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Abstract

Off-label drug use, defined as use of a drug in a manner that deviates from its approved use defined by the drug’s FDA label,
is problematic because such uses have not been evaluated for safety and efficacy. Studies estimate that 21% of
prescriptions are off-label, and only 27% of those have evidence of safety and efficacy. We describe a data-mining approach
for systematically identifying off-label usages using features derived from free text clinical notes and features extracted from
two databases on known usage (Medi-Span and DrugBank). We trained a highly accurate predictive model that detects
novel off-label uses among 1,602 unique drugs and 1,472 unique indications. We validated 403 predicted uses across
independent data sources. Finally, we prioritize well-supported novel usages for further investigation on the basis of drug
safety and cost.
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Introduction

Off-label drug use occurs when a drug is used in a manner that

differs from its approved use as described by its FDA label. This

practice is common and provides a pathway for clinical

innovation. However, such uses escape the scientific scrutiny that

goes into the labeling and marketing of new medicines [1,2].

Estimates from office-based practices found that 21% of prescrip-

tions are off-label [3]. Of these, 73% had little or no scientific

support [3,4], raising concerns about patient safety and costs to the

healthcare system. For instance, tiagabine was approved for use as

an adjunctive therapy for partial epilepsies. However, when used

as the sole or primary treatment, it was found to cause seizures. In

1998, 20% of uses of tiagabine were off-label, but by 2004 this

fraction had increased to 94% [5].

Off-label use is to some extent inevitable because not every

condition can be tested during pre-approval [6,7]. Nevertheless, all

stakeholders in the health care system have an interest in the

timely, systematic detection of off-label use. Drug manufacturers

are required to report on off-label use observed in post-marketing

surveillance in the European Union [8]. Regulatory agencies and

clinical researchers can use knowledge of emerging off-label uses to

identify potential benefits or risks that require further investigation.

Furthermore, patients and their health care providers should

minimize exposure to risks without clinical benefit. Unfortunately,

current pharmacovigilance and post-market surveillance efforts in

the United States do not monitor off-label use. Standard

surveillance approaches using the FDA’s Adverse Event Reporting

System (FAERS) do not specifically account for use in off-label

indications; efforts such as the Observational Medical Outcomes

Partnership (OMOP) and the Mini-Sentinel projects do not

specifically look at off-label use [9]; and physician surveys, such as

the NDTI, are limited by coverage, timeliness and cost.

In this work, we focus on the problem of automatically

discovering off-label uses of drugs—defined as the use of drugs

for unapproved indications—from electronic health records and

rank the newly discovered uses for follow up based on risk and cost

metrics. At its core, we need to match drugs to the diseases they

are being used to treat. We refer to such matches as drug-

indication usage pairs, and say that a used-to-treat relationship

exists between the drug and disease (the indication).

Previous work by Wei et al [10] used structured and semi-

structured data from RxNorm, MedlinePlus, SIDER 2, and

Wikipedia to compile a comprehensive list of drug-indication

usage pairs. Similarly, Xu et al [11] used data from Clinical-

Trials.gov and Medline to compile such a list. However, both these

efforts rely on curated data sources that may not reflect current

clinical practice. In contrast, the data in electronic health records

represents current clinical practice and can discover such usages

before they are incorporated into curated data sources.

Thus, widespread adoption of electronic medical records (EMR)

provides an opportunity to detect off-label use in an automated,

scalable and timely manner [8]. However, structured data in

EMRs usually do not explicitly link diseases to the drugs being

used to treat them [2] and is not as comprehensive as the free text

of clinical notes [12]. Therefore, Natural Language Processing

(NLP) is often used to extract used-to-treat relationships between

drugs and indications from clinical text. Previous efforts use one of

two approaches: the first approach identifies used-to-treat

relationships at the level of specific occurrences of drugs and

indications in text. For example, from the phrase, ‘‘on Plavix for

PAD’’, a used-to-treat relationship between clopidogrel and
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peripheral artery disease is detected. Submissions to the 2010 i2b2

NLP Challenge [13] represent the state of the art of this approach.

The best performing methods require examples of text in which

occurrences of drugs, indications and the relationships between

them are explicitly labeled [14]. Such labeled training data is

difficult to obtain (the i2b2 Challenge included 871 labeled notes)

and collections of labeled text covering all drugs and indications

are not available. To overcome this limitation, an alternative

approach is to infer used-to-treat relationships at the population

level—rather than asking whether a sentence or note implies an

instance of a used-to-treat relationship, we ask whether the data as

a whole suggests that a used-to-treat relationship holds in general

[15–17]. The basic idea is to count the number of times a drug and

indication are mentioned in the same clinical record, and compare

that count to the expected co-mentions by chance. We have

previously used such an approach for detecting drug-related

adverse events [18], identifying drug-drug interactions [19], and

profiling drug usages [17]. Such approaches can use relatively

simple, methods for detecting drug and indication mentions in free

text that do not require labeled text corpora for training. As a

result, such approaches scale to very large collections of clinical

text and the entire range of drugs and indications encountered in

the data. In Jung et al [20], we demonstrated that it is possible to

detect off-label usage using inputs derived from clinical text,

combined with prior knowledge of drugs and indications from

Medi-Span and DrugBank. Other researchers [21] have also used

prior knowledge of known usages to match drugs and known

indication mentions in clinical notes demonstrating that use of

prior knowledge does improve the accuracy of detecting used-to-

treat relationships.

In this paper, we build on our previous work. First, we have

improved the accuracy of the classifier by taking known usage into

account when counting co-mentions of drugs and indications in

the clinical notes in order to reduce spurious associations arising

from co-morbidities. Second, we have filtered the set of predicted

novel off-label usages for support in independent, complementary

data sources. We also filtered out spurious associations due to

causal relationships using the SIDER 2 database [22]. Finally, in

order to triage the off-label uses for follow-up, we developed

indices of drug cost and risk associated with a drug’s usage based

on the unit price and known adverse events of drugs. These indices

were used to rank off-label usages by the risk that they present to

patients, along with their monetary cost. High cost and high risk

usages are natural candidates for further investigation as they

represent expensive and potentially dangerous cases. Whereas, low

cost and low risk usages could be potential expanded indications.

Our methods do not require labeled training text, and thus

combine the scalability of association-based approaches with the

discriminative power of machine learning techniques.

Results

We trained an SVM classifier to recognize used-to-treat

relationships between drugs and indications and applied the

classifier to all possible drug-indication pairs. Filtering for high

prediction confidence yielded 14,174 high confidence used-to-treat

relationships. We then removed known usages listed in two

curated sources of known usage — Medi-Span and the National

Drug File – Reference Terminology (NDF-RT) [23], leaving 6,142

predictions that could be novel off-label usages. We assessed

support for the putative novel off-label uses in independent and

complementary data sources including the FDA’s Adverse Event

Reporting System (FAERS) and MEDLINE. When possible, we

also assessed the biological plausibility of these usages using

publically available gene expression data [24]. We reduce spurious

results arising from drug adverse events by filtering these usages

using SIDER 2, yielding a final set of 403 well-supported novel off-

label usages. Overall, we tested 1,602 unique drugs and 1,475

unique indications, resulting in 403 well-supported novel off-label

usages that we prioritized by their potential risks and cost. The

overall approach and results are summarized in Figure 1.

A classifier for detecting used-to-treat relationships
Classifiers such as support vector machines map inputs, or

features, to outputs. In this study, the inputs come from clinical text

and domain knowledge about drugs from Medi-Span and

DrugBank. Medi-Span encodes information about know usages,

while Drugbank encodes information about drug targets and

mechanisms of action. For each drug–indication pair, we construct

a set of features that the classifier uses to predict whether a used-to-

treat relationship holds between the drug and indication. The

classifier learns to make accurate predictions using inputs for

which we know the desired output, i.e., positive or negative

examples of known usages [25]. We constructed such a gold standard

dataset of known usages from the Medi-Span Drug Indications

Database (Wolters Kluwer Health, Indianapolis, IN) as positive

examples, along with negative examples constructed as detailed in

Methods. An SVM classifier was trained on a random subset

(80%) of the gold standard and achieved a positive predictive value

of 0.963, specificity of 0.991, sensitivity of 0.764 and F1 score of

0.852 on the remaining 20% of the gold standard (see Figure 2).

Feature ablation experiments showed that each group of features

contributed to overall performance, particularly with respect to

sensitivity and positive predictive value (Table 1). Individually, the

features learned from clinical notes in the Stanford Translational

Research Integrated Data Environment (STRIDE) and Medi-

Span yielded sensitivities of 0.681 and 0.662 respectively, while all

features together resulted in a sensitivity of 0.764.

In identifying population level associations, drugs and diseases

may also get associated because of causal relationships (i.e., the

drug is causing the disease, as an adverse drug event) or indirect

relationships (i.e., the disease is a common co-morbidity of an

approved indication) rather than used-to-treat relationships. We

count co-mentions of drugs and indications taking known

indications into account, and as a result, obtain substantially

better performance than previous methods that ignore known

indications [20]. Similarly, the PPV achieved using all features was

0.963, substantially better than the 0.936 achieved using only

features derived from just STRIDE and consistent with the

hypothesis that prior knowledge is able to reduce spurious results

arising from causal and indirect relationships [21].

Predicting novel off-label usages
We applied an SVM trained on the entire gold standard dataset

to all 2,362,950 possible drug-disease pairs to find used-to-treat

relationships. SVMs do not output class membership probabilities;

thus we fit a logistic regression model to the output of the SVM to

estimate the probability of the used-to-treat relationship being true

for a given drug-disease pair [26]. Applying a cut-off of 0.99 to this

estimate yielded 14,174 high confidence used-to-treat relation-

ships, which we interpret as potential drug-indication usage pairs.

After filtering out known usages listed in Medi-Span and the

National Drug File – Reference Terminology (NDF-RT) [23], we

removed usages in which the predicted indication is closely related

to already known indications as described in Methods, resulting in

6,142 high confidence novel usages. Because approved usages are

presumably known, these are interpreted to be high confidence

novel off-label usages.

Automated Detection of Off-Label Drug Use
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Support in FAERS, MEDLINE and SIDER 2
The 6,142 high confidence novel off-label usages were

examined for positive support in two independent and comple-

mentary data sources (FAERS and MEDLINE) and for negative

support in SIDER 2 as described in Methods. FAERS case reports

explicitly link indications and the drugs used to treat them [27].

These reports are created by patients, health care providers and

drug manufacturers, and directly reflect clinical practice. In

contrast, MEDLINE provides curated annotations of the biomed-

ical literature with terms from the National Library of Medicine’s

Medical Subject Headings (MeSH) vocabulary. We found that 766

novel off-label usages are supported by at least 10 records in

Figure 1. Overview of methods and results. For each of the 2,362,950 possible drug-indication pairs, we calculated 9 empirical features (e.g., co-
mention count) from the free text of clinical notes in STRIDE and 16 domain knowledge features (e.g., similarity in known usage to other drugs used
to treat the indication) from Medi-Span and Drugbank. These features were used by an SVM classifier trained on a gold standard dataset to recognize
the used-to-treat relationship, yielding a set of predictions that were filtered for known usages, near misses in the indications, and support in two
independent and complementary datasets (FAERS and MEDLINE). Predicted usages that appeared to be drug adverse events listed in SIDER 2 were
removed. The resulting set of 403 well-supported novel off-label usages were binned using indices of risk and cost.
doi:10.1371/journal.pone.0089324.g001

Figure 2. Training and testing a classifier to recognize used-to-treat relationships. We created a gold standard of positive and negative
examples of known drug usage. Positive examples were taken from Medi-Span. We created negative examples by randomly selecting positive
examples and then randomly choosing a drug and indication with roughly the same frequency of mentions in STRIDE as the real usage. These were
then checked against Medi-Span to filter out inadvertently generated known usages. The gold standard dataset contained 4 negative examples for
each positive case. For each drug-indication pair in the gold standard, we calculated features summarizing the pattern of mentions of the drugs and
indications in 9.5 million clinical notes from STRIDE. We used Medi-Span and Drugbank to calculate features summarizing domain knowledge about
drugs and their usages. 80% of the gold standard was used to train an SVM classifier, and the resulting model was tested on the remaining 20%.
doi:10.1371/journal.pone.0089324.g002
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FAERS, and 537 of those are also supported by at least two

articles co-annotated with the drug and indication in MEDLINE

[28]. We then filtered out usages that appeared to be bona fide

drug adverse events listed in SIDER 2 in order to eliminate drug-

disease pairs that are actually drug-adverse event relationships,

leaving us with 466 candidate novel off-label usages. We manually

examined these to filter out known usages that were missed in

Medi-Span and the NDF-RT, leaving us with 403 well-supported

novel off-label usages.

These usages (Table S1) cover 210 drugs and 184 indications,

and recapitulate previously noted patterns of off-label usage

(Figure 3). Medical specialties such as oncology have been noted to

have high rates of off-label usage [29,30]. Consistent with this

observation, there are many cancer drugs among our results —

e.g., ofatumumab for non-Hodgkin’s lymphoma [31] and fludar-

abine for chronic myelogenous leukemia [32]. Other previously

noted usage patterns include the use of the anti-seizure medica-

tions such as pregabalin and lamotrigine for migraines [33,34],

and the use of immuno-modulators such as etanercept and

adalimumab, two Tumor Necrosis Factor (TNF) inhibitors, for

systemic lupus erythematosus (SLE) [35,36]. Interestingly, etaner-

cept and infliximab, another TNF inhibitor, have both been

investigated as treatments for SLE [37], lending support to the

classifier’s prediction. However, etanercept and adalimumab have

also been implicated in causing SLE [38,39]. Thus, in this case

both the used-to-treat and causal relationships may be true.

Plausibility based on mechanisms of action
We also evaluated the plausibility of the novel, predicted off-

label usages using previously published methods [24] applied to

gene expression data from the Connectivity Map [40] and NCBI

Gene Expression Omnibus [41]. Briefly, if a drug modulates gene

expression in the opposite manner than a disease condition, the

drug is considered a plausible treatment for the indication. This

approach requires gene expression data for both drug exposure

and the disease condition. Of our well-supported novel usages, two

had appropriate publically available data and both yielded

significant gene sets suggesting possible mechanisms of action

(Table S2). Given sparse coverage of drugs and diseases in public

data, it is difficult to apply this process systematically. Nevertheless,

this method yielded testable hypotheses regarding mechanisms of

action. For instance, simvastatin is linked to diabetes by PPAR-

gamma; simvastatin treatment enriches a gene set known to be

activated by PPAR-gamma activity, while PPAR-gamma agonists,

e.g., thiazolinediones, are known to be used to treat diabetes

[42,43].

Manual validation of the predicted usages
Examination of the 403 well-supported novel off-label usages

revealed terminological challenges. For instance, we predict that

alendronic acid is used to treat osteopenia, the clinical precursor to

osteoporosis. However, Medi-Span and the NDF-RT list the

indication as osteoporosis instead of osteopenia — i.e., they

encode the used-to-prevent relationship. Such issues reflect

challenges in normalizing medical terms. As a result, although

we can detect used-to-treat relationships quite well, recognizing

whether or not uses are already known is difficult.

Some predicted uses represent bona fide new uses confirmed in

the biomedical literature by case reports, clinical trials, or

resources such as MedlinePlus, but not yet incorporated in our

curated sources of known usage (see Table 2 for selected

examples). For instance, our system predicts that bevacizumab is

used to treat ovarian cancer. This usage has been shown to

improve progression free survival in a phase III trial [44] and has

been approved in the EU, but does not yet appear in Medi-Span,

Drugbank, the NDF-RT or MedlinePlus. These results show that

it is possible to detect emerging off-label use before it has been

officially recognized.

Prioritizing predicted off-label usages for further
investigation

We designed indices of drug risk and cost using adverse event

associations and unit cost data from Medi-Span to objectively

triage usages for further investigation. The drug risk index is

Table 1. Performance of classifier on hold-out test set using
different feature sets.

Feature Set PPV Specificity Sensitivity F1

Naı̈ve STRIDE only 0.771 0.964 0.483 0.594

STRIDE only 0.936 0.988 0.681 0.788

Medi-Span only 0.945 0.990 0.692 0.778

Drugbank only 0.831 0.981 0.377 0.518

STRIDE + Medi-Span 0.967 0.994 0.744 0.841

STRIDE + Drugbank 0.936 0.988 0.697 0.799

All 0.963 0.993 0.764 0.852

We performed feature ablation experiments to assess the contribution of
different feature sets to the performance of the classifier for detecting used-to-
treat relationships. The first column indicates the features used to train and test
the classifiers. Classifier performance was evaluated in a hold out test set of
1,749 positive and 7,035 negative examples of drug usage after training in a set
of 7,112 positive and 27,938 negative examples. The first row shows
performance using STRIDE derived features in which co-mentions are counted
without regard to present known indications in the clinical record.
doi:10.1371/journal.pone.0089324.t001

Figure 3. Distribution of indication classes in predicted novel
usages. Each indication for the 403 high confidence novel usages with
support in FAERS and MEDLINE was mapped to the first level of the
NDF-RT disease hierarchy. 63 usages were not mapped to NDF-RT and
were left out of this chart.
doi:10.1371/journal.pone.0089324.g003
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normalized to lie between 0 and 1, with a value of 0 for drugs with

no adverse event associations in Medi-Span (811 out of 1,602

drugs) and 1 for drugs associated with many serious adverse

events. Not surprisingly, drugs with the highest risk indices were

immunosupressants, such as mycophenalate mofetil, and anti-

tumor agents, such as gemtuzumab, clofarabine, bevacizumab,

and fludarabine. Well-supported novel off-label usages had risk

indices ranging from 0.002 for amphotericin to a maximum of

0.995 for clofarabine.

The drug cost index is based on the mean unit price for the drug

in Medi-Span and is also normalized to lie between 0 and 1, with a

value of 1 for the drug with the highest mean unit cost in Medi-

Span. The unit cost is an imperfect measure of actual treatment

cost — for instance, it may be for a quantity that is sufficient for

multiple treatments. Nevertheless, the cost index provides a partial

ordering that is useful for relative ranking because the drugs with

the highest cost index are expensive, targeted therapies such as

ranibizumab, while the drugs with low cost index values are over

the counter agents such as magnesium chloride and iodine.

We used the risk and cost indices to group well-supported novel

off-label usages into high risk, high cost and low risk, low cost

usages, resulting in 28 and 51 usages, respectively (the top 5 usages

in each group are listed in Table 3; Table S3 contains the full lists).

We defined thresholds for highs and lows by looking at the

distribution of the risk and cost indices for the 403 well-supported

usages and choosing the upper and lower quartiles as cutoffs. For

example, the upper quartile for the 403 well-supported usages had

risk index value 0.828, which defines the threshold for the high-

risk group. For the 403 well-supported usages, Figure 1 shows the

high–high (28 drug-indication pairs) and low–low groups (51 drug-

indication pairs). Many (16 of 28) of the high risk, high cost usages

involved anti-tumor agents being used to treat unapproved tumor

types. In contrast, the low cost, low risk usages contain many over

the counter drugs such as vitamin E, as would be expected.

Discussion

Off-label usage of drugs is an important enough aspect of drug

safety to warrant a full issue (May 2012) of Nature Clinical

Therapeutics and Pharmacology devoted to the topic [7].

Currently the most comprehensive information about off-label

drug usage is from the National Disease and Therapeutic Index

(IMS Health, Plymouth Meeting, PA), which relies on periodic

surveys of office-based physicians. We believe that off-label use can

be learned systematically, in a data-driven manner directly from

electronic medical records. Our work represents the first effort to

detect novel off-label usage from clinical free text over the entire

range of drugs and indications observed in the medical record. We

also developed quantitative risk and cost indices as a way to

prioritize the novel usages for further investigation.

In the past, NLP has been applied to the problem of detecting

used-to-treat relationships between drugs and indications in

clinical text. State of the art NLP approaches require training

text in which drug and indication mentions are labeled, along with

the relationships between them. In contrast, association based

approaches that use counts of drug and indication mentions are

more scalable, but limited by confounding causal and indirect

relationships. We have developed an automated method for

detecting novel off-label usages from clinical text that does not

require training text and addresses confounding relationships by

incorporating prior knowledge about drug usage. We applied this

method to 1,602 drugs and 1,475 indications to identify 6,142

novel off-label usages, 403 of which are well supported by evidence

in independent and complementary datasets.

Our methods have important limitations. First, our work focuses

on one form of off-label use — the use of drugs to treat

unapproved indications — and does not detect off-label use with

respect to age, gender, dosage and contraindications. Second, co-

morbidities and drug adverse events may still lead to spurious

used-to-treat relationships despite our efforts to reduce their

impact on our results. Third, although our method can detect

used-to-treat relationships between drugs and indications with

high specificity and good sensitivity, the task of recognizing

whether the knowledge is already known is more difficult than

might be expected. This difficulty was not due to errors in

recognizing terms in clinical text but rather due to mismatches in

the language used to describe indications in Medi-Span and the

NDF-RT versus clinical text and FAERS. A systematic listing of

such indication mismatches could identify areas in ontologies and

terminologies that need improvement — and would be a data-

driven way to identify portions of terminologies for review. Fourth,

the risk and cost indices have some shortcomings. For instance, the

cost index ignores the fact that dosage and duration of treatment

for off-label usages may differ from approved uses, and our risk

Table 2. Selected predicted novel off-label usages.

Drug Indication FAERS Support MEDLINE Support

Simvastatin diabetes mellitus 1369 33

Tacrolimus rheumatoid arthritis 404 45

Pregabalin migraine disorders 152 3

Etanercept lupus erythematosus, systemic 79 5

Lamotrigine migraine disorders 75 6

Adalimumab lupus erythematosus, systemic 71 3

Rituximab hodgkin disease 51 48

Daptomycin osteomyelitis 45 20

Fludarabine waldenstrom macroglobulinemia 39 66

Infliximab pyoderma gangrenosum 34 68

Erlotinib malignant neoplasm of ovary 28 16

Predicted, novel drug usages with substantial support in FAERS. FAERS Support for each drug-indication pair is the number of distinct case reports in FAERS in which
the drug was explicitly listed as being used to treat the indication. A complete listing is available in Table S1.
doi:10.1371/journal.pone.0089324.t002
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index does not take the dependence of adverse events on dosage,

co-morbidities, and poly-pharmacy into account. Finally, in this

work we have aimed to produce a list of highly confident

predictions of novel off-label usages so we require corroboration of

predictions in FAERS, which has much lower recall in the test set

than the classifier. Thus the overall method sacrifices sensitivity for

greater specificity. This is appropriate for our aim in this work, but

other studies may require a different trade off between sensitivity

and specificity. For instance, if we were concerned exclusively with

potentially risky usages, we might not require support in FAERS

and instead filter for usages involving drugs associated with known

serious side effects that don’t always get reported. We note that our

method can be modified for such use cases.

These limitations notwithstanding, our study is the first large-

scale characterization of off-label usage using fully automated

methods to combine information from clinical notes with prior

knowledge and to provide a ranking of the learned usages on risk

and cost. It is a step towards systematic, data-driven monitoring of

off-label usage. The method has characteristics that allow it to

generalize to sites beyond Stanford. First, the system does not

require training text labeled with mentions of drugs and

indications, and the relationships between them. Second, our

method is very flexible with respect to the target drug and

indication vocabulary. Third, the system is very fast — annotation

of 9.5 million clinical notes takes only two hours on a single

machine; constructing features, training a classifier and making

predictions takes an additional few hours. It is thus conceivable to

process clinical text from a large number of sites, providing a

picture of off-label usage across a wide spectrum of institutions.

Most importantly, our method was able to detect usages that

were documented in the biomedical literature, and in one case

approved in the EU, despite not appearing in any of our curated

sources of known usage. This suggests that such systems could

potentially provide an automated learning system for off-label

usage. Such as system could flag emerging usages before they

come to the attention of the broader medical community,

regulatory agencies and drug manufacturers, in much the same

way that Google Flu Trends can provide an early warning of flu

trends in advance of CDC data [45]. We speculate that applying

our method to a wider range of clinical text from multiple sites can

provide a timelier and more comprehensive picture of off-label

usage than is currently possible [46,47].

Materials and Methods

Constructing a gold standard
We constructed a gold standard of positive and negative

examples of drug usage using known usages from Medi-Span.

Medi-Span contains 13,453 drug-indication pairs comprising

1,642 unique drugs and 2,313 unique indications. Of these,

1,602 of the drugs and 1,475 of the indications occur in STRIDE

at least once, yielding a set of 8,861 testable drug-indication pairs.

To construct negative examples, we sampled known usages from

Medi-Span with replacement and then sampled new drugs and

indications that occur in the data with approximately the same

frequency. For instance, given the known usage ‘‘dexamethasone

for systemic lupus erythematosus’’, we sample a new drug from the

set of drugs that occur within ten items of dexamethasone in a list

of drugs sorted by overall frequency in the data. A new indication

is similarly generated from systemic lupus erythematosus.

Frequency matching was done because previous work suggested

that frequencies can help distinguish between drug associated

adverse events and treatment relationships [48]. The ‘‘negative’’

pairs were filtered to remove inadvertent known usages. The final

gold standard consisted of 34,974 negative and 8,861 positive

examples.

Annotation of clinical text from STRIDE
We used the NCBO Annotator on free text of 9.5 million

clinical notes from STRIDE to annotate the each note with

mentions of drugs and indications in terms of UMLS [49] unique

concept identifiers (CUI’s). Negated mentions (e.g., ‘‘MI was ruled

out’’) or those referring to other people (e.g., ‘‘father had a stroke’’)

were removed using NegEx [50] and ConText [51], respectively.

Drugs were normalized to 1,602 unique active ingredients (e.g.,

Excedrin was rewritten into acetaminophen, aspirin and caffeine)

Table 3. Predicted off-label usages binned by risk and cost and ranked by support in FAERS.

Drug Indication FAERS Support MEDLINE Support Risk Index Cost Index

High risk, high cost usages

Docetaxel Malignant neoplasm of prostate 604 640 0.964 0.949

Clofarabine Leukemia, myelocytic, acute 341 37 0.995 0.869

Rituximab Purpura, thrombocytopenic, idiopathic 259 169 0.940 0.821

Bevacizumab Malignant neoplasm of ovary 170 89 0.991 0.879

Paclitaxel Malignant neoplasm of stomach 122 421 0.956 0.776

Low risk, low cost usages

Folic acid mental depression 493 18 0.082 0.102

Methadone depressive disorder 162 33 0.002 0.167

Folic acid hyperlipidemia 138 10 0.082 0.102

Megestrol carcinoma, non-small cell lung 79 4 0.002 0.238

Folic acid diarrhea 67 10 0.082 0.102

We ranked predicted, novel off-label usages on the basis of risk and cost, as represented by our risk and cost indices for each drug. FAERS Support for each drug-
indication pair is the number of distinct case reports in FAERS in which the drug was explicitly listed as being used to treat the indication. The risk index is a quantitative
score that represents the expected disutility of adverse events related to the use of the drug in question, normalized to the range [0, 1] so that drugs that have a higher
risk of causing serious adverse events have higher values. The cost index is based on the mean unit cost of the drug in question in Medi-Span, normalized to the range
[0, 1] with more expensive drugs having a higher value.
doi:10.1371/journal.pone.0089324.t003
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using RxNorm [52]. Indications were normalized to the set of

1,475 indications used in Medi-Span by recursively rewriting the

indication as its parents in the SNOMED CT hierarchy until we

reached an indication used by Medi-Span. For instance, ‘amok’ is

not in the Medi-Span target vocabulary so it is rewritten as its

parent term, ‘mania.’ We note that if the mentioned indication is

an ancestor of the known indication, it may be counted as a novel

off-label usage later on. We consider this to be reasonable because

if the detected usage is broader than the known, approved usage, it

is indeed off-label provided the terms are used precisely as

intended. In reality, terms are not used so precisely, so we allow for

some imprecision in the usage of terms when filtering out known

usages from predicted usages as described below. The clinical

notes covered 1.6 million patients and spanned 18 years of data,

and included all clinical notes generated for these patients at

Stanford Hospital during that time.

Feature Construction
For each patient, a drug or indication is counted as present if

they appear in any of the patient’s notes. They count as co-

occurring if they are both mentioned in the patient’s notes and

there is no other indication mentioned in the record that is a

known usage for the drug; all co-occurrences of known indications

are also counted. Doing so ensures that a drug (e.g. Lisinopril) does

not get associated with a disease (e.g. Diabetes) just because the

disease is a common co-morbidity of the drug’s actual indication

(e.g. Hypertension). In this process, known usage is defined as

appearing in either Medi-Span or NDF-RT. These counts, along

with derived association measures (chi squared statistic, odds ratio

and conditional probability of drug mention given indication

mention), were used as features. The fraction of patients in which

the drug occurs before the indication (drug first fraction) was also

included, along with drug first fractions adjusted for frequency of

the drugs and indications [48]. Overall, we used nine features

encoding the pattern of mentions of the drugs and indications in

clinical text.

We also used features that encode prior knowledge of the drugs,

indications and known usage. These features were motivated by

the intuition that drugs are typically used off-label because of some

similarity with an approved drug, such as a shared molecular

target, pathway or drug class [7]. We used the Medi-Span and

DrugBank databases to construct features for each drug-indication

pair. For Medi-Span, these included the number of drugs

approved or known to be used for the indication, the fraction of

known treatments for the indication that are approved, the

similarity of the drug to drugs known to be used for the indication,

and the similarity of the indication to other indications treated by

the drug. Drug-drug similarity features were calculated as

described in Figure 4. Indication-indication similarities were

calculated similarly, with the role of the drugs and indications

reversed. When calculating these features, we ignored known

usages that were in the test set to avoid contaminating the training

data with knowledge of test usages.

The DrugBank 3.0 [53] database provides information on 6,711

drugs and their molecular targets, pathways, and indications. The

annotator was used to map DrugBank drug names and indications

to our target sets of drugs and indications. Molecular targets,

pathways, and drug categories were also extracted for each drug.

We calculated similarity features analogous to the Medi-Span

similarity features, along with other features that capture similarity

with respect to molecular targets, pathways, and drug categories.

As with the Medi-Span derived features, we removed test usages

from DrugBank before calculating features. See Table S4 for a

complete list of features.

Training a predictive model
The gold standard dataset was randomly split into 35,050

training and 8,784 test examples. We trained an SVM classifier

using radial basis function kernels on the training examples using

the e1071 library in R. The performance of the classifier was

tested on the test examples. We also trained and tested classifiers

using subsets of the features to assess the contribution of different

groups of features. We then trained a classifier on the entire gold

standard and applied it to all 2,362,950 possible drug-indication

pairs. In all cases, we used ten-fold cross validation on the training

data and the ‘‘1-se’’ rule to select the cost hyperparameter for the

SVM models. Estimates of each prediction’s class membership

probabilities were obtained via logistic regression [26]. We used a

probability threshold of 0.99 in order to limit the set of predicted

usages to the most confident predictions. This hard threshold was

not tuned in any way; thus our final set of predicted novel off-label

usages could possibly be improved by adjusting this threshold.

However, this is a very simple way to restrict our attention to the

most confident predictions.

Identifying known usages
Known usage was determined by presence in Medi-Span or the

NDF-RT – drug-indication pairs absent from both are assumed to

be novel usages. Review of these usages revealed that indications

were sometimes closely related to known usages — e.g., glaucoma

and open angle glaucoma. We addressed this problem using

biomedical ontologies, which organize biomedical concepts into

hierarchies — e.g., amok is a subtype of the parent concept mania.

Figure 4. Using prior knowledge to calculate drug-drug and
indication-indication similarity. We represent known usage as a
matrix where row i represents drug i and column j represents indication
j. A check in entry (i,j) indicates that the drug i is used to treat the
indication j, while a cross indicates the converse. We are interested in
whether a given drug, lamotrigine, is used to treat migraine disorders.
We thus ask — how similar is the known usage of lamotrigine to other
drugs we know are used to treat migraine disorders? Topirimate is used
to treat migraine disorders, and lamotrigine is similar to it in that both
are used to treat tonic-clonic seizures and myoclonic epilepsies, but not
non-Hodgkin’s lymphoma. This similarity in usage profile suggests that
it is more likely to be used to treat migraine disorders than, say,
Rituximab. We measured this similarity using the maximum cosine and
Jaccard similarity of lamotrigine versus all drugs known to treat the
indication. We calculate the similarity between indications based on
known usage using the same data, with the roles of drugs and
indications reversed.
doi:10.1371/journal.pone.0089324.g004
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Specifically, we removed predicted usages in which the indication

is a subtype of a known usage indication in SNOMED-CT, or is

the direct parent of a known usage indication in SNOMED-CT.

As a final check against Medi-Span and NDF-RT, we manually

reviewed predicted usages remaining after validation in FAERS,

MEDLINE and SIDER2 (described below), removing 63 usages

that were not detected as known usages by the methods described

above.

Validation by FAERS, MEDLINE and mechanistic
plausibility

FAERS case reports contain explicit used-to-treat links between

drugs and indications. We validated predicted usages using these

links using public domain case reports from Q3 2007 through Q2

2012. FAERS drugs and indications were mapped to UMLS

CUI’s, yielding a set of 3 million drug-indication reports covering

160,989 unique pairs. Only 3,756 out of 8,861 (43%) positive

examples of drug usages in our gold standard dataset appear at

least once in FAERS. We required at least 10 such reports because

this threshold results in a false positive rate of less than 0.005 when

applied to the gold standard dataset.

MEDLINE entries are manually annotated with MeSH terms,

Supplementary Concepts for drugs, and subheadings that provide

further context for the annotation. For instance, an article about

treatment of wet macular degeneration by bevacizumab would be

annotated with ‘‘wet macular degeneration/drug therapy*’’ and,

separately, ‘‘bevacizumab.’’ We downloaded the complete set of

annotations for MEDLINE entries from 2002–2012. MeSH

annotations were filtered for indications with the drug therapy

sub-heading and mapped to UMLS CUI’s using the NCBO

Annotator. The Substance annotations were also mapped to

UMLS CUI’s using the Annotator. If no MeSH term correspond-

ed exactly to the indication, we expanded the indication to the

more general MeSH term, e.g., ‘malignant neoplasm of the ovary’

was interpreted as ‘ovarian neoplasm’. As in Avillach et al [28], we

considered usages with at least three articles annotated with both

the indication and the drug to be well-supported by MEDLINE.

We assessed the mechanistic plausibility of predicted usages by

examining patterns of gene expression induced by the drug and

indication. Briefly, we performed gene set enrichment analysis on

gene expression data from the NCBI Gene Expression Omnibus

(GEO) [41,54] and the Connectivity Map [40] to identify

biological pathways and expression modules that are inversely

regulated between pairs of diseases and drugs, suggesting a

possible basis for a therapeutic association [24]. Details of this

method are in Methods S1.

Removal of drug adverse events
We used drug adverse events listed in the SIDER 2 resource to

minimize the impact of confounding causal relationships on our

results. 67 out of 406 novel, well-supported off-label usages

matched SIDER 2 entries. However, manual review of these

matches revealed that only 28 drug-indication pairs were likely to

be bona fide drug related adverse events. This is due to the fact

that SIDER 2 is not curated and thus includes many spurious

results such as indications being listed as adverse events. After

removal of the true adverse events, 403 off-label usages remained.

Calculation of risk and cost indices
The cost and risk indices are motivated by the observation that

off-label usages do not all have the same urgency for further

investigation. Decision analysis suggests that we rank usages based

on their expected utility — i.e., the desirability of possible

outcomes of the use, weighted by the probability each outcome

[55]. For example, the use of a cheap antibiotic with few side

effects to treat a rare condition has a lower urgency for follow-up

than the use of an expensive drug, with severe side effects, to treat

a common disorder. We approximated this approach by

developing quantitative indices of drug cost and risk associated

with drug usage based on known adverse events.

The cost index was calculated by ranking drugs by their mean

unit cost in Medi-Span (a drug may have multiple unit costs due to

different formulations, etc.). The ranks were normalized to lie

between 0 and 1, with the most expensive drug having a score of 1.

The risk index for each drug was based on an estimate of the

expected disutility of adverse events associated with using that drug in

Medi-Span, described in detail in Methods S1. Briefly, we assigned

quantitative disutility values to adverse events associated with

drugs in Medi-Span. The expected disutility of drug use due to

adverse events was then estimated as the weighted sum of the

disutilities for associated adverse events, with the weights given by

probabilities estimated from Medi-Span’s estimates of the

frequency of the adverse events. Drugs were ranked by expected

disutility and the ranks normalized to lie between 0 and 1 such that

the riskiest drug had a value of 1. The lower and upper quartiles of

the cost and risk index values observed in the 403 well-supported

novel usages were used as thresholds for defining high and low risk

or cost groups.
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