twice shorter

duration. As for 1-st order growth, clamping the voltage to its

plateau will tend to be similar to a linear growth of about twice

longer duration. Recall also that 1-st order is the ‘reverse-time’

analog of EG.

Figure 10 and tables 7, 8 illustrate the obtained optimal-

waveforms’ energy P and charge-transfer Q values as a function of

TSTIM .

The linear-growth strategy is the one that tends to perform best

across the board, except for the 2 longest durations, and as

predicted by the comparative (linear vs exponential growth)

analysis, based on the 0D LM.

Figure 3 illustrates the propagating AP’s, corresponding to the

two representative linear and exponential voltage-clamp temporal

growth profiles at the stimulation site V (t,0). The figure also shows

the spatial profiles of the membrane voltage and intracellular

potential at the end of stimulation for the two growth cases.

Consistently with the analysis in the subsection on the

comparative properties of the V (t) growth profiles, we found out

that the spatial distributions of membrane voltage and intracellular

potentials at the end of stimulation were reasonably similar - e.g.

between the optimal linear growth voltage-clamp for TSTIM = 2

ms, Fig. 3 (Panels A, C) and the optimal exponential growth with

TSTIM = 5 ms, Fig. 3 (Panels B, D).

Note that we expect from an approximately globally optimal

stimulation waveform u�(t) to yield a specific distribution of

membrane voltages V (TSTIM ,Z) at the end of the stimulation. We

call this distribution tentatively the invariant spatial profile of the

membrane voltage. Importantly, such a profile will differ for any

different duration TSTIM even when the corresponding waveform

u�(t) is globally optimal. This is due for example to the small

spatial constant l, which controls the spatial diffusion with time.

However, if the spatial profile is about the same for different

durations TSTIM and the corresponding different waveforms u�(t)

(see Panels B and D in Fig. 3), then both waveforms may be

optimal. Recall that linear fits to both the optimal 1-st order

growth and the optimal exponential growth with durations

TSTIM = 5 ms have duration &0:46|TSTIM = 2.3 ms. Thus, all

of the above cases may yield quasi-invariant spatial potentials at

the end of stimulation, and may also be otherwise similar.

For two representative linear-growth cases Fig. 11 illustrates the

corresponding waveforms u�(t) and their construction in detail.

Finally, Fig. 12 uses the same-vertical-scale to compare the

relative contributions of the growth rate and the compensated re-

polarizing node currents for each different duration. The

waveforms’ offsets (due to k�) are inversely proportional to

duration. This readily compares qualitatively with the results in

[8]. Especially for very short durations (e.g. TSTIM~20ms), the

optimal waveform u�(t) has a significant rectangular component

(see also the optimality-analysis for the simple 0D models). Further

parallels may be made for the relatively shorter durations

(ƒ200ms).

Numerous essential differences in the approach preclude further

objective comparisons. Interestingly however, for the longer

durations (T§ 0.5 ms) the results in [8] show very little (if any)

variation with TSTIM (there called pulse-width, PW).

Finally, with long PW’s in [8] most of the stimulation’s energy is

delivered toward the middle of the active period. This late and

peaky delivery requires additional analysis and comparisons of the

actually achieved waveform-energy levels, which cannot be done

in its details at this time. However, we return to the late delivery

policy in the Discussion (see below), where it is deemed equivalent

to a shorter-duration case.

The latter provides a clue why such significant delivery

differences would not be at odds with the very narrow 95%

confidence intervals that resulted from the genetic algorithm in

[8], and seeming to preclude different optimal waveforms.

Discussion and Conclusions

In eqn. (23), we addressed directly the electric power required

for driving the excitable-tissue membrane potential V (t) from its

resting (Vr) to its threshold value (VTHR) through a stimulation of

fixed duration. Through the LAP perspective, we obtained eqn.

(34) - a general (model-independent) description of the energy-

optimal time-course of the excitable-tissue’s membrane potential

V�(t).
We would like to bring the reader’s attention to three specific

conclusions.

The first is related to the intuition gained with respect to the

evolution of the membrane potential V�(t). This optimality

principle is best demonstrated by the simplest linear sub-threshold

model (LM). Let ES circumstances be characterized by large

opposing currents (e.g. the leak LM current) over long durations.

This situation is physically analogous to filling with water a bucket

which has large holes in its bottom. Since only the final outcome is

important (i.e. we want the bucket full at the final time T ), the best

policy is to do nothing for most of the duration and then be able to

dump a very large amount of water in the bucket over very short

time. From experience, we know that works for even an unplugged

sink. Moreover, we saw that the same intuition transfers to more

refined models (e.g. the HHM or the MRG’02) as do nothing for

most of the duration means that we are still around the resting V

and hence there is no danger of Naz ionic-channel deactivation.

The second take-home message is that the use of LAP principles

jointly with numerical approaches (e.g. the classical FHOC)

provides a mathematically sound and practical waveform optimi-

Energy-Optimal Electrical-Stimulation

PLOS ONE | www.plosone.org 22 March 2014 | Volume 9 | Issue 3 | e90480



zation approach, providing more assurance toward the quality of

the final outcome.

And finally, a note of humility is in perfect order. In this work

we just slightly opened the door to using the LAP ideas for optimal

ES. There are many more aspects to tackle than the ones that we

can address in this short paper as ‘proof of concept’. In particular

we would like to extend the method for extracellular stimulation in

forthcoming work. The motivation for doing so is at least twofold.

On the one hand, extracellular stimulation has far more practical

relevance. On the other hand, the only way we could rigorously

employ the general LAP solution of eqn. (45) is to consider a

model where we are free to manipulate u(t,Z) in every

compartment or at every spatial location.

A direction for such manipulation is provided by the activating
function concept [15,20,25], which supplies every compartment

with a virtual injected current. In the context of extracellular

stimulation, we will also have to properly address the conditions

for stable AP propagation (see [15,35] for an extensive treatment

of the subject). The optimal pattern of extracellular potentials (size

of depolarized and hyperpolarized regions) depends on the

distance to the electrode. These conditions would also naturally

provide the spatial voltage profile at the end of the stimulation,

needed to properly solve the PDE of eqn. (45).

Here we took a shortcut path by assuming that intuitions gained

with single-compartment models suffice. This may be partially true

with the specific MRG’02 setup that we addressed, but does not

hold in general. Hence, the LAP results are approximate. A clue is

provided by the slightly lower P values of the optimal rectangular

waveform, for TSTIM = 100 and 200 ms - see Table 9. As can be

seen from Fig. 9, no benefit in terms of lower VTHR can be

associated to the steep rise of the rectangular waveform, since

VTHR is expected to be higher, esp. for dramatically shorter

durations. This was further confirmed by numerical testing with

dual linear (high/low rate) V(t) rise schedules (data not shown),

which all had inferior performance to the baseline simple linear-

growth protocol. However, the rectangular waveform also leads to

steep capacitive decay of V (t) at the end of the stimulation, which

may trigger specific patterns of additional depolarizing currents.

For the shortest durations, the plain rectangular waveform

outperforms by P the ones associated to the linear-ramp voltage

profile (see Fig. 10). On Fig. 13 one can see that the steep rise of

the SQR waveform yields an early super-linear ramping of the

membrane voltage. However, the rectangular waveform requires a

lot more charge Q to be transferred.

In practical situations many more additional aspects need to be

addressed. E.g. stimulation needs to be charge balanced. This is a

necessity for implanted devices and also debatably important for

transcutaneous applications. Such stimulation will have an effect

on the optimal threshold intensity of the cathodic pulse [36]. One

would expect that a pre- or post- anodic pulse would also have a

significant effect on the optimal waveform. Moreover, its own

shape would be subject to optimization - e.g. to minimize the

overall energy level required - a cost suitable for the design of

implanted devices.

We hope that the analysis and numerical evidence provided in

this work may convince the reader of the practical benefits of

applying the LAP principles toward the design of energy-efficient

ES.
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