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Introduction

Data sharing plays an important role in the fields of computer

science, statistics and machine learning. In statistical genetics, The

Human Genome Project made the full human genome publicly

available on the NCBI website in 2001 [1]. That has been one of

the key factors in enabling impressive developments, not only in

fields related to biological science, but also in statistical genetics

and bioinformatics. The web site of The University of California at

Irvine (UCI) Machine Learning Repository is an example of the

way the machine learning community sets data repository

standards and provides educational resources and open-access

benchmarking material. This web site contains over 200 data sets

from different theoretical domains, including results from data

generators. Simulated data is an option when data collection is

complicated by issues related to technological limitations, large

problem size, privacy agreements or the time required to gather

the data. In statistical genetics, The Genetic Analysis Workshops

approach current analytical problems by making both real and

simulated data sets available to investigators worldwide. The use of

simulated data is a widely accepted practice for evaluating the

performance of computer algorithms and can be found in many

computer science publications.

The purpose of machine olfaction is to design systems able to

recognize smells. An experimental device typically consists of an

array of gas sensors, acquisition electronics and a software unit for

pattern recognition. Such a device, also known as an electronic nose,

was originally proposed by G. Dodd and K. Persaud in 1982 [2].

The authors introduced a principle for discrimination among

complex odourant mixtures inspired by the way the olfactory

system processes the signals from broadly tuned receptor cells. In

the work of the authors, it was shown that discrimination between

odour classes can be performed by means of an array composed of

sensors with overlapping performance profiles, instead of highly

specific sensors. Signals recorded from the sensors form a special

fingerprint in response to odours, however data processing of such

multivariate responses was always a crucial stumbling block in the

design of the electronic nose.

The practical application of instruments based on sensor arrays

is very sensitive to the robustness of the data processing methods

involved [3]. In last three decades, substantial advances have been

made in signal and data processing of sensor array data [3–5],

including in biomimetic or bio-inspired approches [6,7], although

no public repository of data sets has yet been established. The need

for a repository of benchmarks has been already mentioned [5],

but there are still few data sets publicly available. The UCI

Machine Learning Repository contains an archive of 13910

measurements from 16 chemical sensors aimed at tackling the

problem of drift compensation in sensor array data [8]. As far as

we can ascertain, this is the unique example of an open data set in

machine olfaction. We believe that data generators for simulation

experiments might be a step forward for the development and

testing of data processing algorithms, while the setting up of a data

repository and the collection of data sets for this repository would
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be a productive long-term activity for the machine olfaction

community.

The need for data sets specifically designed for machine

olfaction applications arises from the fact that this field has a list

of practical problems, which are not common to other machine

learning domains. Signals acquired from gas sensors are prone to

drift due to the intrinsic instability of sensor devices and

environmental changes over the course of the experiment. Any

transfer of the applications from the original experimental

conditions to a new set up also results in certain instrument re-

calibration problems. Scenarios important for testing the applica-

tion include: sensor replacement and sensor failure (for evaluation

the robustness of the array), adaptation and habituation tasks (for

design of event-based pattern recognition algorithms), and a

number of biologically inspired scenarios such as background

suppression (for running neural models to simulate the biological

olfactory pathway). Parameterization of the difficulty of each

scenario is another important issue for the benchmarking of

algorithms designed to address the above problems. For further

information on the topic, the reader is referred to the most recent

review of signal and data processing in machine olfaction [3] and

to the thesis of B. Raman for the introductory material relating to

neuromorphic data processing in machine olfaction [9].

The development of the package chemosensors was initiated within

the framework of the NEUROChem project [10]. The testing of

the neuromorphic computational models designed in the project

necessitated large scale sensor array data (a large number of

sensors in the array) and support for multicomponent gas

mixtures. Although neuromorphic simulations were the first

application of the generator tool, the simulated data can be used

for a general-purpose experiments in machine olfaction. These

typically comprise three steps. In the first step, the practitioner

considers an experimental scenario. The scenario typically is

defined by a list of analytes and their concentrations and the task

type, for example, classification or regression. In the second step,

transient signals are acquired from the sensors in array. Common

practice is to pre-process the signals to compensate for noise and to

extract the features relevant for the discrimination task in the

specific scenario. In the third step, data analysis relevant to the

given scenario is performed. The decisions made in the first step

are the most crucial, in the sense that any further improvement is

now difficult, if any critical errors were made at the beginning.

The chemosensors package is mainly focussed on helping the design

of a signal processing toolchain by providing the facilities for data

simulation. The challenge of this initial step is to find the best

possible combination of analytes and sensors which can discrim-

inate between the analytes. Different types of sensors are evaluated

by looking at their key response characteristics for the analytes

involved in the specific scenario. Typically, the main character-

istics of interest are the sensitivity to target analytes, the selectivity

to target analytes across the interferents, and the stability of the

sensors.

Our chemosensors package allows one to parametrically design an

array of virtual sensors and to use it as a data generation tool. The

simulation of a single sensor is based on a set of physico-chemical

models for conducting polymers, which were derived under

simplified assumptions and were presented in our earlier work

[11], where models emulating different types of noise (including

drift) in sensors also were constructed. The software is written in

the R language, is organized as a standard package, available on

the R-Forge repository and includes installation instructions and

code documentation [12,13]. The package presented is aimed at

providing an open framework of data simulation to tackle the

specific issues in machine olfaction previously mentioned. We

propose defining the difficulty level of scenarios as the similarity

between gas classes, this is independent of the sensor data or

simulation models for data generation.

The R language environment is a widely used framework for the

distribution of data sets and software for data generation.

Published packages for data simulation include the fwsim
package for functional magnetic resonance imaging [14], the

packages IBDsim and hapsim in statistical genetics [15,16] and

the simFrame package for building a general-purpose frame-

work for statistical simulations [17].

Our manuscript is organized as follows. We begin with a

description of the materials and methods used to create the

chemosensors package. Then we explain the parameterization of

simulations, and show examples for three machine olfaction tasks:

the benchmarking of a classification algorithm, the evaluation of

linear and non-linear based regression algorithms and the

modelling of the chemotopic convergence of receptor neurons in

the early olfactory pathway. Finally, we summarize our work in a

Conclusions section.

Materials and Methods

Reference Data Set
The software package includes the simulation models, which

were trained with a reference data set as described in [11]. The

reference data used in that work (UNIMAN data set) was collected

in The University of Manchester (UNIMAN, UK). The long-term

measurements of three analytes ammonia, propanoic acid and n-

butanol, at different concentration levels, were performed on an

array composed of 17 conducting polymer sensors. The measure-

ment protocol implied that sensors were exposed to a rectangular

gas pulse of 329 s, and transient signals from the sensors were

recorded at 1 Hz sampling frequency. The periodic measurements

lasted over 10 months and resulted in 3925 samples stored in the

raw data format. Hence, the UNIMAN data set can be

represented as a three-dimensional data array of size 3925 |
329 | 17.

The UNIMAN data set is unique, due to the methodology and

precision on the gas delivery station jointly with the long-term

experiment. The applications on processing of these data are

related to scenarios of gas identification complicated by the noise

observed in the sensor signals (mainly the long-term drift noise).

The detailed information about the UNIMAN data set and list of

related applications can be found in [11] and references therein.

Input Protocol
Three different analytes can be used for data simulation, which

correspond to the three analytes: ammonia, propanoic acid, and n-

butanol in the reference data set. For the sake of simplicity, we use

the letters A, B and C to refer to these. Table 1 reports the

concentration range for each analyte with concentration units

expressed in volume fraction vol.%.

The input concentration is defined by a step function, and the

lengths of both the exposition and the cleaning phase are equal to

60 time units. This corresponds to the protocol given in the

reference data set.

The dynamic range of the virtual sensors is limited to the range

from 0.01 to 0.1 vol.% for analytes A and B and to 0.1 to 1 vol.%

for analyte C. This corresponds to the range of analyte

concentrations in the reference data set given in Table 1.

A transient sensor signal, the output vector x(t), is generated in

response to a mixture of analytes, with input concentration matrix

C0(t). The columns of the matrix C0(t) encode the concentration

of three analytes A, B and C. We use i to index the columns of
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C0(t), where i takes values 1, 2 and 3. The response of an array of

sensors can be expressed as a matrix X (t) comprised of signals

from the sensors given in the columns. The number of rows, in

both matrices C0(t) and X (t), is equal to the number of samples

per unit time.

Function C0(t) is defined to be a step function of length 60 time

units and the amplitude of the step is denoted by C0. A time

stamp, when the exposition phase ends and the cleaning phase

starts, is known as quasi stabilization time and the value of the

signal at this point, here xss, is known as the steady-state value.

Simulation Models
In the chemosensors package we used the models designed for

polymer based gas sensors and validated these models on the

seventeen sensors and three analytes at different concentrations

from the UNIMAN data set [11]. This group of models took a

matrix of concentrations C0(t) as input and produced a matrix of

sensor array data X (t) as output. Two models, sorption and

calibration, emulated the time response of the sensors in the array

under noise-free conditions. Three models, concentration noise,

sensor noise and drift noise, injected noise to the generated data at

different steps of the simulation flow. The response of a single

sensor to a mixture of analytes is controlled by the Langmuir

isotherm being part of the sorption model. The Langmuir

isotherm implies a competitive sorption behaviour and results in

a non-linear response to a mixture of analytes. The maximum

number of analytes in the mixture is three, as the UNIMAN data

set was measured only for three analytes.

The parametrization of the simulation models is summarized in

Appendix S1, while the complete description of the models is

available in our previous work [17]. Appendix S2 also presents a

quantitative comparison between simulated and real data to give

the reader the confidence in the data generated by the chemosensors

package.

Virtual Sensor Array
The simulation models described in Appendix S1 are imple-

mented in the chemosensors package as S4 classes in R [12]. The

main class of the package SensorArray represents a virtual sensor

array and inherits classes from the simulation models, which are

SorptionModel, SensorModel, ConcNoiseModel, SensorNoise-

Model and DriftNoiseModelf. Table 2 shows the relationship

between the simulation models and the classes in the first two

columns. The parameters derived from the reference UNIMAN

data are stored in the data sets reported in the third column of

Table 2. In addition, the data set UNIMANshort contains the

short-term reference UNIMAN sub-set of the first 200 samples. All

the data sets are distributed with the chemosensors package and can

be loaded into the R environment by the data function.

In this Section, we describe the basic slots of the SensorArray

class and report their relationship to the parameters of the

simulation models. Table 3 summarizes the information about the

basic slots of SensorArrayclass.

Virtual sensors can be thought as replicas of the 17 UNIMAN

sensors. The data sets of the package store parameters related to

the simulation models computed for the UNIMAN sensors (See

Table 2). When a virtual sensor is initialized, it adopts one of the

pre-computed 17 profiles. By means of such model assembly, one

can create a virtual sensor array by controlling only two slots of

SensorArray class in the basic configuration.

N The num slot represents the types of sensors in the array. It is

an integer vector whose length is equal to the number of

sensors in the array. The elements of the vector num can take

values from 1 to 17, corresponding to one of the seventeen sets

of parameters derived from the UNIMAN sensors. These

parameters include Ki, bi,k, t1,i, and t2,i as presented in

Appendix S1.

N The nsensors slot stores the number of the sensors in the array.

Table 1. Dynamic range of concentrations for three gases
used in the chemosensors package.

Gas Label Analyte Concentration range, vol.%

A Ammonia 0.01–0.05

B Propanoic acid 0.01–0.05

C n-Butanol 0.1–1

Dynamic range of concentrations for three gases A, B and C, which correspond
to three analytes in the reference UNIMAN data set: ammonia, propanoic acid
and n-butanol, respectively.
doi:10.1371/journal.pone.0088839.t001

Table 2. Organization of simulation models in the
chemosensors package.

Simulation Model Class Data set

Sorption Model SorptionModel UNIMANsorption

Calibration Model (steady-state) SensorModel UNIMANdistr

Calibration Model (transient) SensorDynamics UNIMANtransient

Concentration Noise Model ConcNoiseModel –

Sensor Noise Model SensorNoiseModel UNIMANsnoise

Drift Model DriftNoiseModel UNIMANdnoise

Simulation models, their classes and associated data sets of parameters
computed for the seventeen UNIMAN sensors.
doi:10.1371/journal.pone.0088839.t002

Table 3. Basic slots of SensorArray class in chemosensors
package.

Slot
Default
Value

Range of
values Short Description

num 1:2 1, 2, … 17 type of sensors

nsensors 2 1, 2, … number of sensors

ngases 3 1, 2, 3 number of gases

gnames c(‘A’, ‘B’, ‘C’) any strings names of gases

concUnits ‘perc’ supported string concentration units

alpha 2.25 w0 sensor non-linearity

beta 2 §0 sensor diversity

csd 0.1 §0 concentration noise sd

ssd 0.1 §0 sensor noise sd

dsd 0.1 §0 drift noise sd

ndcomp 1 1, 2, 3 number of drift components

ndvar 0.86 [0, 1] importance of drift
components

tunit 1 1, 2, … length of a gas pulse

Description of basic slots of SensorArray class necessary to parameterize a
virtual sensor array.
doi:10.1371/journal.pone.0088839.t003

Data Simulation in Machine Olfaction

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e88839



For instance, a virtual array created with parameters num 1:2

and nsensors 2 has two sensors that represent the first two sensors

in the UNIMAN data set. That two UNIMAN sensors were

different by the polymer material the film of the sensors was

composed from, and the sensors had different chemical selectivity

and sensitivity characteristics in response to the three examined

analytes: ammonia, propanoic acid, and n-butanol. The two

virtual sensors possess the same relationships from the UNIMAN

sensors, which are expressed in the parameters of the simulation

models, please see [11] for further details.

If one needs an advanced configuration of the array, other slots

of SensorArray class are available. Many slots are implemented as

easy-to-use scaling factors.

N The alpha slot is a scaling factor for controlling the non-

linearity of a sensor. If alpha is equal to 1, then the scaling is

omitted and the virtual sensors take the sorption affinities Ki

from the UNIMANsorption data set according to their types

(slot num). If alpha is not equal to 1, then the magnitudes of

the affinity coefficients Ki are scaled up (alpha .1) or scaled

down (alpha ,1) proportionally, so that the relative relation-

ship along the seventeen sorption profiles is preserved. Non-

linearity in a sensor increases with an increase in alpha, this is a

consequence of the fact that sensors under the Langmuir

relation in the sorption model tend to a non-linear behaviour

when the coefficients Ki are large. The value of zero is not

allowed, because then the sorption model given in Equation (1)

in Appendix S1 would be meaningless.

Another role of the scaling operation by alpha is the

regulation of a response to a mixture of analytes. As the

output of the sorption model is a weighted (or penalized)

sum of the inputs, more penalization is induced with

greater magnitudes of Ki and, thus, a greater value of

alpha. The default value of the slot (2.25) has been

selected to favour a more balanced penalization of sensors’

responses to different mixtures of the three analytes.

N The beta slot is a scaling factor for controlling the diversity

across sensors in the array. If beta is equal to 0, then the scaling

is omitted and the sensitivity coefficients bi,k in the calibration

model of virtual sensors are taken from the coefficients

estimated for the UNIMAN sensors. If beta is greater than

0, than the coefficients bi,k are derived from the uniform

distributions with parameters stored in UNIMANdistr data set.

The value of beta defines the spread of the distributions. The

diversity across sensors increases with an increase in beta. The

default value of beta (2) corresponds to a moderate level of

diversity.

Note that one can create a copy of the UNIMAN array of the

seventeen sensors under the simulation models by setting up alpha

to 1 and beta to 0. Thus, the virtual array will replicate the same

properties of non-linearity and diversity as the UNIMAN array.

The magnitude of noise generated by the simulation models is

mainly controlled by three scaling slots csd, ssd and dsd, which

correspond to concentration, sensor and drift noise models

respectively. Values of csd, ssd and dsd typically range from 0 to

1. A value 0 implies a noise-free mode, and the value of 1 has been

selected to correspond to the level of noise observed in the

reference UNIMAN data set. The default values of the three slots

are equal to 0.1, which supposes a moderate level of noise.

N The csd slot is a scaling factor for controlling the concentration

noise. It scales the covariance matrix Sc in the concentration

noise model. The default value is 0.1.

N The ssd slot is a scaling factor for controlling the sensor noise.

It scales all the covariance matrices si,k in the sensor noise

model. The default value is 0.1.

N The dcsd slot is a scaling factor for controlling the drift noise. It

scales the covariance matrix Sd in the drift noise model. The

default value is 0.1.

N The ndcomp slot encodes the number of drift components. Its

value is equal to the number of columns in the matrix P of the

drift noise model. The default value is 1. This corresponds to

the one drift component which has been observed in the

reference UNIMAN sensor array data [18]. The slot can

possess the values 1, 2 or 3.

N The ndvar slot defines the structure of the drift noise and

encodes the importance of drift components. The slot is a

vector which contains the diagonal elements of the covariance

matrix Sd of the drift noise model. The values of the elements

in ndvar vector lie in the range ½0,1�. The default value is 0.86,

given that the value of ndcomp slot is 1. The slot can be a

vector of up to 3 elements, as limited by the ndcomp slot. If

three drift components are given, then the default values of

ndvar are 0.86 0.06 and 0.05.

Workflow
The workflow of data simulations in the chemosensors package

consists of several steps. In the first step, the practitioner defines

analytes and concentration levels for a scenario and the sensors

required to build an appropriate array. The basic initialization

parameters to build a virtual array include the sensor types num

and the number of sensors nsensors (along with others for more

advance configurations). The package contains a special class

Scenario for the representation of analytes and concentrations.

The plot methods of the SensorArray class have been designed to

perform the exploratory data analysis on the sensor array data.

In the second step, the practitioner generates sensor array data

by a single command. In particular, the predict method of the

SensorArray class takes as input a matrix of analyte concentrations

and returns as output a matrix of sensor array responses.

Parallelized computation of sensor signals is supported, this is

necessary in the case of long-term scenario or a large number of

sensor elements.

In the third step, the practitioner performs a data analysis on the

sensor array data by means of any convenient software tool. In

general, the software for data analysis can be an external program,

and both matrices of concentrations and sensor signals can be

easily exported in a format like csv by standard R facilities, as no

specific data format is assumed in the package.

The noise level in the array is a simulation parameter which can

be updated on-the-fly in the simulation. We consider such

flexibility in controlling noise to be a useful option, when the

performance of a specific sensor is evaluated under drift-free

conditions or when the level of noise is a parameter in

benchmarking data analysis algorithms.

Installation
The source code of the chemosensors package is hosted on the R-

Forge web page [13,19]. The package is also available on the

official CRAN repository of the R packages and can be installed

by typing the following command in R:

install.packages(‘‘chemosensors’’).
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That will install the latest stable version of the package and all its

dependencies from the CRAN repository. The distributed package

is platform-independent and self-contained.

Results

The chemosensors package is organized around the S4 classes of

simulation models (See Table 2), and the implementation of the

classes shares some common features.

N Class constructors can be called in the standard form for S4

classes using the new function. For the sake of simplicity, every

class has a function, which serves as a wrapper for the class

constructor and has the same name as the class.

N The standard methods show, print and plot have been

designed for all classes, this makes the output more verbose.

N One uses @ to access slots of a S4 object. Special get and set

methods have been implemented to access most slots of the

simulation models, and the methods have the same names as

the slots.

The following code shows a quick-start example of a simulation,

where one defines a custom matrix of concentrations, creates a

sensor array and generates the data. This is an example of the

regression scenario of one single gas A given at several

concentration values.

conc ,2 matrix(0, nrow = 120 * 3, ncol = 3)

conc[61:120, 1] ,2 0.01

conc[181:240, 1] ,2 0.02

conc[301:360, 1] ,2 0.05

sa ,2 SensorArray(num=1:4, tunit = 60)

sdata ,2 predict(sa, conc)

The concentration matrix conc encodes three pulses of analyte

A at different concentrations 0.01, 0.02 and 0.05%. vol. The array

sa is composed of four sensors of four different sensor types, and

the tunit parameter is set to 60 to enable the sensor dynamic

model for pulses with step 60. Each gas pulses consists of two parts

of equal length 60, the gas exposition phase and the cleaning phase

(the gap between two consequent exposition phases). Figure 1 (a)

depicts the change in analyte concentrations over time, and

Figure 1 (b) depicts the signals from the four sensors in response to

the concentrations. One can suppress the drift noise in the array

by setting the dsd slot to zero and repeat the simulation, as shown

in the code below. Figure 1 (c) depicts the sensor signals under

drift-free conditions.

dsd(sa) ,2 0

sdata ,2 predict(sa, conc)

In this section, we present some examples of the use of the

chemosensors package. Firstly, we introduce some basic topics related

to the use of the Scenario class, the configuration of a sensor array

and the generation of sensor array data. Secondly, we give

examples of data analysis performed on the simulated data

produced by the package. In particular, we show examples of

benchmarking a classification algorithm, the evaluation of two

regression algorithms and some biologically-inspired modelling.

To perform the classification and regression analyses we use the

caret package developed by Max Kuhn [20]. This package provides

a unified workflow for the process of constructing a predictive

model with the support of automated tools for data pre-processing,

resampling procedures, feature selection and model tuning. We

also use Self-Organizing Maps (SOM) as implemented in the

kohonen package for some biologically-inspired modelling [21].

Defining Scenarios
The Scenario class has been introduced to serve as a more

compact representation of a concentration matrix. The labels of

analytes and the length of pulses are the main parameters required

to specify a scenario. For instance, the conc matrix in the previous

example can be alternatively constructed by creating an object of

the Scenario class and applying the getConc method to extract a

concentration matrix, as shown in the code below.

sc ,2 Scenario(c(‘‘A 0.01’’, ‘‘A 0.02’’, ‘‘A

0.05’’), tunit=60)

conc ,2 getConc(sc)

The Scenario class also encodes a training set and a validation

set (or test set) at the time of initialization. The parameters T and

nT respectively encode gas labels and the number of samples per

label for the training set, and the parameters V and nV also obtain

for the validation set. The training set is followed by a validation

set, as is typically accepted in machine olfaction experiments.

Randomization of the samples is controlled by the logical

parameter randomize. One can re-create the previously created

sc scenario by specifying more parameters, as shown in the

following code.

sc ,2 Scenario(name=‘‘Regression’’, tunit=60,

concUnits=‘‘perc’’,

T=c(‘‘A 0.01’’, ‘‘A 0.02’’, ‘‘A 0.05’’),

nT=30,

V=c(‘‘A 0.01’’, ‘‘A 0.02’’, ‘‘A 0.05’’),

nV=30,

randomize=TRUE)

sc

. Scenario ‘Regression‘ of 180 samples, tunit

60, randomize TRUE

. 2 gases A, B, C

. 2 Training Set: A 0.01 (30), A 0.02 (30), A 0.05

(30)

. 2 Validation Set: A 0.01 (30), A 0.02 (30), A

0.05 (30)

The show method prints the basic information about sc object.

The plot method provides the same information by depicting the

unique gas labels in the training and validation sets. Figure 2 shows

the graphics produced by the plot method for the scenario object

sc showed above.

plot(sc)

The resulting scenario sc represents a regression problem for

analyte A given at three concentrations 0.01, 0.02 and 0.05. In

both training and validation sets there are 30 samples per

concentration. It may sometimes be necessary to update a scenario

once it is initialized. In the code given below, the add method is

used to supplement the training set with two more gas labels; this

might improve the accuracy of the model because of a more

representative set of concentrations.

add(sc) ,2 list(‘‘A’’, 0.03, 30, ‘‘T’’)

add(sc) ,2 list(‘‘A’’, 0.04, 30, ‘‘T’’)

In practice, it might be necessary to retrieve extra data from the

scenario in addition to the matrix of concentrations. The

sdata.frame method returns a data frame with additional columns

Data Simulation in Machine Olfaction

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e88839



which represent gas labels, time units and set index (training or

validation set). In the code given below, the sdata.frame method is

applied to the regression scenario created above, and samples

indexed from 58 to 62 are printed.

cf ,2 sdata.frame(sc)

cf[58:62, ]

. index A B C glab lab tpoint time set

.58 1 0.00 0 0 Air Air air 58 T

.59 1 0.00 0 0 Air Air air 59 T

.60 1 0.00 0 0 Air Air airout 60 T

.61 1 0.01 0 0 A A0.01 gasin 61 T

.62 1 0.01 0 0 A A0.01 gas 62 T

The resulting cf data frame contains both air and gas A labels in

the 6th column lab, because every label entry, for example A0.01,

in either training or validation set encodes a gas pulse consisting of

two parts, the exposition phase of the length tunit and the cleaning

phase of the same length tunit. Note that the cf data frame has a

Figure 1. Matrices of analyte concentrations and sensor signals in a simulation with a virtual array of four sensors. On the X axis of
each panel, the index values correspond to the row index in the two input concentration and output sensor data matrices of the data generator.
Consequently, the values in the columns of these matrices are plotted jointly on the Y axis, while the legend on the right annotates the column
names. Panel (a) shows three pulses of analyte A at three different concentrations 0.01, 0.02 and 0.05 vol.%, while the concentration of the other two
analytes B and C are at zero level. Panel (b) shows transient signals of four sensors labelled as S1, S2, S3 and S4 in response to the pulses from Panel
(a) when all three noises in the sensor array are set up at the 0.1 level. Panel (c) shows sensor signals in response to the pulses under drift-free
conditions, while the other two concentration and sensor noises are remained at the 0.1 level. The signals allow for a visual discrimination between
the three pulses.
doi:10.1371/journal.pone.0088839.g001
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special column tpoint for encoding events on changes between the

exposition and cleaning phases of the gas pulse. This variable takes

values air, airin, airout, gas, gasin and gasout, and is used for

transient feature extraction from transient sensor signals.

N transient feature: All samples are used.

N steady-state (alias ss) feature: Samples with tpoint labels equal

to gasout are extracted, this corresponds to the time stamp

when the exposition phase is finished and the cleaning phase is

to be started.

N step feature: The same samples as for steady-state feature are

used, but the sensor data with tpoint labels equal to airout are

subtracted. This method of feature extraction also reduces the

drift noise.

For example, the concentration matrix depicted on Figure 1 (a)

has three time stamps of gasout at 120, 240 and 360 time units,

which correspond to the time of extraction of the steady-state

signal.

Ten scenarios for machine olfaction proposed in the framework

of the NEUROChem project [10] are given File S1. The

document contains the description of each scenario in terms of

training and validation sets, definition of scenario difficulty and the

R code to create an object of Scenario class.

Figure 2. Plot showing the training and validation set, product of the plot method applied to a regression scenario. The scenario is
defined as a regression on analyte A with both training and validation sets consisting of three pulses of concentrations of 0.01, 0.02 and 0.05 vol.%.
The plot method applied to a scenario object shows only the unique labels given at training and validation sets. One can apply the show method to a
scenario object to get more detailed information.
doi:10.1371/journal.pone.0088839.g002
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Configuring Sensor Array
From now on, we will use the default value 1 of the tunit

parameter to create any virtual sensor array. Such parametrization

means the only steady-state feature in the sensor response, instead

of, for example, 120 transient features in the case of the tunit

parameter equal to 60. This strategy seems to be reasonable, as

that allows us to significantly reduce the number of samples

needed to be simulated for testing pattern recognition models,

while we will exploit one the most commonly used features from

the transient sensor response (steady-state). Hence, the input for

the simulation models will be trivial gas pulses each parametrized

with tunit 1, that results in one sample of a gas in the exposition

phase and one sample of the air in the cleaning phase. The

response to the air sample represents a baseline level in the signal,

which typically is subtracted from the response to the gas sample,

being a standard drift-correction method in the stage of the signal

processing (that corresponds to the feature parameter equal to step

in the sdata.frame method).

There are several ways to configure a virtual sensor array in the

chemosensors package. Basic selection of sensor types is controlled by

num parameter among other parameters. Information stored in

the data sets given in Table 2 characterize the UNIMAN sensors

(or sensor prototypes) and can be used for the selection of

particular sensor types. The SensorArray class has a group of plot

methods plotPolar, plotPCA, plotBox and plotResponse for a

visual representation of the relation between analytes and sensors.

Here, we show an example of a configuration of a sensor array

targeted at discriminating between a set of gas classes: pure

analytes A and C at different concentrations and binary mixtures

of them.

set.AC ,2 c(‘‘A 0.01’’, ‘‘A 0.05’’, ‘‘C 0.1’’,

‘‘C 1’’, ‘‘A 0.01, C 0.1’’, ‘‘A 0.05, C 1’’)

The affinity coefficients Ki in the sorption model are important

sensor characteristics for the discrimination task posed. The code

given below shows how one creates an array composed of all the

17 sensor types and gets the coefficients Ki by the coefficients

method.

sa ,2 SensorArray(num=1:17)

coef ,2 coefficients(sa, ‘‘SorptionModel’’)

str(coef)

. num [1:3, 1:17] 53.1 43.2 136 65.2 44.1 …

. 2 attr ( *, ‘‘dimnames’’)=List of 2

. . .$ : chr [1:3] ‘‘A’’ ‘‘B’’ ‘‘C’’

. . .$ : chr [1:17] ‘‘1’’ ‘‘2’’ ‘‘3’’ ‘‘4’’ …

The relative importance of the sorption coefficients for analytes

A and C is estimated by the following code.

sort(coef[‘‘A’’, ]/coef[‘‘C’’, ])

The same comparison can be performed by looking at pre-

computed sorption coefficients for the seventeen UNIMAN

sensors and stored in the data set UNIMANsorption.

str(UNIMANsorption)

. List of 1

. $ qkc: num [1:17, 1:3, 1:4] 10.02 9.51 9.52

6.57 9.19 …

. ..2 attr(*, ‘‘dimnames’’)=List of 3

. .. .. $ : chr [1:17] ‘‘1’’ ‘‘2’’ ‘‘3’’ ‘‘4’’

…

. .. .. $ : chr [1:3] ‘‘A’’ ‘‘B’’ ‘‘C’’

. .. .. $ : chr [1:4] ‘‘Q’’ ‘‘K’’ ‘‘KCmin’’

‘‘KCmax’’

K ,2 UNIMANsorption$qkc[, , ‘‘K’’]

sort(K[, ‘‘A’’]/K[, ‘‘C’’])

The order of sensors is slightly different, as sensors in a virtual

array are not exact copies of the UNIMAN sensors, but replicas

derived from the UNIMAN parameters.

Now we create three different arrays composed of sensors which

are different in affinities to analytes A and C. All the arrays are

configured to have 12 sensor elements and zero level of the drift

noise.

sa1,2 SensorArray(num=1:3, nsensors=12,

dsd=0)

sa2,2 SensorArray(num=c(13, 14, 17), nsen-

sors=12, dsd=0)

sa3,2 SensorArray(num=c(1:3, 13, 14, 17),

nsensors=12, dsd=0)

Arrays sa1 and sa2 include sensors having greater affinity to

analyte C and A, respectively. The last array sa3 is composed of

sensor types present in both previous arrays.

Principal component analysis (PCA) is one the most widely used

shrinkage methods to represent sensor array data in a low-

dimensional space [3,5]. Principal components, as data projec-

tions, are mutually uncorrelated and ordered in variance. It is well

known that the principal components of a data set provide a

sequence of best linear approximations to that data [22]. We use

the PCA technique to evaluate sensor arrays sa1, sa2 and sa3 in

response to a set of gas labels set.AC. In particular, we plot the PCA

scores of data projected onto the first two principal components.

The chemosensors package contains a list of plot methods suitable

for evaluating sensor arrays on a set of analytes by means of

exploratory graphics. The plot methods are applied to objects of

the SensorArray class, the input is either a concentration matrix or

a set of gas labels, sensor array data are generated on the fly, and

feature selection from sensor transients is parameterized.

N plotPolar method (default): Sensor array data are computed for

a given concentration matrix or a set of gas labels and are

. 2 3 1 5 6 16 9

8 4 15

.0.3752 0.3809 0.3906 0.4085 0.6864 0.8087

0.8308 1.1584 1.2877 1.3308

. 10 11 12 13 7 14 17

.1.3837 1.3980 1.7380 2.1962 2.3077 3.6603

6.3235

. 2 3 1 5 6 16 9

8 4 15

.0.4307 0.4526 0.4581 0.4820 0.7187 0.8278

0.8666 1.1213 1.2308 1.2881

. 10 11 12 7 13 14 17

.1.2933 1.3123 1.6083 2.0277 2.0775 3.1035

5.0328
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plotted in polar coordinates, where sensor numbers are angles

and sensor signals are radii.

N plotPCA method: A principal component analysis (PCA) is

computed on sensor array data, and the graphics show a plot

of scores on the first two principal components. The

percentage of data variance captured by components also is

presented.

N plotBox method: Sensor array data are grouped according to

gas labels and are shown as a box plot.

N plotResponse method: Both input concentration matrix and

output sensor array data, given for a sensor array object, are

plotted over time as lines.

All the plot methods share the same list of parameters.

N x: an object of the SensorArray class.

N conc: a matrix of analyte concentrations.

N sdata: a matrix of sensor data in response to a matrix of

concentrations conc.

N set: a set of gas labels, which is a parameter alternative to conc

(a further concentration matrix is created via Scenario class).

N feature (default value transient): the name of a method for

transient feature extraction from sensor array data.

N air (default value FALSE): a boolean value as to whether air

samples are to be included or not.

Figure 3. Scoreplot corresponding to the Principal Component Analysis of the sensor array data gathered from the array consisting
of 12 sensors of types 1, 2 and 3. The array was exposed to six gas classes: pure analyte A at concentrations 0.01 and 0.05 (labels A 0.01 and A
0.05), pure analyte C at concentrations 0.1 and 1 (C 0.1 and C 1), and two binary mixtures of A and C (A 0.01, C 0.1 and A 0.05, C 1). The concentrations
were given at volume fraction units vol.%, and the measurement of each gas class was repeated 10 times. The distribution of the scores shows that
the sensors in array have more affinity to analyte C that to analyte A. The plot is produced by the plotPCA method applied to the sensor array.
doi:10.1371/journal.pone.0088839.g003
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N gcol (default value FALSE): a boolean value as to whether

colours for gas labels are to be computed with the method gcol.

Now we apply the plotPCA method to three sensor arrays sa1,

sa2 and sa3 in response to the set of gas labels set.AC.

plotPCA(sa1, set=rep(set.AC, 10), air=FALSE)

plotPCA(sa2, set=rep(set.AC, 10), air=FALSE)

plotPCA(sa3, set=rep(set.AC, 10), air=FALSE)

We induce 10 repetitions for each gas label and exclude samples

of the air in the PCA plot. The default transient feature extraction

transient is appropriate for the analysis, as the drift noise was set to

zero level when creating the arrays of sensors.

Figures 3, 4 and 5 show the distribution of PCA scores for the

three arrays. In Figure 3 the scores of two groups for binary

mixtures A 0.01, C 0.1 and A 0.05, C 1 are closer to the scores of

groups for pure analyte C; this means that sensors of the sa1 array

tend to have a greater affinity for analyte C. On the contrary,

Figure 4 shows that sensors of the sa2 array have greater affinity

for analyte A. The horizontal line PC2 = 0 can be used to visually

pick up such kinds of observations. Figure 5 shows a balanced

distribution of classes in terms of affinities for analytes A and C. In

addition, this plot shows more diversity in the PCA scores for sa3

array; this can be noted by looking at the amount of variance

captured by the two principal components PC1 and PC2 (labels on

x and y axis).

Figure 4. Scoreplot corresponding to the Principal Component Analysis of the sensor array data gathered from the array consisting
of 12 sensors of types 13, 14 and 17. The array was exposed to six gas classes: pure analyte A at concentrations 0.01 and 0.05 (labels A 0.01 and A
0.05), pure analyte C at concentrations 0.1 and 1 (C 0.1 and C 1), and two binary mixtures of A and C (A 0.01, C 0.1 and A 0.05, C 1). The concentrations
were given at volume fraction units vol.%, and the measurement of each gas class was repeated 10 times. The distribution of the scores shows that
the sensors in the array have more affinity to analyte A than to analyte C. The plot is produced by the plotPCA method applied to the sensor array.
doi:10.1371/journal.pone.0088839.g004
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Generating Data
Data generation is performed when one has defined a matrix of

analyte concentrations and a sensor array. The predict method of

SensorArray class takes as input the sa object of SensorArray class

and the conc concentration matrix and produces as output the sdata

matrix of sensor signals. Typically, data generation is accomplished

by running a single command, as shown in the following code.

sdata ,2 predict(sa, conc)

To parallelize the computation, one passes the cores (alias

nclusters) parameter to the predict method. For example, two

cores are specified in the code example given below.

sdata ,2 predict(sa, conc, cores=2)

Another way to configure the computation on several cores is by

using the options command, as shown in the following code.

options(cores=2)

The are several facilities available in the chemosensors package to

process the data stored in the conc and sdata matrices. The

Scenario class automates the process of creation of concentration

matrices. In particular, the getConc method returns a concentra-

tion matrix encoded by an object of Scenario class, and the

sdata.method method allows the retrieval of such additional

Figure 5. Scoreplot corresponding to the Principal Component Analysis of the sensor array data gathered from the array consisting
of 12 sensors of types 1, 2, 3, 13, 14 and 17. The array was exposed to six gas classes: pure analyte A at concentrations 0.01 and 0.05 (labels A
0.01 and A 0.05), pure analyte C at concentrations 0.1 and 1 (C 0.1 and C 1), and two binary mixtures of A and C (A 0.01, C 0.1 and A 0.05, C 1). The
concentrations were given at volume fraction units vol.%, and the measurement of each gas class was repeated 10 times. The distribution of the
scores shows that the sensors in array are balanced in terms of affinity to analytes A and C. The plot is produced by the plotPCA method applied to
the sensor array.
doi:10.1371/journal.pone.0088839.g005
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variables as set and tpoint for separation into training and

validation sets and for parameterization of transient feature

extraction, respectively. The same method sdata.frame applied

to an object of the SensorArray class takes as input four basic

parameters: an sa object of the SensorArray class, the conc

concentration matrix or a cf data frame (obtained from an object

of Scenario class by the sdata.frame method), the sdata matrix of

sensor signals and the feature parameter to define a method for

feature extraction. The following code shows an example of using

the sdata.frame method to construct the df data frame, which

contains both concentration- and sensor-related information.

df ,2 sdata.frame(sa, conc = conc, sdata = sdata, feature = ‘‘step’’)

Benchmarking of a Classification Algorithm
In this Section, we present a procedure for benchmarking a

particular classification algorithm to discriminate a set of gas

classes. How one defines the difficulty of the scenarios used for

testing is important. Since the level of difficulty has to be

independent of the sensor data or simulation models for data

generation, we propose determining the difficulty of a scenario by

the similarity between analytes in mixture. Such a definition is

possible, as the simulation models in chemosensors package support

mixtures of analytes.

We will use only two classes in the scenarios, constructed as

mixtures of two analytes A and C. The first three columns in

Table 4 present three scenarios at different difficulty levels. We

apply the k-nearest neighbors (KNN) algorithm for classification. It

is known that predictions of this method are often accurate, but

can be unstable [22]. Thus, we will perform a 10-fold cross-

validation procedure (10 repetitions) for the selection of the best

parameter k on the training stage with a sufficient number of

samples.

In the first step, we generate the gas labels and sensor array data

with the chemosensors package. We will construct an array based on

17 sensors from all sensor types, and the noise level of all three

types will be set to 1. The code below shows an example of

producing a data frame df for a scenario of difficulty 1. The size of

both the training and validation (or test) set has been selected so

that each gas label is represented by 100 samples. This results in 10

samples per fold in the 10-fold cross-validation at the time of the

model training.

set ,2 c(‘‘A 0.02’’, ‘‘C 0.5’’)

sc ,2 Scenario(T=set, nT=100, V=set, nV=100,

randomize=TRUE)

conc ,2 getConc(sc)

cf ,2 sdata.frame(sc)

sa ,2 SensorArray(num=1:17, csd=1, ssd=1,

dsd=1)

sdata ,2 predict(sa, conc=conc, cores=2)

df ,2 sdata.frame(sa, cf=cf, sdata=sdata,

feature=‘‘step’’)

In the second step, we train a model based on the KNN

algorithm with the caret package. For model tuning, we will

explore values 3, 5, 7 and 9 of the parameter k. PCA will be

applied for pre-processing of sensor array data; this is one of the

common options for building predictive models in machine

olfaction [3]. Separation of the training and validation (testing)

set will be controlled by the variable lab in data frame df.

Xt ,2 as.matrix(subset(df, set= =‘‘T’’, se-

lect=snames(sa)))

Xv ,2 as.matrix(subset(df, set= =‘‘V’’, se-

lect=snames(sa)))

lab ,2 subset(df, set= =‘‘T’’, ‘‘lab’’,

drop=TRUE)

lab ,2 gsub(‘‘,| ‘‘, ‘‘’’, lab)

Yt ,2 as.factor(lab)

lab ,2 subset(df, set= =‘‘V’’, ‘‘lab’’,

drop=TRUE)

lab ,2 gsub(‘‘,| ‘‘, ‘‘’’, lab)

Yv ,2 as.factor(lab)

library(caret)

fit ,2 train(Xt, Yt, method=‘‘knn’’, tune-

Grid=data.frame(.k=c(3, 5, 7, 9)),

trControl=trainControl(method=‘‘cv’’, num-

ber=10, repeats= 10),

preProcess=c(‘‘center’’, ‘‘scale’’, ‘‘pca’’))

The results of the training are stored in the object fit, and new

data can be obtained by the predict method applied to this object.

The final model with the best tuned parameters (stored in the

finalModel slot of object fit) will be used for the prediction.

Yp,2 predict(fit, newdata=Xv)

Table 4 shows the results of a benchmarking of the KNN

algorithm. The fourth column reports the parameter k of the best

tuned KNN model, and the last two columns contain the accuracy

measure for the training and validation set respectively. The

accuracy was computed as the ratio of gas classes correctly

predicted by the model. We clearly observe that the model

complexity, as expressed by greater values of k, increases with the

greater scenario difficulty. It is reasonable that the discrimination

of gas classes at higher levels of difficulty should require a more

complex predictive model. The three models fitted to the scenarios

at different difficulty levels also show differences in performance:

the first model is able to classify 100% of the gas classes in both

training and test sets, the second model shows quite good

performance, and the third model performs poorly, giving the

accuracy of 0.74 on the test set.

Table 4. Classification performance on scenarios given at
three different difficulty levels.

Difficulty Class 1 Class 2 k
Acc.
(train)

Acc.
(test)

1 A 0.02 C 0.5 3 1.00 1.00

2 A 0.01, C 0.6 A 0.03, C 0.4 5 0.99 0.94

3 A 0.015,
C 0.55

A 0.025,
C 0.45

7 0.86 0.74

The k-nearest neighbors algorithm was tested on three two-class classification
scenarios at three difficulty levels. The scenario difficulty was defined as the
similarity between two gas classes. The classification model was trained under
10-fold cross-validation procedure with 10 repetitions, and the best value of the
k parameter was estimated along possible values 3, 5, 7 and 9 for each
classification model. The accuracy in prediction of class labels was used to score
the models. The model complexity, expressed in value of parameters k, is
observed to increase with greater scenario difficulty. The first model provides a
perfect performance with a 100% rate of classification, while the last model
displays poor accuracy with a classification rate of 0.74 on the test set.
doi:10.1371/journal.pone.0088839.t004
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Evaluation of Regression Algorithms
In this Section, we show an example of the regression scenario,

which aims to quantify the concentration of a single analyte based

on the sensor signals. To simulate data for benchmarking with the

chemosensors package, one needs to define the analyte concentra-

tions for the Scenario class and to configure a virtual sensor array

for the SensorArray class. Further, one selects a method for the

prediction model to perform the regression analysis on the

simulated data, where the regression model will use the sensor

signals as predictors and the concentrations as responses.

We consider two regression problems: one for analyte A at

concentrations 0.01, 0.02, 0.05 and 0.1 vol.% and another for

analyte C at concentrations 0.1, 0.4, 1 and 2 vol.%. The

concentration range has been selected for each analyte in order

to cover the dynamic range and to include the greatest

concentration value in the saturation region. The following code

shows the definition of a set of gas labels for each analyte.

conc.A ,2 c(0.01, 0.02, 0.05, 0.1)

set.A ,2 paste(‘‘A’’, conc.A)

conc.C ,2 c(0.1, 0.4, 1, 2)

Figure 6. Boxplots for array of six sensors of types 1, 2, 3, 13, 14 and 17 show the distribution of sensor signals in response to
analyte A at concentrations 0.01, 0.02, 0.05 and 0.1 vol.%. The concentration values were selected to cover the dynamic range of analyte A
and to include the value in the saturation region. All the sensors show a non-linear response to analyte A at the selected concentration range. The
three sensors of types 13, 14 and 17 show rather noisy responses. The plot is produced by the plotBoxplot method applied to the sensor array under
drift-free conditions.
doi:10.1371/journal.pone.0088839.g006
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set.C ,2 paste(‘‘C’’, conc.C)

We select the types of sensors by means of exploratory graphics

available in the chemosensors package. We will also shorten the list of

candidate types to six: 1, 2, 3, 13, 14 and 17, as they seem to be

good candidates according to the characteristics of sorption

affinity, as presented above. To evaluate these types of sensors in

response to analytes A and C in different concentrations, we will

create a virtual array composed of six sensors under drift-free

conditions and apply the plotBox method, as shown in the code

given below.

sa ,2 SensorArray(num=c(1:3, 13:14, 17),

dsd=0)

plotBox(sa, set=rep(set.A, 10), feature=‘‘-

step’’,

sensors=1:6, sensor.names=‘‘long’’, gcol=-

TRUE, scales=‘‘free_y’’)

Figure 6 shows the box plots for the six types of sensors in

response to four concentrations of analyte A. The same graphics

for analyte C and its set of labels set.C is presented on Figure 7. All

the sensors show a non-linear response to analytes A and C, as was

expected due to the selection of the concentration ranges. In

Figure 7. Boxplots for array of six sensors of types 1, 2, 3, 13, 14 and 17 show the distribution of sensor signals in response to
analyte C at concentrations 0.1, 0.4, 1 and 2 vol.%. The concentration values were selected to cover the dynamic range of analyte C and to
include the value in the saturation region. All the sensors show a non-linear response to analyte C at the selected concentration range. The plot is
produced by the plotBoxplot method applied to the sensor array under drift-free conditions.
doi:10.1371/journal.pone.0088839.g007
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particular, the response to the lowest concentration is quite distinct

from the others, whereas the responses to the two largest

concentrations are quite close. One can also observe that the

three sensors of types 13, 14 and 17 are very noisy in response to

analyte A, this corresponds to sensor noise, as the drift noise has

been suppressed in the sa array.

Since there is not an obvious choice of sensor type, we will try

three different arrays composed of 24 sensor elements, as shown

the following code.

sa1,2 SensorArray(num=c(1:3), nsensors=24)

sa2,2 SensorArray(num=c(13:14, 17), nsen-

sors=24)

sa3,2 SensorArray(num=c(1:3, 13:14, 17),

nsensors=24)

In the first step, we simulate the data and store them in the df

data frame, as shown in the following example of code given for

the sa1 array and a set of gas labels set.A. We encode the Scenario

object to make 100 repetitions of each gas label in both training

and validation (test) set, this will allow us to have enough data to

build a prediction model with validation by the 10-fold cross-

validation procedure (10 repetitions).

sc ,2 Scenario(T=set.A, nT=100, V=set.A,

nV=100, randomize=TRUE)

cf ,2 sdata.frame(sc)

conc ,2 getConc(sc)

sdata ,2 predict(sa1, conc, cores=2)

df ,2 sdata.frame(sa1, cf=cf, sdata=sdata)

In the second step, we train two regression models for each

combination of sensor array and scenario. We will try one linear

method based on Partial Least Squares (PLS) and another non-

linear method based on Support Vector Regressor (SVR) with

Gaussian radial basis function [13]. The following code shows the

training of the two models fit1 and fit2, corresponding to the PLS

and the SVR methods, respectively. The computation is given for

the scenario for analyte A and the previously generated data stored

df data frame.

Xt ,2 subset(df, set= =‘‘T’’, select=sna-

mes(sa))

Xv ,2 subset(df, set= =‘‘V’’, select=sna-

mes(sa))

Yt ,2 subset(df, set= =‘‘T’’, select=‘‘A’’,

drop=TRUE)

Yv ,2 subset(df, set= =‘‘V’’, select=‘‘A’’,

drop=TRUE)

library(caret)

fit1,2 train(Xt, Yt, method=‘‘pls’’,

tuneLength=24, preProc=c(‘‘center’’,

‘‘scale’’),

trControl=trainControl(method=‘‘cv’’, num-

ber=10, repeats= 10,

selectionFunction=‘‘tolerance’’))

fit2,2 train(Xt, Yt, method=‘‘svmRadial’’,

tuneLength=10, preProc=c(‘‘center’’,

‘‘scale’’),

Table 5. Performance on prediction of concentration of gas A under drift-free conditions.

Array Types of sensors Method Parameters RMSEP (train) RMSEP (test)

1 1, 2, 3 pls ncomp 9 0.0094 0.0208

1 1, 2, 3 svmRadial C 2, sigma 10.7 0.0029 0.0039

2 13, 14, 17 pls ncomp 2 0.0135 0.0133

2 13, 14, 17 svmRadial C 2, sigma 91.2 0.0028 0.0105

3 1, 2, 3, 13, 14, 17 pls ncomp 8 0.0086 0.0290

3 1, 2, 3, 13, 14, 17 svmRadial C 2, sigma 20.1 0.0028 0.0045

Two methods, linear PLS and non-linear SVR, were tested on the regression task of analyte A given at concentration 0.01, 0.02, 0.05 and 0.1 vol.%. Three arrays
composed of 24 sensors, different in the types of sensor, were compared in terms of the root-mean-square error in prediction (RMSEP). For each array, the non-linear
models outperform the linear models. The first array and the SVR method yield the best performance.
doi:10.1371/journal.pone.0088839.t005

Table 6. Performance on prediction of concentration of gas C under drift-free conditions.

Array Types of sensors Method Parameters RMSEP (train) RMSEP (test)

1 1, 2, 3 pls ncomp 2 0.3373 0.3384

1 1, 2, 3 svmRadial C 0.5, sigma 237.7 0.0589 0.0837

2 13, 14, 17 pls ncomp 7 0.2573 1.1317

2 13, 14, 17 svmRadial C 0.5, sigma 74.9 0.0593 0.0790

3 1, 2, 3, 13, 14, 17 pls ncomp 10 0.2365 2.8198

3 1, 2, 3, 13, 14, 17 svmRadial C 0.5, sigma 114.5 0.0593 0.0877

Two methods, linear PLS and non-linear SVR, were tested on the regression task of analyte C given at concentration 0.1, 0.4, 1 and 2 vol.%. Three arrays composed of 24
sensors, different in the types of sensor, were compared in terms of the root-mean-square error in prediction (RMSEP). For each array, the non-linear models outperform
the linear models. All three arrays show similar performance with the SVR method, and it is hard to pick the best array.
doi:10.1371/journal.pone.0088839.t006
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trControl=trainControl(method=‘‘cv’’, num-

ber=10, repeats= 10,

selectionFunction=‘‘tolerance’’))

To train both models, we pre-processed the sensor signals by

performing centring and scaling operations and applied the 10-

fold cross-validation procedure repeated 10 times. We also used

the tolerance rule from the caret package to select the most

appropriate model in the model tuning. This rule allows us to

avoid overfitting of a regression model and suggests picking the

simplest model which is within some percentage tolerance of the

best model. The root-mean-square error in prediction (RMSEP)

was used to evaluate the performance of the models and score

them (the default error measure for regression analysis in the train

function of the caret package). The fit1 model based on the PLS

method has a single parameter ncomp which stands for the

number of latent variables used in the regression. Tuning of the

model was set to explore all the possible values for the ncomp

parameter from 1 to 24. The fit2 model based on the SVR method

has two parameters, the C parameter associated with the cost

function and the parameter sigma of the kernel. By default, the

train function of the caret package allows the estimation of the

value of sigma from the data passed for training the model. Thus,

tuning of the model was configured to explore 10 possible values of

C parameter from 0.5 to 128, while the value of sigma parameter

was pre-calculated and fixed in the procedure of model tuning.

Figure 8. Heatmap of a self-organizing map (SOM) of size 767 showing the response to 12 different gases composed of analytes A
and C. The map was constructed for the array of 1 K sensors based on the affinity coefficients computed per three analytes A, B and C for each
sensor, as proposed in [23]. The response of sensor array for each gas was projected onto the map, and the colour on the heatmaps encode the
magnitude of the signals in the SOM cells computed by averaging the signals from sensors assigned to the given cell. The activity of the SOM
increases as the concentration of analytes increases (direction from left to right). The distribution of the SOM activity in response to different gases
show that the right part of the map contain sensors with more affinity to analyte A, while the left part has sensor with more affinity to analyte C.
doi:10.1371/journal.pone.0088839.g008
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For prediction of concentrations for new data, one applies the

predict method to the model, as shown in the code below for the

fit1 model and sensor signals stored for validation in Xv variable.

Yp,2 predict(fit1, Xv)

The first results obtained for the initial experimental set up

described above were confusing in terms of comparison among the

arrays and the methods, and the error in both training and

prediction was rather high and even comparable with the

minimum concentration value of the analytes. The reason for

experimental failure was explained by the substantial amount of

drift-related noise observed in the sensor signals. Poor perfor-

mance of the predictive models was attributable to the absence of

any drift compensation procedure, this is a compulsory step in the

most of the data processing methods in machine olfaction [4].

Hence, we repeated the step of data generation for all three sensor

arrays sa1, sa2 and sa3 by setting the level of drift noise to zero.

This strategy is reasonable, as the application of signal processing

methods for drift compensation is outside the scope of this study,

whose objective is the comparison of different arrays and

regression methods on the quantification task for analyte

concentrations.

Tables 5 and 6 summarize the results obtained from the drift-

free experimental set up for analytes A and C, respectively. Three

arrays sa1, sa2 and sa3 are numbered by indexes 1, 2 and 3, as

given in the first column. All the arrays are composed of 24 sensors

and differ in the types of sensors, which are listed in the second

column. The regression method and the best set of parameters for

it (as derived after the model tuning) are given in the next two

columns. The last two columns report the RMSEP for the training

and test sets.

The comparison between PLS and SVR methods in terms of

RMSEP values clearly shows that the non-linear models outper-

form the linear models for each of the arrays. The difference is

more noticeable for analyte C than for analyte A. That seems

reasonable, as Figures 6 and 7 show that sensor signals in response

to analyte C exhibit more a non-linear structure than in response

to analyte A (at the given concentrations of the analytes). The best

performance (in terms of RMSEP for the test set) for the task of

quantification of analyte A is exhibited by the sa1 array and the

SVR model. The sa2 array, composed of sensors from different

types than sa1, shows a significantly higher error in prediction; this

is assumed to be related to a higher level of the sensor noise in

response to analyte A, as was depicted on Figure 6. The

performances (in terms of RMSEP for the test set) of the three

arrays, for the task of quantification of analyte C, are very similar

for the SVR model, and it is difficult to select a preferred

configuration of array for this task.

Example of a Large-scale Simulation
In this Section, we show an application of the chemosensors

package in performing biologically-inspired data processing of

sensor array data. In particular, we will be interested in the

modelling of chemotopic convergence of receptor neurons

occurring in the early olfactory pathway. We will implement a

simple neuromorphic model based on the Self-Organizing Map

(SOM) technique and will repeat the experiment conducted in

[23] by using data produced from a virtual sensor array.

Since neuromorphic models require a large number of sensors

in the array and a sufficient level of diversity across the sensors, we

will create an array constructed of 1 K elements parametrized

with all 17 sensor types and a beta parameter of diversity set to 5

(the default value of beta is 2).

sa ,2 SensorArray(num=1:17, nsensors=1000,

beta=5)

Then we compute the matrix of affinity characteristics aff for

each sensor and for each analyte by the method given in [23].

Further, the aff matrix will be used to evaluate the SOM of size

10610 by means of the kohonen package, as given in the code

below.

aff ,2 computeAffinity(sa, method=‘‘in-

verse’’, norm=‘‘norm’’)

library(kohonen)

map,2 som(scale(aff),

grid=somgrid(xdim=10, ydim=10, topo=‘‘r-

ectangular’’), rlen=500)

In the next step, we use three types of gas labels: pure analyte A

at concentration of 0.01, 0.02, 0.05 and 0.1 vol.%, pure analyte C

at concentration of 0.1, 0.05, 1 and 2 vol.%, and four binary

mixtures of analytes A and C. We will suppress all the noise

models by means of the nsd method and will run the simulation of

sensor signals on a machine with 8 cores to get results in a

reasonable amount of time.

set.A ,2 paste(‘‘A’’, c(0.01, 0.02, 0.05, 0.1))

set.C ,2 paste(‘‘C’’, c(0.1, 0.4, 1, 2))

set.AC ,2 paste(set.A, set.C, sep=‘‘, ’’)

set ,2 c(set.A, set.C, set.AC)

sc ,2 Scenario(set)

conc ,2 getConc(sc)

nsd(sa) ,2 0

sdata ,2 predict(sa, conc, cores=8)

df ,2 sdata.frame(sa, conc=conc, sdata=s-

data, feature=‘‘step’’)

The generated sensor array data are stored in the df data frame

with 12 rows, this corresponds to 12 gas labels stored in the set

variable. Further, we project signals from 1 K sensors onto the 100

cells of the SOM. Figure 8 show the heatmaps of the SOM, where

the colours encode the magnitude of the sensor signals in the SOM

cells computed by averaging the signals assigned to the given cell.

We observe an increasing activity of the map, as expressed in the

change from yellow to red, as the concentration of analytes

increases in the gas (direction from left to right). Another

observation is related to the distribution of sensors or sensor types

across the map. The right part of the map is more active in

response to analyte A, and the left part of the map shows more

activity in response to analyte C. The heatmaps presented in the

lowest raw of the figure correspond to the measurements of the

binary mixtures, and the SOM maps show activity of both left and

right parts of the map.

Conclusions

The chemosensors package is a new R package for data simulation

targeted at generating gas sensor array data for signal and data

processing in machine olfaction applications. The package

contains a set of simulation models organized as S4 classes, which

are unified in the main class SensorArray. This class allows the

creation of a virtual sensor array, serves as a data generation tool,

and offers a large list of configuration parameters. The class

Scenario makes it easier to define scenarios and then generate data

together with the virtual array. In summary, the chemosensors

package provides a compact and extensively configurable work-
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flow for data generation, supports parallelization of large-scale

computations and offers many graphical facilities to explore sensor

array data. In future, the proposed computational framework for

the simulation of sensor arrays can be extended to new reference

data sets of different types of sensors and/or of different

combinations of analytes, that, in turn, will allow addressing new

challenges in machine olfaction, for instance, simulation of the

sensor response for high-dimensional multicomponent chemical

input.
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