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Abstract

Methods for normalization of RNA-sequencing gene expression data commonly assume equal total expression between
compared samples. In contrast, scenarios of global gene expression shifts are many and increasing. Here we compare the
performance of three normalization methods when polyA+ RNA content fluctuates significantly during zebrafish early
developmental stages. As a benchmark we have used reverse transcription-quantitative PCR. The results show that reads
per kilobase per million (RPKM) and trimmed mean of M-values (TMM) normalization systematically leads to biased gene
expression estimates. Biological scaling normalization (BSN), designed to handle differences in total expression, showed
improved accuracy compared to the two other methods in estimating transcript level dynamics. The results have
implications for past and future studies using RNA-sequencing on samples with different levels of total or polyA+ RNA.
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Introduction

RNA sequencing (RNA-seq) is frequently used for global gene

expression analysis. RNA-seq generates short reads from frag-

mented RNA molecules and the number of reads is proportional

to the abundance and length of the transcripts [1]. However, the

read count needs processing to accurately represent the expression

status of a particular gene [2]. This processing, referred to as

normalization, is defined as removal of systematic experimental

bias and technical variation with the aim to improve identification

of gene expression changes across conditions [3]. Different

normalization strategies have been proposed, most of which

assume equal amounts of RNA in each experimental unit. For

example, for each cell, embryo or organism only a few transcripts

change abundance or changes are balanced out. Among

normalization methods published are the well-known ‘‘reads per

kilobase of transcripts per million mapped reads’’ (RPKM) [4] and

the less frequently used median and quantile normalization

methods (reviewed in [2]). Another strategy, presented by

Robinson and Oshlack [5], introduces a scaling factor called

Trimmed Mean of M-values (TMM), which aims to represent the

‘‘global fold-change’’. However, application of this method results

in samples of similar total expression, which may not be

biologically correct.

Although equal global gene expression levels are generally

acknowledged as an important assumption in all of the aforemen-

tioned methods, it is rarely tested. We recently showed that in

zebrafish embryos, approximately 70% of maternal transcripts

undergo cytoplasmic polyadenylation prior to onset of zygotic

transcription, leading to a 50–70% increase in the retrieved

polyA+ RNA amounts between the 1-cell stage and the ,1000-cell

stage 3.5 h post-fertilization (hpf) [6]. It was subsequently shown

that stimulation with a transcriptional activator (c-Myc) increases

total and polyA+ RNA levels several fold [7]. Furthermore, cancer

cells have been shown to contain more total RNA than normal

cells [8] and it is well known that different tissues contain different

amounts of RNA; for instance, a comparison of embryonic stem

cells and fibroblasts reveals a 5.5-fold difference in mRNA levels

[9]. Further, cellular stress can dramatically alter the amount of

RNA, as shown for heat-shock treated cells [10]. Thus, both under

natural and experimental conditions, the critical assumption of

equal expression levels between cell types, disease states or

developmental stages is no longer valid. This may, depending on

its severity, influence the statistical inference and biological

interpretation of the results [10].

To account for this, we recently proposed an approach which

uses experimentally measured polyA+ RNA amounts as scales to

normalize different developmental stages [6]. This method is

called biological scaling normalization (BSN). We first estimate the

concentration of each transcript:

½Eij �~
Rij

Rj

ðeq: 1Þ
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Where [Eij] is the relative abundance of transcript i in sample j,

Rij is the number of reads for gene i in sample j, and Rj is the total

number of reads in sample j. We calculate the average library size:

X~

Pj~n
j~1 Rj

n
ðeq: 2Þ

Where n is the number of samples. A pseudo library size is

obtained by multiplying the average library size with a stage

specific scaling factor:

Xj~X|Zj ðeq: 3Þ

The scaling factors can be obtained both mathematically and

experimentally, as will be demonstrated later. The next step in the

normalization procedure is to reassign the pseudo read libraries to

each gene based on the previously estimated [Eij] value to get the

normalized dataset:

Eij~½Eij �|Xj ðeq: 4Þ

Similarly to TMM normalization, our method contains a scale

which aims at representing change in total expression, also termed

the ‘‘global fold-change’’ [5]. However, the TMM scales are

derived from the read counts of a trimmed set of investigated

transcripts, while the scales used in BSN were based on

measurements of polyA+ RNA content per embryo [5,6]. We

denote these scales as Zj
TMM and Zj

Bio, respectively. Importantly,

the usage of the scales differs drastically between TMM-

normalization and BSN. While during TMM normalization the

scale (Zj
TMM) is incorporated during the estimation of transcript

concentrations ([Eij] = Rij/(Rj*Zj
TMM)), this is done afterwards in

BSN (see equation 3). RPKM, as an intermediate approach,

normalize without adding any scaling factor ([Eij] = Rij/Rj). The

rationale behind both RPKM and TMM normalization is similar,

and distinct from BSN; they assume little difference in total

expression between compared samples. If such a difference exists,

it will be reduced after normalization. Rather, BSN seek to retain

biological differences between samples, with the assumption that

more RNA detected at a particular stage would correspond to

more genes being up-regulated.

To test our hypothesis we have validated BSN and compared it

to RPKM and TMM normalization under conditions of global

increase and decrease of polyA+ RNA levels during the first 6 h of

zebrafish development. The first 2.5 h are characterized by

substantial increase of polyA+ RNA [6], while there is massive

decay of RNA due to miRNA-430 activation at 3.5 hpf and

onwards [11]. Compared to RT-qPCR benchmarks, the results

show improved accuracy of expression level changes using BSN

compared to the two other normalization methods.

Results

Estimation of the scaling factor
A key component in our normalization procedure is the

estimation of a reliable measure of global fold-change, denoted

Zj throughout this paper. This measure represents the change in

total RNA or polyA+ RNA, depending on which population is

under study. Two methodologies were used to gain an estimate of

the fluctuations of RNA levels in the embryo, one biological and

one mathematical. First we isolated and measured the amount of

total and polyA+ RNA from equal numbers of embryos at different

developmental time points before zygotic genome activation

(ZGA) (1-cell, 4-cell, 16-cell and 128-cell) and after (3.5 hpf and

5.5 hpf). These time periods are referred to as pre- and post-ZGA

samples from here on. Total RNA levels did not change

significantly between stages, but we did observe a decreasing

trend (Fig. S1a in File S1). The levels of polyA+ RNA increased

from the 1-cell to the 128-cell stage, levelled off towards 3.5 hpf

and decreased between 3.5 hpf and 5.3 hpf (Fig. 2; Fig. S1b in File

S1). Due to high variance in absolute RNA amounts, we chose to

use the polyA+ RNA percentage as the normalization scales (Fig. 2)

(see methods). We denote these scales as Zj
Bio.

In a second approach we estimated TMM scaling factors as

described by Robinson and Oshlack (2010) (see methods). We

denote these scaling factors as Zj
TMM. The Zj

TMM values

correlated well with the Zj
Bio scales obtained through experimental

polyA+ RNA measurements (Fig. 2). Moreover, comparison of

Zj
TMM between two different RNA-seq datasets (dataset 1; [6],

dataset 2; [12]) showed reproducibility across platforms (SOLiD3

and Illumina), as well as replicates (dataset 2) (Fig. S2a,b in File

S1). Also, RNA-seq data derived from total RNA showed no

increase pre-ZGA (Fig. S2c in File S1). From these data, we

conclude that there are substantial fluctuations in polyA+ RNA

amounts during development, and that Zj
TMM and Zj

Bio are valid

estimators of global fold-change under the circumstances studied

here. In the remainder of our study, we used the laboratory-

derived factor Zj
Bio for dataset 1 and the Zj

TMM scales for dataset 2

when normalizing with BSN. We previously square-root trans-

formed the scaling factors [6], however the new analysis shows that

this conservative approach is less accurate than using the scaling

factors without transformation (Fig. S3a-c in File S1).

Comparison of total RNA and polyA+ RNA derived cDNA
libraries reveal fundamental differences

To determine whether RT-qPCR results are affected by the use

of total or polyA+ RNA and/or type of primers used to generate

cDNA (random or oligo(dT) primers), we performed parallel

experiments of the same samples using different combinations of

template and primers. The results demonstrate that detection of

increase in mRNA abundance pre-ZGA depends on an enrich-

ment of transcripts in the polyA+ RNA fraction rather than in total

RNA (Fig. 3; Fig. S4a and b in File S1). These results are

consistent with an increased polyA tail length of existing

transcripts and not de novo transcription during the pre-ZGA

period [6]. The level of increase post-ZGA is more similar between

total and polyA+ RNA libraries (Fig. S4c in File S1).

Comparison of RNA-seq normalization methods
Three different methods for normalization of RNA-seq data

were compared. Raw read counts were divided by the total

number of million mapped reads in each sample as described for

RPKM [4], but without dividing by the length of the transcripts;

this approach is from here on called Reads Per Million (RPM).

TMM normalized values were obtained using the R package

‘‘limma’’ (see methods) and BSN normalized values using Excel

(see methods). These three normalization methods represent the

main groups of RNA-seq normalization methods available today

[2]. The global effect of normalization can be viewed in box plots

(Fig. 4). BSN mimics the global polyA+ RNA trends (Fig. 2), in

contrast to RPM and TMM normalization which cause the

samples to become more similar. This illustrates the key difference

between the normalization methods compared; BSN seek to
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maintain biological differences, while RPM and TMM lead to

samples with similar distribution of the gene expression levels.

At the individual transcript level, we focused on two time points

of dynamic change; between the 1-cell and the 3.5 hpf stage (pre-

ZGA), and between 3.5 hpf and 5.3 hpf (post-ZGA). Spike-in

RNA was added to the Trizol reagent before RNA isolation and

polyA+ RNA was extracted from equal volumes of total RNA from

each stage to ensure unbiased RT-qPCR values for 20 different

transcripts (see methods). Transcripts with an increase during pre-

ZGA stages (n = 8) are in 7 of 8 examples best approximated by

BSN (Fig. 5a). Overall, the pre-ZGA fold changes were 55% and

163% higher for BSN compared to RPM and TMM, respectively.

Importantly, two transcripts that decrease pre-ZGA were also best

estimated using BSN (Fig. 5b). For all 11 transcripts examined with

decreasing expression between 3.5 and 5.3 hpf, the BSN estimated

values are in all cases closest to the qPCR results (Fig. 5c). For sod2,

there is even a difference in the direction of the estimated fold

change between the BSN and TMM normalized values. For

transcripts examined with an increase from 3.5 to 5.3 hpf (n = 9),

the BSN values are closest to the qPCR benchmark in all cases

(Fig. 5d). For some of these transcripts we detect substantial

differences between qPCR and RNA-seq results (tardbpl, bact2,

tex10, ctcf); however this is independent of normalization method.

On average, the fold changes post-ZGA were 32% and 64% lower

for BSN, compared to RPM and TMM. The BSN method also

performed best when primer efficiency calculations were used for

adjusting fold-changes, and discrepancies between qPCR and

RNA-seq were reduced (Fig. S5 in File S1). Taken together our

results demonstrate a substantial increase in accuracy using BSN

compared to RPM and TMM normalization.

Comparisons between normalization methods and qPCR for

transcripts varying post-ZGA using dataset 2 revealed the same

trend as for dataset 1; however, there was less discrepancy between

qPCR and RNA-seq results (Fig. S6a,b in File S1). BSN

normalized expression levels were closest to qPCR values in 10

of 11 examples for down-regulated transcripts, and in all cases for

up-regulated transcripts.

Discussion

Fluctuation in polyA+ RNA levels during development is well

documented [6,13–15], and the challenge this poses on the

accurate representation of expression levels has been met with

normalization methods for qPCR and microarray analysis [10,16].

Similarly, BSN was designed to normalize RNA-seq data that

contain global shifts in RNA population sizes [6]. We now

demonstrate a clear advantage of using an approach mimicking

the polyA+ RNA levels (BSN), compared to methods aimed at

making samples similar (RPM and TMM normalization). Our

results show that the normalized expression values were consis-

tently best approximated by BSN when compared to a RT-qPCR

benchmark. Only a few transcripts increasing prior to ZGA were

best approximated by RPM normalized values; TMM-normalized

values on the other hand were in all cases the least accurate. As

expected, both the TMM and RPM normalization strategies leads

to underestimation during the increase (pre-ZGA) and overesti-

mation during the decrease (post-ZGA) of polyA+ RNA amount,

RPM less so than TMM normalization [10,17]. The choice of

normalization method has a profound effect on gene expression

estimates; pre-ZGA the BSN normalized fold-changes were 55%

and 162% higher than RPM and TMM, while TMM and RPM

fold-changes were 64% and 32% higher than BSN post-ZGA.

These results call for awareness in the selection of normalization

method.

Despite low accuracy of TMM normalization under the

circumstances studied here, the TMM scaling factor, Zi
TMM, is a

good estimator of global fold change, with high correlation to

laboratory measurements. It could therefore be tempting to rely

solely on this cost-effective and efficient mathematical approach.

However, we strongly encourage laboratory validation of the

estimated global fold-changes since the TMM method does not

always detect global changes. In the aforementioned example of a

global increase in expression after c-Myc stimulation [7], the

TMM approach was not able to estimate the increased expression

level (data not shown), since all genes were up-regulated. In this

case, a strategy with RNA spike-in controls and estimated scaling

factors based on local regression (LOESS) was used [18]. Although

this spike-in RNA approach may solve the problem of RNA

fluctuations in the samples being studied, such a strategy is not

useful for interpretation of previously published data where spike-

in RNA is not added. In addition, regression analyses are in

general sensitive to outliers; in the case of LOESS, this is

particularly relevant due to the few data points each local

coefficient depends on (96 different RNAs in total). This was

recently made relevant by a report on the variability of spike-in

controls [19]. However, these concerns must be tested and

regardless of outcome, spike-in RNA normalization is a leap in the

right direction for datasets comparing samples which differ

substantially in RNA amount.

We have shown improved accuracy of normalizing gene

expression data using BSN compared to RPM and TMM during

developmental stages that display global increases and decreases in

mRNA content. Application areas of this approach are expected to

be numerous, ranging from comparing gene expression during

development, disease, and tissue- and cell-type specification. More

generally, our results should be a strong argument for testing the

assumption of equal RNA levels in all gene expression dynamics

studies.

Methods

Ethics Statement
All studies were performed in accordance with animal

experiment legislation and guidelines. In Norway zebrafish

embryos are not regulated prior to they start feeding at day five

post-fertilization. Consequently, no approval was needed for

experiments in this study of embryos up till 6 hours post

fertilization.

Embryo collection and RNA isolation
Wild-type zebrafish from AB background were maintained in

the zebrafish facility of the Institute of Molecular and Cell Biology,

Singapore. Embryos were grown in embryo medium at 28uC and

staged according to standard morphological criteria [20]. Total

RNA from 100 embryos at each developmental stage (Fig. 1) was

isolated using Trizol (Invitrogen, USA) from stages before zygotic

genome activation (ZGA) (1-cell, 4-cell, 16-cell and 128-cell) and

after (3.5 hpf and 5.5 hpf). Spike-in RNA (polyadenylated

kanamycin RNA #C1381, Promega, USA) was added to the

Trizol with a final concentration of 0.25 ng/ml. PolyA+ RNA was

extracted from equal volumes of total RNA from each stage using

the MicroPoly(A)PuristTM Kit (Ambion, USA). The amount of

total and polyA+ RNA was measured with a NanoDrop 2000

(Thermo Fisher Scientific, MA, USA) and a QubitH RNA Assay

Kit (Invitrogen,USA), respectively. RNA integrity was measured

using the Agilent RNA 6000 Nano chip on a Bioanalyzer 2100

(Agilent, USA).

Normalization of RNA-Sequencing Data
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Reverse transcription (RT)-qPCR
mRNA levels for 20 transcripts at each developmental stage

were measured by RT-qPCR. The transcripts were chosen

systematically to represent different expression patterns. We used

an equal number of embryos used synthetic kanamycin RNA to

adjust for differences in RNA yield [10,16,17]. Equal volumes of

samples across all developmental stages were used in polyA+ RNA

extraction as well as in RT and qPCR reactions. For cDNA

synthesis we used Superscript III First Strand Synthesis System

(Invitrogen, USA). For a subset of transcripts, we performed RT

on total and polyA+ RNA using either oligo(dT)20 or random

hexamer primers, and generated four groups of cDNA: (1) total

RNA + oligo(dT), (2) total RNA + random primers, (3) polyA+

RNA +oligo(dT), (3) polyA+ RNA + random primers (Fig. 1). For

the rest of the transcripts we focused on four stages (1-cell, 16-cell,

ZGA and post-ZGA) and used only oligo(dT)20 primers and

polyA+ selected RNA. qPCR was performed (primers listed in

Table S1 in File S1) using SYBR green (Fermentas, Lithuania).

Cycle threshold (Ct) values were normalized against the kanamy-

cin spike-in control and 22DDCt values were obtained as described

[21]. Primer efficiency calibrated values were calculated according

to [22] (Etarget
Dct target (ctl-sample)/Eref

Dct ref (ctl-sample)). The fold-

change values were log2-transformed.

RNA-sequencing and normalization
We used RNA-seq data from two different previously published

studies for comparison of normalization methods. The first dataset

(‘‘dataset 1’’) was generated using SOLiD3 technology [6] (GEO

accession number GSE22830). The reads were strand specific and

single end, generated from five different stages, all overlapping the

qPCR data (1-cell, 16-cell, 128-cell, 3.5 hpf and 5.3 hpf). The

second dataset (‘‘dataset 2’’) [12] was downloaded from GEO

(GSE32898) and mapped with Tophat [23]. The dataset 2 RNA

was collected from 2/4-cell stage, 3 hpf, 4.5 hpf and 6 hpf

embryos. The 3 and 6 hpf samples in dataset 2 were compared to

qPCR results from 3.5 and 5.3 hpf embryos. Both datasets were

generated from polyA+ selected RNA. Dataset 1 using Poly(A)

Purist kit (Ambion, USA) and dataset 2 using PolyA purist-MAG-

kit (Ambion). The total RNA starting material was in both cases

extracted with Trizol (Invitrogen). For comparison of TMM values

we also downloaded a dataset based on total RNA [24]. Counting

of reads per gene was performed using HTSeq (http://www-

huber.embl.de/users/anders/HTSeq/).

The raw counts were normalized against the total number of

mapped reads per million (RPM), to represent RPKM [4]. TMM-

normalization was performed by calculation of Zj
TMM scaling

factors using the R package ‘‘edgeR’’ and the ‘‘calcNormFactors’’

command [5]. These were used in library size calculations in the

‘‘voom’’ command in the R package ‘‘limma’’ and TMM-

normalized expression values were retrieved from the ‘‘E’’ slot in

the returned object. These log2-transformed values were used to

calculate fold-change through subtraction. BSN normalized values

were obtained as described in equation 1-4 using Excel. We

obtained two sets of scaling factors: i) Mathematical based scales,

Zj
TMM, were obtained as for TMM-normalization (using ‘‘edgeR’’

with the command ‘‘calcNormFactors’’ with default settings) [5].

ii) Biological scales, Zj
Bio, were obtained through PolyA+ RNA

laboratory measurements and calculation of the percentage

polyA+ RNA of the total RNA. Each stage specific percentage

was then divided by the 1-cell stage percentage to generate the

Zj
Bio scales. Replicates in dataset 2 were first normalized within

each group through multiplying concentrations (eq. 1) with the

average library size for each group. The average library size across

all stages were then calculated (eq. 2). Scaling factors were

obtained using ‘‘edgeR’’ and the command ‘‘calcNormFactors’’ on

a set of replicate averaged values. These scales were used to obtain

stage specific library sizes (eq. 3). Concentrations of the transcripts

were then again calculated and multiplied with the stage-specific

library size (eq. 4). The resulting normalized counts all had

correlation coefficients .0.99. All raw and normalized values are

available in dataset S1 and S2.

Figure 1. Experimental design. Total RNA from 5 developmental
stages pre- and post-ZGA was isolated and kanamycin polyA+ RNA was
used to adjust for differences in RNA yield. PolyA+ RNA was isolated and
four cDNA libraries were generated to compare qPCR results using
different template and primers.
doi:10.1371/journal.pone.0089158.g001

Figure 2. Relative polyA+ RNA amounts. Measurements of polyA+

RNA determined by a standard laboratory method (full line) and using
trimmed mean of M-values (TMM) (stippled line) display an almost
identical pattern during early embryogenesis with an early increase and
subsequent decrease. The levels are relative to the 1-cell stage.
doi:10.1371/journal.pone.0089158.g002
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Comparison between RT-qPCR and RNA-seq
For comparison of normalization methods we selected tran-

scripts with a dynamic expression pattern. Fold-changes for two

different time points were calculated depending on whether

transcripts expression levels changed or not: i) from the 1-cell to

the 3.5 hpf stage (‘‘pre-ZGA’’) and/or ii) from 3.5 to 5.3 hpf

(‘‘post-ZGA’’). Fold changes were calculated as the ratio of 3.5 hpf

to 1-cell and as the ratio of 5.3 hpf to 3.5 hpf and subsequently

log2-transformed.

Supporting Information

File S1 Table S1 and Figures S1–S6. Table S1. List of

primers. Forward and reverse primers used for qPCR. Figure S1.

Changes in total and polyA+ RNA during development. a)

Amount of total RNA per embryo at different developmental

stages. b) Amount of polyA+ RNA per 100 embryos at different

developmental stages. Vertical bars represent standard errors.

Figure S2. The TMM scaling factor. a) The TMM scaling factor

estimated using dataset 1 and 2. We observe very similar values. b)

The TMM scaling factor obtained using the replicates in dataset 2.

The TMM values are very reproducible. c) The TMM scale factor

when RNA-seq data based on total RNA was used. Figure S3.

Comparison of scales. We either square-root transformed or used

that scales directly and compared the normalized fold-changes to

RT-qPCR results. a) Transcripts with dynamic change pre-ZGA.

b) Transcripts with decreased abundance post-ZGA. c) Transcripts

with increased expression post-ZGA. Vertical bars represent

standard deviations. Figure S4. Comparison of RT-qPCR results

depending on RNA template (total or poly+ RNA) and primers

(random or oligo(dT) primers) for setd3 (a), gtf2e2 (b) and yy1a (c).

The increase pre-ZGA is dependent on template (setd3 and gtf2e2)

and not primer type. Figure S5. Efficiency calibrated fold-changes

for a subset of transcripts. Vertical bars represent standard

deviations. Figure S6. Comparison normalization methods using

Figure 3. cDNA template and primer comparison. Comparison of RT-qPCR results based on polyA+ and total RNA and oligo(dT) and random
primers for stat3. The increase pre-ZGA is only detected in the polyA+ RNA-based cDNA libraries. PolyA = polyA+ RNA, Total = total RNA, OdT =
oligo(dT) primers, RP = random primers.
doi:10.1371/journal.pone.0089158.g003

Figure 4. Distribution of gene expression values. Box plot of distribution of transcript counts or values before (not normalized) and after
normalization (BSN, RPM and TMM).
doi:10.1371/journal.pone.0089158.g004
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dataset 2 for transcripts with decreased expression post-ZGA (a)

and increased expression post-ZGA (b). Vertical bars represent

standard deviations.

(PDF)
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