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Abstract

Microbial communities are important to human health. Bacterial vaginosis (BV) is a disease associated with the vagina
microbiome. While the causes of BV are unknown, the microbial community in the vagina appears to play a role. We use
three different machine-learning techniques to classify microbial communities into BV categories. These three techniques
include genetic programming (GP), random forests (RF), and logistic regression (LR). We evaluate the classification accuracy
of each of these techniques on two different datasets. We then deconstruct the classification models to identify important
features of the microbial community. We found that the classification models produced by the machine learning techniques
obtained accuracies above 90% for Nugent score BV and above 80% for Amsel criteria BV. While the classification models
identify largely different sets of important features, the shared features often agree with past research.
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Introduction

Microbial Communities and Disease
Microbial communities play critical roles in human health and

disease. For example, gut microbial communities have been linked

to obesity [1,2], lung communities to pulmonary infections [3],

and vaginal communities to bacterial vaginosis [4–6]. The

complexity of these communities, however, makes determining

specific causes of disease difficult.

In many natural environments, next-generation 16S rRNA

sequencing unveils hundreds to thousands of microbe types.

Everything from the physiology to the ecological roles of most of

these microbes remains unknown. These microbes are difficult to

study, both due to their large numbers and our inability to culture

many of them in the lab [7]. The composition of these

communities may fluctuate widely with environmental factors or

as a result of microbial interactions.

Vaginal Microbiome and Bacterial Vaginosis
The vagina microbiome is complex, with microbial composition

varying between women and over time. This variation may be

caused by immune factors, environmental variables, or dynamic

microbial interactions. In some women the microbial community

includes hundreds of microbe types, while in other women, the

microbial community is dominated by a single species, often in the

Lactobacillus genus [8–10]. Across women, the communities appear

to cluster into distinct community types.

Bacterial vaginosis (BV) is a common condition, affecting up

to 29% of all women [11]. BV is associated with increased risk

for some STDs and preterm birth. Researchers have defined

BV in two common ways. In clinical settings, Amsel criteria are

often used. Amsel criteria include the presence of discharge, a

positive whiff test, the presence of clue cells, and a pH greater

than 4.5. Amsel criteria BV is defined by the presence of at

least three of these criteria [12]. Nugent score is a second way

to define BV. The Nugent score relies primarily on counting

gram-positive cells with morphologies similar to some Lactoba-

cillus sp. (large rods) [13]. Nugent scores range from 0 to 10,

with BV defined as a score greater than or equal to 7. The two

definitions for BV lead to some interesting results. Using Nugent

score BV definitions, up to 30% of all BV diagnoses are

‘‘asymptomatic’’, meaning that the woman in question has no

symptoms though her microbiome elicits a high Nugent score,

perhaps because her ‘‘normal’’ microbiome happens to contain

more species with large rods than most other women. The

significance of this phenomenon is uncertain.

It is difficult to identify a single cause of BV, even though the

microbial community and BV are correlated. The number of

microbe types found within the vagina microbiome is very large

and the number of possible interactions between these microbes

is even larger. In addition, noise in the data may obscure

relationships between the microbial community and BV.

Different bacterial consortia may also provide very similar

functionality.

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e87830



Machine Learning and Models
These difficulties are analogous to a problem faced by genetic

epistasis researchers, where there are so many possible genetic

interactions that may be linked to disease that it is difficult to

determine the few that really matter. In this study, we applied

three machine learning algorithms that have successfully discov-

ered genetic interactions associated with disease to uncover

possible microbial interactions associated with BV. In particular,

we build models of BV diagnosis in the form of classifiers that were

discovered with genetic programming (GP) [14,15], random

forests (RF) [16,17], and logistic regression (LR) [17].

Genetic programming uses computational analogs of evolution-

ary processes to search for highly fit models. In our case, these

models are decision trees where the leaves are features that may be

relevant to diagnosing BV, and where internal nodes are functions

that operate on data passed on from their dependent nodes. GP

transforms a population of candidate models by combining

substructures from multiple ‘‘parent’’ models, modifying individual

models randomly, and retaining only those models that are better

at classifying BV from our input datasets for the next iteration.

When the algorithm is stopped, the best model in the final

population tends to be a very good predictor of BV. To determine

which microbial populations or patient behaviors were most

closely associated with BV, we analyzed which features were in the

best GP classifiers and how they were used.

GP is very flexible and allows nearly unlimited model

complexity. However, it searches for models stochastically and

does not exhaustively search all possible models. In addition, the

models produced by GP can be very large, and are often difficult

to interpret. Also, computation costs tend to be high.

Random forests is an ensemble technique that builds a

population of tree classifiers, where the final classification of a

given set of features is its most frequent classification by the team

members. RF is computationally efficient but may not be as

flexible as GP. It is easier to extract important model features from

RF models than from GP models, but not as easy as with logistic

regression.

Logistic regression fits a linear model to the data, producing a

linear combination of features and regression coefficients whose

value for a given set of microbial communities and patient

behaviors (in our case) quantifies the likelihood that the patient

had BV. There are many ways to build the LR model. We use a

maximum likelihood method implemented in the R package glmnet

[18], in which the final model was parameterized in such as way as

to maximize the probability that this set of features was associated

with BV. Features were selected for inclusion in the model by

glmnet using the lasso [19]. It was then straightforward to determine

which features were most useful in BV diagnosis: the magnitudes

of the regression coefficients indicate the weight given to the

corresponding feature.

LR is computationally very efficient. And the fitted model is

easy to interpret. However, the structure of the final model is

dependent on how terms are added to the regression equation, and

LR may not be appropriate for non-linear phenomena. LR models

are the easiest to interpret of the three in this study.

BV Diagnosis as a Classification Problem
In this paper we apply these machine learning methods to

classifying microbial communities into BV+ and BV2 categories.

We show that the methods accurately classify women by BV status

based on their vagina microbiome and associated environmental

factors. Additionally, we identify the parts of the microbial

community that seem to play important roles in determining BV

status.

We are interested in two aspects of the classification models,

classification accuracy and feature usage. The accuracy of the

models is a measure of how well they partition samples into

diseased and non-diseased categories. We measure accuracy as the

percentage of correctly classified samples. Different machine

learning algorithms have different ways of selecting and weighting

features, so our analysis of feature usage was algorithm specific.

Results

Before generating classification models, we first collapsed many

of the microbes into groups based on correlations. We did this to

both reduce the number of factors and to increase the

interpretability of the classification models. The groups of

correlated microbes are shown in Figure 1. We used two different

datasets to train and evaluate the models, one from Srinivasan

et al. [9] and one from Ravel et al. [8]. The two datasets produced

different correlated microbe groups. There is some similarity in the

groups, for example CG1 in the Srinivasan et al. dataset shares

many microbes with CG4 in the Ravel et al. dataset.

After obtaining classification models using GP, LR, and RF, we

evaluated the accuracy of the models with receiver operator curves

(ROCs). ROCs show the performance of the model at classifying

both BV+ and BV2 samples. This allows us to simultaneously

compare the type 1 and type 2 errors for each model. Figure 2

shows the ROCs for each of the analyses. A perfect model would

have a curve that forms a right angle in the upper left of the ROC.

More accurate models have a true positive rate closer to 1 and a

false positive rate closer to 0.

As can be seen in Figure 2, both LR and RF tend to outperform

GP. However, the accuracy of all the machine-learning techniques

was remarkably similar. RF and LR models obtained accuracies

consistently between 90% and 95% when classifying on Nugent

score BV. GP models often classified samples with similar

accuracies, but high variation between GP models reduced the

average GP accuracy. The models perform slightly worse when

classifying on Amsel criteria BV. However, all three techniques

obtained accuracies above 80%.

After determining the accuracy of the models, we deconstructed

the models to determine which features were most useful. We

ranked the features by their apparent importance to each model.

The top fifteen features for each classification technique are shown

in Table 1. There is little overlap between the important factors

used by the classification models. For the Srinivasan et al. dataset,

when classifying by Amsel criteria BV, the Nugent score is the only

important feature shared by all classification techniques. Four

other features are shared between GP and either RF or LR. The

results are similar when classifying by Nugent score BV. For the

Srinivasan et al. dataset, CG2 and the whiff test results are

identified by all three techniques. For the Ravel et al. dataset, all

techniques identify CG4.

The different classification techniques varied widely in compu-

tational time. LR and RF were relatively quick, usually completing

in less than an hour on a single laptop. GP, on the other hand,

took several hours longer.

Discussion

This study demonstrates the feasibility of using classification

models to identify important microbial community features related

to BV. However, the results of this study also show many

complications that must be taken into account when designing

future studies.

First, we can look at the results of the classification techniques

within a single dataset. Classifier accuracy is similar between the
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three techniques. The accuracy obtained by each classification

method is high, often exceeding 80% regardless of the dataset or

classification technique. The strength of the classification accuracy

indicates the presence of some signal of BV in the dataset. A better

than random classification accuracy indicates the presence of some

feature in the dataset that is associated with BV.

The GP results show wider variation between models when the

classification phenotype is Nugent score BV. This variation is not

seen when classifying based on Amsel criteria BV. While the cause

of this variation is unclear, there are a number of possible

explanations. GP can theoretically explore a much larger set of

possible models than RF and LR. This wider exploration, in

combination with a large stochastic component, may increase the

variation in the GP model accuracy. Additionally, the specific GP

implementation we use may not efficiently avoid local optima.

Further optimization of GP methods may increase overall

accuracy and decrease its variation between models.

The high accuracy of the classification techniques indicates the

presence of some association between some dataset features and

BV. The top fifteen important features for each technique are

shown in Table 1. These results are interesting for many reasons.

The few features that overlap differ between the three analyses. In

the Srinivasan et al. dataset, when classifying on Amsel criteria BV,

Nugent score is the only important feature shared by all

classification techniques. When classifying on Nugent score BV,

the whiff test and CG2 were important to all three techniques.

Similarly, the Ravel et al. dataset resulted in CG4 and pH selected

by all three techniques. These factors have often been identified by

Figure 1. The correlated microbe groups. This figure shows the correlated microbe groups. We converted the sparCC correlations between
microbial taxa to distances by subtracting the absolute value of the correlation from one. We then clustered the taxa and defined correlated groups
using a dynamic tree-pruning algorithm (from the R library dynamicTreeCut). Microbial taxa not falling into these groups are not shown.
doi:10.1371/journal.pone.0087830.g001

Classifying Microbial Communities by BV

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e87830



previous studies as correlates with BV [4,5]. BV defined by Nugent

score overlaps with BV defined by Amsel criteria. This may

explain the apparent importance of Nugent score when classifying

by Amsel criteria BV. Similarly, the presence of Amsel criteria

such as vaginal discharge and odor, clue cells, and pH when

classifying by Nugent score BV likely reflects the overlap between

Amsel criteria BV and Nugent score BV. Ravel et al. identified a

group of microbes that overlaps substantially with CG4, which all

three techniques identified as important. This group includes

Megasphaera, Eggerthella, Sneathia, Prevotella, and Dialister, among

others.

While the important features identified by all classification

techniques seem to agree with previous research, there are many

features that are shared by only two techniques, or are unique to a

single technique. In fact, the majority of the first fifteen important

features are unique to a single classification technique. This lack of

overlap has many possible explanations. Using the first fifteen most

important features identified by each technique is an arbitrary

choice. Our analysis doesn’t determine how each feature affects

the overall classification accuracy. Additionally, the use of one

feature may change the relative importance of the remaining

features. This may amplify small differences in the classification

techniques, resulting in very different sets of important features.

Our analysis highlights an important aspect of using classifica-

tion models to detect parts of the microbial community that are

associated with BV. The features included in the analysis are likely

important to the outcome. This can be seen in the important

features identified by the techniques. Amsel criteria are found to

be important when classifying by Nugent score BV and Nugent

score is identified as important when classifying by Amsel criteria

Figure 2. A comparison of the classification accuracies for each machine learning technique. This figures shows the accuracy of different
classifiers at classifying microbial communities into BV categories. The red and blue lines show the accuracy of random forest and logistic regression
classifiers respectively. The black dots are different genetic programming models. Panel A shows the results using the Srinivasan et al. dataset and
Amsel BV. Panel B uses the Srinivasan et al. dataset and Nugent score BV. Panel C uses the Ravel et al. dataset and Nugent score BV.
doi:10.1371/journal.pone.0087830.g002
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BV. These findings may be unsurprising, as both the Amsel

criteria and Nugent score attempt to diagnose BV. It may be more

informative to remove these features from the dataset before

applying the classification techniques.

While each technique obtained similar classification accuracy,

technical characteristics of the techniques differentiate them in

important ways. A key consideration for these techniques is the

easy extraction of important features. This is a difficult problem for

large and complex GP models. The approach we take in this study

is to determine how varying the value of each feature indepen-

dently affects the overall model accuracy. Additionally, we count

the number of replicate GP models that include the feature. We

combined these two measures to produce an overall importance

measure for each feature. However, it is unknown whether this is

optimal. We may be missing important parts of the GP models.

This problem is somewhat alleviated for RF and LR models.

Extensions to this study may include using machine learning

techniques designed for easy identification of important features.

Computational time may also be important to some researchers.

The RF and LR analyses were relatively quick, completing in less

than an hour on a single computer. The GP analysis, however,

took several hours longer.

While we applied these classification techniques to two different

datasets, these results are not comparable for a variety of reasons.

Similar considerations will often apply to comparisons of

techniques for classification-based diagnostics using multiple

datasets. First, the types of samples collected in the two studies

differed. The Srinivasan et al. study included women with and

without a BV diagnosis. The Ravel et al. study included only

asymptomatic participants. While both studies use Roche’s 454

FLX sequencing platform, they amplify different regions of the

16S rRNA sequence. Srinivasan et al. use the V3–V4 region while

Ravel et al. use the V1–V2 region. Additionally, the studies use

different methods for classifying reads into taxonomic groups (the

RDP classifier [20] in the Ravel et al. study and pplacer [21] in the

Srinivasan et al. study).

In our study, we analyzed the results for each study individually,

using the same read identification used in the original study. This

allowed us to compare our results with the previous ones.

However, this approach has the consequence of making it difficult

to compare the results for the two datasets. This difficulty is shown

clearly in the identification of different correlated groups. The

correlated groups often include different microbial taxa. An

additional difficulty is the comparison of a species level identifi-

cation in the Srinivasan et al. study with genus level identification

in the Ravel et al. study.

In spite of these dataset differences, a few patterns in the results

may motivate future work. The ROC plots in Figure 2 show

accuracies for the Nugent score BV classifiers that are remarkably

similar between datasets. It seems possible that this similarity

reflects a consistent property of the dataset. Application of these

classification techniques on different microbial community phe-

notypes (such as obesity or pH) may determine if these patterns are

significant.

In this study we have shown that GP, RF, and LR generate

models that classify samples by Amsel criteria BV with accuracies

above 80%. These same techniques classify samples by Nugent

score BV with accuracies above 90%. This study demonstrates the

feasibility of using classification models to identify populations in a

microbial community that are associated with BV. Determining

the effect size of the important features may extend these results.

Additionally, applying these techniques to different datasets and

classifying on a variety of microbial community characteristics will

determine how well these methods work for samples that may be

very different from the vagina microbiome.

Materials and Methods

Dataset Details
We use two different datasets drawn from studies published by

Ravel et al. in 2011 [8] and Srinivasan et al. in 2012 [9]. The

Ravel et al. study sampled the microbiome of 396 asymptomatic

women. The study amplified and sequenced the V1–V2 variable

regions of the 16S rRNA gene using Roche’s 454 FLX sequencer.

Reads were classified at the genus level using the RDP classifier

[20]. The reads identified as Lactobacillus were further classified

to the species level using a hidden Markov model based algorithm.

The study identified a total of 282 microbial taxa across all

samples. Out of 396 samples, 97 were BV+ using a Nugent score

definition.

The Srinivasan et al. study sampled the microbiome of 220

women, 97 of whom were BV+ using Amsel criteria BV. Similarly,

using Nugent score BV, 117 women were BV+. The study

amplified and sequenced the V3–V4 variable regions of the 16S

rRNA gene using Roche’s 454 FLX sequencer. Reads were

classified at the species or genus level using pplacer [21]. The study

identified a total of 155 unique microbial taxa.

Classifier Details
We implemented a GP classifier in C++. Table 2 shows many of

the parameters used by the genetic program. We used tournament

selection with the worst model in the tournament group replaced

by the child of the best. The GP created the child by either

mutating the best model or crossing over the best model with the

second best model in the tournament group. Due to high

variability in the results of GP, we repeated the analysis ten times.

The model with the highest training fitness was then selected for

evaluation with the testing dataset.

The fitness of each model was calculated using two steps. The

first step calculated a cutoff value for the classifier results. To

calculate this value the classifier results were averaged for BV+ and

BV2 training cases separately. The cutoff value is the average of

these two numbers. Values from the model that fell on or above

this cutoff were considered BV+ classifications and values below

this cutoff were considered BV2 classifications. In order to

generate the ROC plots shown in Figure 2, the fitness value of the

BV+ training cases was multiplied by a constant that varied

between 0 and 20. This constant allowed us to vary the value of

classifying BV+ vs. BV2 samples. In the second step, the total

number of incorrectly classified samples was added to the size of

the classification model multiplied by a small constant. This

constant penalized larger models. The fitness was then minimized

over the course of the program.

In order to identify features important to the GP models, we

varied the values for each feature individually in every sample. We

then determined whether varying the feature value changed the

classification of the sample. This resulted in two summary values

for each feature; the number of GP models in which varying the

feature resulted in a different classification for at least one sample,

and the number of samples in each model which changed

classification due to changing the value of the feature. We rescaled

these summary values to between 0 and 1 and added them

together in order to obtain a single value describing the

importance of each feature.

In order to implement the random forest classifiers we used the

R package randomForest [22]. We used the randomForest function

with default parameters to generate the classification model. To
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determine feature importance, we ranked the features by the

increase in node purity. This is a measure of how much each

feature increases the separation of the samples into BV+ and BV2

categories for each classification tree. The increase in node purity

was then averaged over all trees in the forest to obtain the total

importance of each feature to the classification model.

To build a logistic model with linear regression, we used a

maximum likelihood method implemented in the R package glmnet

[18]. We ran the analysis using default parameters with a binomial

response type. To determine feature importance, we ranked the

features by the magnitude of the mean coefficient across the cross

validation replicates divided by the standard deviation.

Microbial Correlation Reduction
In order to reduce the number of parameters and to increase the

interpretability of our results, we collapsed highly correlated

microbes into groups. We calculated pairwise correlations on

microbial relative abundances using sparCC [23]. We converted

the correlations into dissimilarities by subtracting the magnitude of

the correlation from one. We then used average hierarchical

clustering and a dynamic tree-cutting algorithm to break the

microbes into correlation groups. To do this we used the function

cutreeDynamic from the R package dynamicTreeCut [24] with a 0.9 cut

height and a three taxa minimum group size. This cut height was

chosen to account for nearly all of the correlation present between

microbes (Figure S1). Further analysis of the correlated groups is

shown in Figure S2, which shows the mean cluster silhouette

widths for varying cut heights. Uncorrelated microbes were left as

individuals. A single feature in the dataset represented each

correlated microbe group.

Cross-validation and Accuracy Determination
In order to avoid model over-fitting, we used ten-fold cross

validation [25]. Cross validation detects over fitting and indicates

how well the model is expected to perform with new data. We

randomly broke the data into ten different parts. We used nine of

these parts to train the model and the remaining part to test the

performance of the model. We repeated this nine other times,

using each of the ten parts as the testing data. We then averaged

the accuracy of the model in classifying the testing samples over

each of the 10 datasets to obtain a measure for the accuracy of

each machine-learning technique.

Supporting Information

Figure S1 The complete clustering dendrogram for correlated

microbes. This figure shows the complete dendrogram resulting

from average hierarchal clustering of microbial correlations. The

vertical red line shows the 0.9 cutoff used to define correlated

microbe groups. As can be seen, this cutoff accounts for most of

the correlation between microbes.

(EPS)

Figure S2 The average silhouette width of correlated microbe

groups. This figure shows the mean silhouette width for correlated

microbe groups at varying cutoff levels. We converted the sparCC

correlations between microbial taxa to distances by subtracting the

absolute value of the correlation from one. We then clustered the

taxa using average hierarchal clustering. For each cutoff level, we

defined correlated groups using the cutreeDynamic tree-pruning

algorithm.

(EPS)
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