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Abstract

The influence of the statistical properties of the network on the knowledge diffusion has been extensively studied. However,
the structure evolution and the knowledge generation processes are always integrated simultaneously. By introducing the
Cobb-Douglas production function and treating the knowledge growth as a cooperative production of knowledge, in this
paper, we present two knowledge-generation dynamic evolving models based on different evolving mechanisms. The first
model, named ‘‘HDPH model,’’ adopts the hyperedge growth and the hyperdegree preferential attachment mechanisms.
The second model, named ‘‘KSPH model,’’ adopts the hyperedge growth and the knowledge stock preferential attachment
mechanisms. We investigate the effect of the parameters (a,b) on the total knowledge stock of the two models. The
hyperdegree distribution of the HDPH model can be theoretically analyzed by the mean-field theory. The analytic result
indicates that the hyperdegree distribution of the HDPH model obeys the power-law distribution and the exponent is
c~2z1=m. Furthermore, we present the distributions of the knowledge stock for different parameters (a,b). The findings
indicate that our proposed models could be helpful for deeply understanding the scientific research cooperation.
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Introduction

Network science provides an useful perspective for the study of

knowledge diffusion [1,2]. Accompanying with the increasing

popularity of the complex network researches, many scholars

concentrate on exploring how knowledge diffuses on the fixed

network topology structures. Cowan and Jonard [3] compared

knowledge diffusion in a range of network structures, from the

regular network to the fully-random network. Kim and Park [4]

also measured the knowledge diffusion in regular, random and

small-world networks by using a model that integrated the

knowledge creation and the knowledge exchange; and a similar

conclusion as Cowan and Jonard’s was drawn that the small-world

network was the most efficient structure to achieve the knowledge

diffusion. Besides the small-world property, the scale-free property

is another topological structure. Correspondingly, diffusion in

scale-free networks has also been widely-discussed [5–8]. Tang et.al

[6,7] argued that scale-free structure was more effective for

knowledge transfer. The advantage of the scale-free network for

knowledge diffusion had also been shown in Lin and Li’s work [8],

which provided a numerical test of knowledge diffusion in regular,

random, small-world, and scale-free networks. In addition, Xuan

et.al [9] adopted the agent-based modeling approach to compare

the performance of knowledge transfer in a series of networks

which differed from one another in their ‘‘knowledge-connection’’

structures. These researches could be helpful for understanding

how the network properties influence the performance of

knowledge diffusion, but they ignored the evolution of the

network. Therefore, that knowledge diffuses on the dynamic

evolving networks has recently caught great attentions [10,11].

Morone and Taylor [10]considered that the network structure

would be affected by individual behaviors and interaction, and

investigated knowledge diffusion dynamics and the evolution and

formation of the network in the process of interactive learning.

Guimerà et.al [11] proposed a model for the self-assembly of

creative teams, and found that the emergence of a large connected

community of practitioners could be described as a phase

transition. Team assembly mechanisms determined both the

structure of the collaboration network and team performance for

teams derived from both artistic and scientific fields.

The aforementioned efforts contribute noticeably for improving

the understanding of knowledge-diffusion in all sorts of social

networks. However, in the scientific collaboration network, a new

node collaborates with the old nodes to co-author a paper. That

the new node joins the network is a process of network

construction. Co-authoring a paper is a process of knowledge

generation. Therefore, the network construction process and the

knowledge generation process can be integrated simultaneously.

Furthermore, people tend to create and diffuse knowledge by

coauthoring papers in the scientific collaboration systems. In

complex network, an edge relates only a pair of nodes. This

research technique of scientific collaboration network can not

express the information of papers from the viewpoint of complex

network, where the nodes represent the authors and the edges

indicate the cooperative relationship between them [12–14]. In

this paper, we argue that the hypernetwork is more feasible to

analyze the knowledge diffusion in the scientific collaboration

system. In the hypernetwork, a hyperedge can contain more than

two nodes. Thus, it is useful to represent the collaboration network

as a hypernetwork in which nodes represent authors and

hyperedges represent papers that have been coauthored by the

groups of authors [15–17]. By considering the collaborative

scientific behaviors, Hu et.al [18] proposed a model for evolving

hypernetwork based on the hypergraph theory. Furthermore, the
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scientific research activity engaged in the scientific collaboration

networks is not only the process of knowledge dissemination, but

also the process of knowledge generation.

Inspired by the above ideas, we present two knowledge-

generation dynamic evolving models among the scientific collab-

oration hypernetwork by integrating the hypernetwork structure

evolution and knowledge generation processes simultaneously. By

introducing the Cobb-Douglas production function [19] to the

knowledge generation process, the two models treat the knowledge

growth caused by the scientific research cooperation as a

cooperative production of knowledge products. The first model

named ‘‘HDPH model’’ adopts the hyperedge growth and the

hyperdegree preferential attachment mechanisms. And the created

knowledge stock is equally divided by contributors. The second

model named ‘‘KSPH model’’ adopts the hyperedge growth and

the knowledge stock preferential attachment mechanisms. And the

contributor’s knowledge increases by an amount proportional to

the contributor’s owned knowledge stock. We examine the effect of

the different parameters (a,b) of the production function on

knowledge generation, and analyze the distribution of knowledge

stock. The results indicate that our model to some extent, may

reflect the scientific research cooperation situation.

The remainder of our paper is organized as follows. In Sec. II,

the knowledge-generation dynamic evolving models are given. In

Sec. III, we investigate the process of knowledge generation,

examine the effect of the different parameters (a,b) on knowledge

generation and analyze the knowledge stock distribution and

hyperdegree distribution. The conclusions and discussions are

given in Sec. IV.

The Models

Scientific research collaboration is a process of absorbing each

other’s knowledge and co-creating new knowledge. In economics,

the Cobb-Douglas functional form of production functions is

widely used to represent the relationship of an output to inputs,

particularly physical capital and labor, and the amount of output

that can be produced by those inputs [19]. The scientific research

output can be represented by published papers. The output of

papers needs to invest manpower and knowledge. Therefore, we

introduce the Cobb-Douglas production function to the knowl-

edge generation process. The scientific knowledge generation is

that the scientific researchers create new knowledge on the basis of

the original knowledge accumulation. We assume that the created

knowledge stock of a paper depends on the co-authors’ knowledge

level as well as the number of the co-authors. The knowledge

production function can be defined as Y~AKaLb, where A
denotes the comprehensive creative level, K denotes the average

knowledge stock of coauthors, L is the number of coauthors, and

a, b is the corresponding elasticity coefficient. Furthermore, the

local world effect of the hypernetwork is introduced.

In the literatures on knowledge transfer models, knowledge has

been represented in several ways, e.g., by a stock [10], by a vector

of real positive scalars [3], by a pair constituting a scalar and an

angle [20], and by a ‘‘tree’’ of activated nodes [21]. In our model,

the stock representation suggested by Morone and Taylor is

adopted [10].

Let H~(S,E) be a simple and finite hypernetwork with the

node set S~fv1,v2, . . . ,vNg and the hyperedge set

E~fE1,E2, . . . ,EIg, where N is the node number, I is the

hyperedge number, Ej(j~1,2, . . . ,I) is a nonvoid subset of S. Let

r(H)~ maxj DEj D, s(H)~ minj DEj D. If r(H)~s(H), we say that H

is a uniform hypernetwork; Otherwise H is a non-uniform

hypernetwork [22,23]. The definition of hyperdegree for a vertex

in a hypergraph is simply the number of hyperedges attached to

that vertex [24,25]. In this paper, the hyperdegree for a node in a

hypernetwork is defined as the number of the hyperedge attached

to that node.

HDPH model
The HDPH model adopts the hyperedge growth and the

hyperdegree preferential attachment mechanisms. The created

knowledge stock is equally divided by contributors. The knowledge

generation is based on the growth process of the hypernetwork.

The HDPH model could be constructed in the following way:

(i) Initial condition: The hypernetwork consists of M0 nodes

and E0 hyperedges in the initial stage. Each node holds

some ‘‘knowledge’’, which is defined by Morone and

Taylor [10].

(ii) Determination of the local-world: Select M (MvM0)

nodes randomly from the existing hypernetwork as the

local world at each time step.

(iii) Hyperedge growth: Add a new hyperedge encircling a

newly added node and mt selected nodes in the local world

determined in (ii) at time step t, where mt is a value

selected randomly from the set U~m{1,m,mz1 and

obeys a uniform distribution, and m is a preset fixed value

and 1
t

P
mt~m. Each newly added node j’s knowledge

stock is initialized by setting Vj(0)*U ½1,5�.
(iv) Hyperdegree preferential attachment: Choose mt nodes in

the local world to construct the new hyperedge Et, the

probability P for node i is selected depends on the

hyperdegree dH (i) of node i, such that

Local (dH (i))~
M

M0zt

dH (i)P
j[Local dH (j)

, ð1Þ

where Local denotes the local world node set and the

hyperdegree dH (i) is defined as the number of hyperedges

node i belonging to.

(v) Knowledge generation: Suppose that the knowledge stock

created by the new hyperedge Et is Y , then

Y~AKaLb, ð2Þ

where A denotes the comprehensive creative level, K

denotes the average knowledge stock of the hyperedge Et’s

nodes, and a, b[½0,1� is the corresponding elasticity

coefficient. The change of the knowledge status quo of

node j is formulated as follows:

Vj(t)~Vj(t{1)z
Y

L
,j[Et, ð3Þ

where L is the number of the hyperedge Et’s nodes and

Vj(t) denotes the knowledge status quo of node j at time t.

After t time steps, this model leads to a hypernetwork with

(M0zt) nodes, (E0zt) hyperedges. The total knowledge stock

KS of the hypernetwork is KS~
PM0zt

j~1

Vj . Figure 1 (a),(d) shows

the evolving process of the HDPH model.

An Application of the Cobb-Douglas Function
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KSPH model
The KSPH model adopts the hyperedge growth and the

knowledge stock preferential attachment mechanisms. The con-

tributor’s knowledge increases by an amount proportional to the

contributor’s owned knowledge stock. The knowledge generation

is based on the growth process of the hypernetwork. Meanwhile,

the growth process of the hypernetwork depends on the knowledge

stock. The KSPH model could be constructed in the following

way:

(i) Initial condition: The hypernetwork consists of M0 nodes

and E0 hyperedges in the initial stage. Each node holds

some ‘‘knowledge’’, which is defined by Morone and

Taylor [10].

(ii) Determination of the local-world: Select M (MvM0)

nodes randomly from the existing hypernetwork as the

local world at each time step.

(iii) Hyperedge growth: Add a new hyperedge encircling a

newly added node and mt selected nodes in the local world

determined in (ii) at time step t, where mt is a value

selected randomly from the set U~m{1,m,mz1 and

obeys a uniform distribution, and m is a preset fixed value

and
1

t

X
mt~m. Each newly added node j’s knowledge

stock is initialized by setting Vj(0)*U ½1,5�.
(iv) Knowledge stock preferential attachment: Choose mt

nodes in the local world to construct the new hyperedge

Figure 1. Schematic illustration of the evolving process at each time step of the knowledge-generation hypernetwork models for
the case of the number of initial nodes M0 = 6, the local-world size M = 4 and the number of selected nodes mt = 2. Vi (t)
is defined as the node i’s knowledge stock at time step t. (a) HDPH model: starting from two hyperedges E1 , E2 described by closed curves, which
contain six nodes with the knowledge stock V1(0)~5:09, V2(0)~2:25, V3(0)~2:34, V4(0)~6:35, V5(0)~4:39, V6(0)~5:46, respectively. (b) Select
four nodes randomly (shown as four blue hollow circles) from the existing hypernetwork as the local world of a new coming node. All nodes’
knowledge stock remain unchanged. (c) A newly added hyperedge E3 prefers to encircle a new coming node v7 with the initial knowledge stock
V7(0)~2:11 and two existing nodes v2 , v4 with the more hyperedges in the local-world. All old nodes’ knowledge stock remain unchanged. (d) The
nodes v2 , v4 , v7 existing in the newly added hyperedge E3 co-author a paper to create new knowledge. The created knowledge stock equals to Y ,
and Y~0:5 � K0:7 � L0:7 , where K is the average knowledge stock of the nodes v2 , v4 and v7 ; L~3 is the number of the hyperedge E3’s nodes. The

knowledge status quo of node j is formulated as follows: Vj(1)~Vj(0)z
Y

L
, j[E3 . The rest of nodes’ knowledge status quo remain unchanged. The

HDPH model after one time step is presented. (a9) KSHP model: starting from two hyperedges E1 , E2 described by closed curves, which contain six
nodes with the knowledge stock V1(0)~5:09, V2(0)~2:25, V3(0)~2:34, V4(0)~6:35, V5(0)~4:39, V6(0)~5:46, respectively. (b9) Select four nodes
randomly (shown as four blue hollow circles) from the existing hypernetwork as the local world of a new coming node. All nodes’ knowledge stock
remain unchanged. (c9) A newly added hyperedge E3 prefers to encircle a new coming node v7 with the initial knowledge stock V7(0)~2:11 and two
existing nodes v4 , v6 with the more knowledge stock in the local-world. All old nodes’ knowledge stock remain unchanged. (d9) The nodes v4 , v6 , v7

existing in the newly added hyperedge E3 co-author a paper to create new knowledge. The created knowledge stock equals to Y , and
Y~0:5 � K0:7 � L0:7, where K is the average knowledge stock of the nodes v4 , v6 and v7 ; L~3 is the number of the hyperedge E3’s nodes. The

knowledge status quo of node j is formulated as follows: Vj(1)~Vj(0)z
Vj(0)P

i[E3

Vi(0)
� Y , j[E3 . The rest of nodes’ knowledge status quo remain

unchanged. The KSHP model after one time step is presented.
doi:10.1371/journal.pone.0089746.g001
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Et, the probability P for node i is selected depends on the

knowledge stock Vi of node i, such that

PLocal (Vi)~
M

M0zt

ViP
j[Local Vj

, ð4Þ

where Local denotes the local world node set.

(v) Knowledge generation: Suppose that the knowledge stock

created by the new hyperedge Et is Y , then

Y~AKaLb, ð5Þ

where A denotes the comprehensive creative level, K

denotes the average knowledge stock of the hyperedge Et’s

nodes, and a, b[½0,1� is the corresponding elasticity

coefficient. The change of the knowledge status quo of

node j is formulated as follows:

Vj(t)~Vj(t{1)z
Vj(t{1)P

i[Et

Vi(t{1)
� Y ,j[Et, ð6Þ

where L is the number of the hyperedge Et’s nodes and

Vj(t) denotes the knowledge status quo of node j at time t.

After t time steps, this model leads to a hypernetwork with

(M0zt) nodes, (E0zt) hyperedges. The total knowledge stock

KS of the hypernetwork is KS~
PM0zt

j~1

Vj . Figure 1 (a’)*(d ’)

shows the evolving process of the KSPH model.

Numerical Simulation

The evolving process of the above two models may be divided

into two stages. The first stage generates an initial hypernetwork

for local-world evolving process, which contains M0~20 nodes

and E0~18 hyperedges. This initial hypernetwork adopts the

hyperedge global preferential attachment mechanism. In the

second stage, the hypernetwork model starts with M0~20 nodes

and E0~18 hyperedges. At each time step t, a new hyperedge is

added to the system and will encircle a new coming node and mt

selected nodes in the local world. The parameters are set as

follows: the mean values m~2, the size of the local world M~15,

and the hypernetwork size N~1000. Each node has a knowledge

stock, initialized by setting Vj(0)*U ½1,5�. Parameter A, measur-

ing the comprehensive creative level of the knowledge-generation

function, is set to 0.5.

The total knowledge stock
In order to investigate the effect of the parameters a and b on

the total knowledge stock of the two models, we independently

conduct 121 groups of experiments, respectively. The parameters

a and b are set as the elements of the set U~f0,0:1,0:2, � � � ,1g,
respectively. Figure 2 shows the total knowledge level of the two

models under different parameter combinations (a,b). The

findings indicate that the total knowledge stock of the two models

will both become larger as a or b increases. For the same

parameters (a,b), the total knowledge stock of KSPH model is

higher than that of HDPH model.

Knowledge stock distribution
We analyze the knowledge stock distribution of the two models

with different parameters (a,b). When analyzing the statistical

analysis of the knowledge-stock distribution, since with real

numbers knowledge levels never become identical, we make the

knowledge stock of each node round into integers.

For the HDPH model, not all knowledge-stock distributions for

(a,b) values exhibit a power-law form. Figure 3 displays 9

subgraphs about the probability distribution of the knowledge

stock with different parameters (a,b). The knowledge stock

exhibits a power-law form in Fig. 3(a),(f), while the knowledge

stock does not exhibit a power-law form in Fig. 3(g),(i). Therefore,

in the knowledge generation hypernetwork generated by the

evolution mechanism of HDPH model, the knowledge stock

distribution has a variety of forms.

For the KSPH model, all knowledge-stock distributions for (a,b)
values exhibit a power-law form. Figure 4 displays the power

exponents of knowledge-stock distributions with different (a,b)
values. When a remains unchanged, the power exponent of

knowledge-stock distributions gradually decreases as b increases.

Similarly, when b remains unchanged, the power exponent of

knowledge-stock distributions also gradually decreases as a
increases. Therefore, in the knowledge generation hypernetwork

generated by the evolution mechanism of KSPH model, the

knowledge stock distributions all exhibit a power-law form.

Hyperdegree analysis
The hyperdegree distribution of HDPH model can be

theoretically analysed by the mean-field theory. The analytic

result indicates that the hyperdegree distribution is independent of

the local-world size M and exhibits a pow-law distribution, i.e.,

P(dH )*d
{c
H , where the exponent c is correlated with the mean

value m, c~2z1=m (see File S1). Zlatić et.al [25]defined and

analyzed the statistical properties of tripartite hypergraphs. The

results showed that the hyperdegree distributions for users, tags,

and resources also obeyed the power law distribution. Although

the probability distribution of the knowledge stock with some

parameter combinations (a,b) conforms to a power law distribu-

tion, it is independent of the hyperdegree distribution of HDPH

model. Because in the same hypernetwork topology structure, the

probability distribution of the knowledge stock with the different

parameter combinations (a,b) is different. And not all knowledge-

stock distributions for (a,b) values exhibit a power-law form.

The KSPH model considers that the evolution of the hypernet-

work structure will be affected by the knowledge stock. The growth

process of the hypernetwork depends on the knowledge stock.

Therefore, the hyperdegree distribution of KSPH model is difficult

to be theoretically analyzed. We numerically investigate the

hyperdegree distribution P(dH ) of KSPH model with

(a,b)~(0,0),(0,1),(1,0),(1,1) in Fig. 5. The hyperdegree distribu-

tion P(dH ) of the HDPH model is shown in Fig. 6. When

(a,b)~(0,0), the hyperdegree distribution P(dH ) follows a

stretched exponential distribution with exponent 0.69. When

(a,b)~(0,1),(1,0), for big values of dH , the hyperdegree distribu-

tion P(dH ) displays a power-law behavior and the exponent is

approximately equal to 2.75 and 2.68. When (a,b)~(1,1), the

hyperdegree distribution P(dH ) follows a power-law distribution

with exponent 2.37.

The numerical simulations of the hyperdegree distribution

P(dH ) is given in Fig. 6. Figure 6(a) shows the hyperdegree

distribution P(dH ) with the mean value m~2 and different local-

world sizes M. Figure 6(b) shows the case of the same local-world

size (M~150) and different mean values m. As seen from Fig. 6(a),

the hyperdegree distribution P(dH ) of HDPH model closely

An Application of the Cobb-Douglas Function
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Figure 2. The logarithmic values log(KS) of the total knowledge stock KS, KS~
X1000

j~1

Vj , as a function of different parameter

combinations (a,b) on the contour map. The number of nodes N~1000. M0 ~20 and t~980. Each simulation result is obtained by
averaging over 100 independent runs. (a) HDPH model. (b) KSPH model.
doi:10.1371/journal.pone.0089746.g002

Figure 3. Probability distribution of the knowledge stock P(V ) in the HDPH model on a logarithmic scale with the different
parameter combinations (a,b). V is defined as the knowledge stock. Not all knowledge-stock distributions of HDPH model for (a,b) values exhibit
a power-law form. (a)*(f ) The knowledge stock distribution exhibits a power-law form. (g)*(i) The knowledge stock does not exhibit a power-law
form. Each simulation result is obtained by averaging over 100 independent runs.
doi:10.1371/journal.pone.0089746.g003
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overlap together as M increases. Figure 6(b) shows that the power-

law exponent c of hyperdegree distribution decrease as m

increases. The simulation results are quite consistent with the

theoretical ones. We can easily find that the hyperdegree

distribution of HDPH model is approximately independent of

the local-world size M and exhibits a pow-law distribution, i.e.,

P(dH )*d
{c
H , where the exponent c is correlated with the mean

value m (c~2z1=m,c[(2,3�), and the power exponent of the

empirical results of the social tagging hypernetwork, 2.28 and

2.13, is also in (2,3].

Conclusions and Discussions

Summary
The knowledge generation and diffusion in the networks often

comes with the network structure evolution. By integrating the

hypernetwork structure evolution and knowledge generation

processes together, we present two knowledge-generation dynamic

evolving hypernetwork models (HDPH model and KSPH model).

The two models are not based on a static perspective as was the

configuration model, but on a dynamical mechanism to construct

the hypernetworks. The HDPH model adopts the hyperedge

growth and the hyperdegree preferential attachment mechanisms.

The created knowledge stock is equally divided by contributors.

The KSPH model adopts the hyperedge growth and the

knowledge stock preferential attachment mechanisms. The con-

tributor’s knowledge increases by an amount proportional to the

contributor’s owned knowledge stock. Furthermore, the knowl-

edge generation process is simultaneous with the hypernetwork

structure evolution.

We investigate the effect of the parameters a, b on the total

knowledge stock of the two models. The experimental results

indicate that the total knowledge stock of the two models will both

become larger as a or b increase. For the same parameters (a,b),
the total knowledge stock of KSPH model is higher than that of

HDPH model.

In addition, we also analyze the knowledge stock distribution of

the two models with different parameters (a,b). For the HDPH

model, not all knowledge-stock distributions for (a,b) values

exhibit a power-law form. While for the KSPH model, all

knowledge-stock distributions for (a,b) values exhibit a power-law

form. When a remains unchanged, the power exponent of

knowledge-stock distributions gradually decreases as b increases.

Similarly, when b remains unchanged, the power exponent of

knowledge-stock distributions also gradually decreases as a
increases. Therefore, in the knowledge generation hypernetwork

generated by the evolution mechanism of HDPH model, the

knowledge stock distribution has a variety of forms. While in the

knowledge generation hypernetwork generated by the evolution

mechanism of KSPH model, the knowledge stock distributions all

exhibit a power-law form.

The hyperdegree distribution of HDPH model can be

theoretically analysed by the mean-field theory. The hyperdegree

distribution of HDPH model follows a power-law distribution with

exponent c~2z1=m. While for the KSPH model, the growth

process of the hypernetwork depends on the knowledge stock.

Therefore, the hyperdegree distribution of KSPH model is difficult

to be theoretically analyzed. However, the simulation results show

that the hyperdegree distribution of KSPH model follows the

stretched exponential distribution and power-law distribution.

Limitations and future work
Firstly, in this work, we introduce the Cobb-Douglas production

function in economics to the knowledge generation process. In

economics, the Cobb-Douglas production function is applicable to

industrial products. We try to use the C–D function to model the

Figure 4. The power-law exponent of the knowledge stock distribution in the KSPH model as a function of different parameters
(a,b) on the contour map. All knowledge-stock distributions of KSPH model for (a,b) values exhibit a power-law form. Each
simulation result is obtained by averaging over 100 independent runs.
doi:10.1371/journal.pone.0089746.g004
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knowledge production. Whether it is applicable or not, the Cobb-

Douglas form in the knowledge production needs to be tested

against statistical evidence in the future work.

Secondly, in our models, the knowledge stock’s increase of each

author is from the overall achievement in a team-based knowledge

production process. We propose two knowledge growth mecha-

nisms. One is the created knowledge stock being equally divided

by contributors, and the other one is the contributor’s knowledge

increasing by an amount proportional to the contributor’s owned

knowledge stock. However, knowledge is different from physical

matters. In the real scientific collaboration activities, how to

measure the increased knowledge stock of each author is a very

complicated problem. Therefore, as another direction of the future

work, we need to design a more reasonable knowledge growth

mechanism to cater for complicated situation.

Thirdly, in this paper, the knowledge has been represented by a

stock. At the same time, how to measure the knowledge stock of a

paper in the real life is an open question. And when applying the

empirical data of the real scientific collaboration hypernetwork to

statistically analyse the process of knowledge generation and

dissemination, we must address the problem. In the future work, it

is a worthwhile problem to make empirical analysis on the

knowledge generation and dissemination process in the scientific

collaboration hypernetwork.

Last but not least, we in this paper have proposed two

knowledge-generation dynamic evolving hypernetwork models

and studied the knowledge generation process. But the corre-

sponding empirical research about knowledge generation among

the scientific collaboration hypernetwork is generally absent. As a

complement to this work, we model the real knowledge generation

and dissemination cases and statistically analyze the knowledge

stock characteristics. Due to the intrinsic intractability of

knowledge and knowledge generation, such empirical study is

Figure 5. Probability distributions of the hyperdegree P(dH ) in the KSPH model on a logarithmic scale with the different parameters
(a,b). The node number N = 1000, the size of local-world M = 15, and the mean value m = 2. (a) When (a,b)~(0,0), the hyperdegree

distribution obeys the stretched exponential distribution, as P(dH )*(dH ) expu{1 ½{(
dH

dH0

)m�, where dH0
is a constant and 0ƒmƒ1 is the characteristic

exponent. If m~1, it is a normal exponential distribution. Using log(dH ) as x-axis and log(2logP(dH )) as y-axis, if the corresponding curve can be well
fitted by a straight line, then the slope equals m. In the inset, we plot the linear correlation between log(2logP(dH )) and logdH . (b) When (a,b)~(0,1),
for big values of dH , the hyperdegree distribution follows a power-law distribution and the exponent is approximately equal to 2.75. (c) When
(a,b)~(1,0), for big values of dH , the hyperdegree distribution follows a power-law distribution and the exponent is approximately equal to 2.68. (d)
When (a,b)~(1,1), the hyperdegree distribution follows a power-law distribution and the exponent is approximately equal to 2.37. Each simulation
result is obtained by averaging over 100 independent runs.
doi:10.1371/journal.pone.0089746.g005
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essentially challenging, but this issue is worthy of inquiry in the

context of scientific collaboration.
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Figure 6. Probability distributions of the hyperdegree P(dH ) in the HDPH model on a logarithmic scale with the different
parameters. (a) When M = 15, 50, and 150, the node number and the mean value m are set as 10000 and 2, respectively. The
hyperdegree distribution is approximately independent of the local-world size M , and the power-law exponent is approximately equal to 2.5. (b)
When m = 2, 4, and 6, the node number and the value M are set as is 10000 and 150, respectively. The power-law exponent of hyperdegree
distributions decrease as m increases, which are approximately equal to 2.5, 2.25, 2.17 in three cases of m = 2, 4, and 6, respectively. Each simulation
result is obtained by averaging over 30 independent runs.
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