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Abstract

This paper presents new simple approaches for evaluating determinant and inverse of a matrix. The choice of pivot
selection has been kept arbitrary thus they reduce the error while solving an ill conditioned system. Computation of
determinant of a matrix has been made more efficient by saving unnecessary data storage and also by reducing the order of
the matrix at each iteration, while dictionary notation [1] has been incorporated for computing the matrix inverse thereby
saving unnecessary calculations. These algorithms are highly class room oriented, easy to use and implemented by students.
By taking the advantage of flexibility in pivot selection, one may easily avoid development of the fractions by most. Unlike
the matrix inversion method [2] and [3], the presented algorithms obviate the use of permutations and inverse
permutations.
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Introduction

The term determinant is originally associated with the system of

linear equations. It provides us with a foresight about the nature of

solution of a given system of linear equations.

Maclaurin [4] published the first result on determinant of 2|2
and 3|3 system, which was generalized for n|n systems by

Cramer [5]. Later, the well known Laplace expansion for

evaluating determinant was proposed by Laplace, but he had

then used the term ‘resultant’ instead of determinant. The first use

of the term determinant in the modern context was done by

Cauchy [6]. In 1866, Dodgson presented another method for

finding the determinant of n|n systems which he named as the

‘‘Method of condensation’’ [7]. For larger systems the most

preferred method for evaluating the determinant up till now is the

Gaussian method [8]. It deals with the problem by converting the

coefficient matrix into its equivalent upper/lower triangular form.

The product of the pivot elements gives the determinant.

The existence of matrix inverse also depends on its determinant.

The method of finding the inverse by Gaussian method is

discussed later in this paper. Ahmed & Khan [2], and Khan, Shah,

& Ahmad [3] proposed algorithms for the calculation of inverse of

a matrix which are streamlined forms of the Gaussian method and

also require permutation and inverse permutations. In this paper,

we have presented two new algorithms related to the evaluation of

determinant and inverse of a matrix. The first presented algorithm

evaluates the determinant and is more efficient than Gaussian

method as it reduces the order of the matrix at each iteration

thereby saving unnecessary computations. In the second algo-

rithm, we have presented another easy to mange way to calculate

the inverse of the matrix by constructing the dictionary of the

given system and thus excluding the need of permutations and

inverse permutations.

Determinant of A Matrix: A Brief Review

Determinant of a square matrix A, denoted by det(A), is basically

a real valued function. Because of its useful relationship with the

matrix A and the solution to the system of equations of the form

Ax = b, it becomes essential to have a knowledge about determi-

nants while studying matrices. Evaluation of a determinant

through its cofactor expansion (also known as Laplace expansion)

is famous for lower order n|n matrices.

Consider A~

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. ..

. ..
.

an1 an2 � � � ann

2
66664

3
77775

Let Mij be the minor of entry aij ,(i[f1,2, � � � ,ng,j[f1,2, � � � ,ng)
which is the determinant of the sub-matrix obtained after deleting

the ith row and jth column of A.

If jth column of A is opted for cofactor expansion then,

det (A)~ a1jC1jza2jC2jz � � �zanjCnj

where, Cij is the cofactor of entry aij such that Cij~({1)izjMij .
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Similarly the cofactor expansion along the ith row would be

det (A)~ai1Ci1zai2Ci2z � � �zainCin

For a matrix of order n, the evaluation of determinant by the

above cofactor expansion requires computing n determinants of

matrices of order (n21). Therefore it can be implemented for

finding determinant of a matrix of order 2 or 3 with ease but for

higher orders it becomes a tedious job. To reduce the computa-

tional effort usually the following three basic row operations of

matrices are incorporated to evaluate the determinant [9], the

method is known as evaluation of determinant by row reduction

(also known as Gaussian method).

Elementary row operations
Let A be an n|n matrix, the following elementary row

operations can be applied

a) Multiply a row by a non-zero constant.

b) Interchange two rows.

c) Add a multiple of one row to another row.

Effect of row operations on the value of determinant: [9]
Let A be an n|n matrix then

a) If B is the matrix that results when a single row or single

column of A is multiplied by a scalar k, then det(B) = k det(A).

b) If B is the matrix that results when a two rows or two columns

of A are interchanged then det(B) = 2det(A).

c) If B is the matrix that results when a multiple of one row of A
is added to another row or when a multiple of one column is

added to another column, then det(B) = det(A).

Lemma: [9]
If A is an n|n triangular matrix (upper triangular, lower

triangular or diagonal), then det(A) is the product of the entries on

the main diagonal of the matrix; that is, det (A)~a11a22 . . . ann.

Evaluation of determinant by row reduction
The essence of the method is to transform the given matrix into

its upper/lower triangular form by applying elementary row

operations. The determinant can then be computed by incorpo-

rating the properties defined above in ‘Effect of row operations’

and the lemma.

Example.

Consider the matrix A~

0 1 5

3 {6 9

2 6 1

2
64

3
75

det (A)~det

0 1 5

3 {6 9

2 6 1

2
64

3
75

~{ det

2 6 1

3 {6 9

0 1 5

2
64

3
75 property bð Þ

~{2 det

1 3
1

2
3 {6 9

0 1 5

2
664

3
775 property að Þ

~{2 det

1 3
1

2

0 {15
15

2
0 1 5

2
66664

3
77775

property cð Þ

~({2)({15) det

1 3
1

2

0 1 {
1

2
0 1 5

2
66664

3
77775

property að Þ

~({2)({15) det

1 3
1

2

0 1 {
1

2

0 1
11

2

2
6666664

3
7777775

property cð Þ

~ {2ð Þ {15ð Þ 11=2ð Þ lemma 3

~165

The New Method

Approach of row reduction may involve all the elementary row

operations, as illustrated in above example. Here we are defining

an operation (say pivot operation for evaluation of determinant)

which consists of (n21) applications of row operation (c) only, and

can be employed to evaluate the determinants avoiding involve-

ment of row operations (a) and (b).

For example consider the following matrix,

a11 � � � a1j � � � a1n

..

. ..
. ..

.

ai1 � � � aij ain

..

. ..
. ..

.

an1 � � � anj � � � ann

2
666666664

3
777777775

Determinant and Inverse of a Matrix
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Selecting a non-zero pivot element located at any arbitrary

location (i, j), say aij , and performing row operation (c) to make the

remaining elements of the jth column zero we get

a11{
ai1

aij

|a1j � � � a1j{
aij

aij

|a1j � � � a1n{
ain

aij

|a1j

..

. ..
. ..

.

ai1 � � � aij � � � ain

..

. ..
. ..

.

an1{
ai1

aij

|anj � � � anj{
aij

aij

|anj � � � ann{
ain

aij

|anj

2
666666666664

3
777777777775

a11{
ai1

aij

|a1j � � � 0 � � � a1n{
ain

aij

|a1j

..

. ..
. ..

.

ai1 � � � aij � � � ain

..

. ..
. ..

.

an1{
ai1

aij

|anj � � � 0 � � � ann{
ain

aij

|anj

2
666666666664

3
777777777775

Here we can see that the pivot row remains unchanged while

the (p,k)th element of the matrix, a
0

pk~apk{
apj

aij

|aik, where apj

and aik are the elements corresponding to the pivot element in the

pivot column and pivot row respectively.

Cofactor expansion along the jth column will give

det (A)~aijCij~({1)izjaijMij

det (A)~({1)izjaij det

a11{
ai1

aij

|a1j � � � a1n{
ain

aij

|a1j

..

.
P

..

.

an1{
ai1

aij

|anj � � � ann{
ain

aij

|anj

2
666664

3
777775

The above procedure results in a computation of determinant of

a matrix with reduced order of (n21). A repetition of the above

procedure will eventually give a 2|2 determinant. For a n|n
matrix there must be n non-zero pivot elements. The product of

respective pivot elements gives the value of the determinant.

However, if at any step there is no non-zero pivot exists, we can

deduce that the determinant of the given matrix is 0.

Problem 1
Find determinant of the matrix A = ½aij � of order n.

Algorithm 1
Step 1: Set d: = 1,

Step 2: set P: = {1,2,3,……,n}

Step 3: Select any p[P such that L: = {k: apk=0, k[P}.

Step 4: If L = Q then d = 0 and go to step 7

Otherwise m : ~apk p[P, k[L, and

aij : ~aij{
aik|apj

m
Vi[P{fpg and j[P{fkg

Step 5: Reduce the order of A by removing pth row and kth

column of A. Also set n: = n21

Step 6: d : ~({1)pzk|m|d . If n=0 go to step 2.

Step 7: det(A) = d. Exit.

Example

Consider the matrix

2 5 3 2

4 10 1 7

1 5 2 2

2 1 2 1

2
6664

3
7775

Iteration 1:
P: = {1,2,3,4}, here we take p = 1 so, L: = {1,2,3,4}. Taking k = 1

A : ~

0 {5 3
5

2

1

2
1

{4 {1 {1

2
664

3
775

d : ~({1)1z1|2~2

Iteration 2:
P: = {1,2,3}, here we take p = 1 so, L: = {2,3}. Taking k = 2

A : ~

5

2

13

10

{4
{8

5

2
664

3
775

d : ~({1)1z2|({5)|2~10

Iteration 3:
P: = {1,2}, here we take p = 1 so, L: = {1,2}. Taking k = 1

A : ~½12

25
�

d : ~({1)1z1|(
5

2
)|10~25

Iteration 4:
P: = {1}, here we take p = 1 so, L: = {1}. Taking k = 1

d : ~({1)1z1|(
12

25
)|25~12

Hence determinant of given matrix is 12.

Comparison with row reduction method
The above example illustrates the efficiency of the algorithm in

terms of memory storage and the number of elements computed.

If a matrix of order 4 is solved by row reduction method the

Determinant and Inverse of a Matrix
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number of elements computed will be 12, 6 and 2 in first, second

and third iterations respectively. However we have computed 9, 4

and 1 elements in the respective iterations. So the total number of

element computations needed for row reduction method is 20, but

our method needs only 14 element computations. Also, at each

iteration the size of the matrix has been reduced. Row reduction

method needs to store 16 elements for each iteration, hence on the

whole method requires 48 elements to be stored in the memory,

while in contrast our algorithm stores 16+9+4+1 = 30 elements,

which is a noteworthy reduction in terms of storage requirement.

A comparison of the number of elements computed and stored

to evaluate the determinant of different orders by row reduction

and our algorithm are shown in table 1.

Inverse of A Matrix: A Brief Review

Consider a matrix A~½aij � of order n. To evaluate the inverse of

the matrix, say B, one must solve the following n system of

equations, for x1,x2, . . . ,xn

a11x1 a12x2 � � � a1nxn ~ y1

a21x1 a22x2 � � � a2nxn ~ 0

..

. ..
. ..

. ..
. ..

.

an1x1 an2x2 � � � annxn ~ 0

system 1ð Þ

a11x1 a12x2 � � � a1nxn ~ 0

a21x1 a22x2 � � � a2nxn ~ y2

..

. ..
. ..

. ..
. ..

.

an1x1 an2x2 � � � annxn ~ 0

system 2ð Þ

..

.

..

.

a11x1 a12x2 � � � a1nxn ~ 0

a21x1 a22x2 � � � a2nxn ~ 0

..

. ..
. ..

. ..
. ..

.

an1x1 an2x2 � � � annxn ~ yn

system nð Þ

The solutions of the above system are

From system (1) : x1~b11y1,x2~b21y2, � � � ,xn~bn1yn

From system (2) : x1~b12y1,x2~b22y2, � � � ,xn~bn2yn

..

.

From system (n) :x1~b1ny1,x2~b2ny2, � � � ,xn~bnnyn

Then the matrix B~

b11 b12 � � � b1n

b21 b22 � � � b2n

..

. ..
. ..

. ..
.

bn1 bn2 � � � bnn

2
6664

3
7775 is called the

inverse of matrix A.

This procedure could be compactly preformed by expressing

the above system in the augmented form,

Ax~Iy ð1Þ

where x~ x1 x2 � � � xn½ �T y~ y1 y2 � � � yn½ �T and I is

identity matrix of order n.

If A is invertible, applying successive elementary row operations

of Gaussian method yields,

Ix~A{1y:

The New Approach Based on Dictionary Notation

Now consider again the Equation (1) in expanded form,

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. ..

. ..
.

an1 an2 � � � ann

2
66664

3
77775

x1

x2

..

.

xn

2
66664

3
77775
~

1 0 � � � 0

0 1 � � � 0

..

. ..
. ..

. ..
.

0 0 � � � 1

2
66664

3
77775

y1

y2

..

.

yn

2
66664

3
77775

Usually the following augmented matrix is used to solve above

system,

x1 x2 � � � xn y1 y2 � � � yn

a11 a12 � � � a1n 1 0 � � � 0

a21 a22 � � � a2n 0 1 � � � 0

..

. ..
. ..

. ..
. ..

. ..
.

an1 an2 � � � ann 0 0 � � � 1

2
6666664

3
7777775

Table 1. Comparison of row reduction method with algorithm 1 for evaluating determinant of matrix.

Order Row reduction method Algorithm 1

No. of Element Computations
Storage Requirements (no. of
elements) No. of Element Computations

Storage Requirements (no. of
elements)

2 2 8 1 5

4 20 48 14 30

5 40 125 30 55

7 112 343 94 140

10 330 1000 285 385

12 572 1728 506 650

doi:10.1371/journal.pone.0087219.t001

Determinant and Inverse of a Matrix
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Here, we are using the concept of dictionary notation developed

by [1]. Now basic variables are the variables whose coefficients are

in the form of any column of identity matrix, and a basis is

collection of all basic variables. We can see that basis for the above

matrix B~fy1,y2, � � � ,yng and we may consider

N~fx1,x2, � � � ,xng as the non-basis of the current matrix. The

objective is to convert the basic variables into non-basic variables

and vice versa by using pivot operations. Using the dictionary

concept defined by [1] we can remove the basic columns from the

matrix and construct the following dictionary form with basis B

and non-basis N: (Note basic variables are shown in left most

column and non basic variables in the top row of the dictionary).

x1 x2 � � � xn

y1

y2

..

.

yn

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. ..

.

an1 an2 � � � ann

2
66664

3
77775

Pivot operation for evaluating inverse
The following pivot operations [1] may be applied to enter xi

into basis B and yj into non-basis N,

i) Divide the pivot row by pivot element and the pivot column

by negative of the pivot element (except the pivot element).

ii) The remaining (n21)2 elements are determined by the

formula as defined in the new method of determinant.

iii) Reciprocate the pivot element.

If the number of pivot elements is equal to the order of the

matrix the resulting matrix gives the inverse otherwise we may

conclude that the inverse does not exist.

Problem 2
Find the inverse of matrix A = ½aij � of order n|n.

Algorithm 2
Step 1: Set H: = {1,2,3,……,n}, B: = fyhg and N: = fxhg,

Vh[H. Construct dictionary of the matrix A, i.e. D(A).

Step 2: Set P: = {p:yp[B}

Step 3: If P = Q, go to step 6.

Otherwise, L: = {k: apk=0, xk[N}

Step 4: If L = Q then inverse does not exist. Exit

Otherwise, for any p[P,k[L

mi : ~{
aik

apk

Vi[H{fpg

aij : ~aijzapj|mi Vi[H{fpg,Vj[H{fkg

apj : ~
apj

apk

Vj[H{fkg

aik : ~mi Vi[H{fpg

apk : ~
1

apk

Step 5: B : ~Bzfxkg{fypg and N : ~N{fxkgzfypg.
Update D(A) and go to step 2.

Step 6: Inv(A) = ½aij ,Vi,j[H : xi[B,yj[N� Exit.

Example

Consider A~

2 5 3 2

5 10 1 7

3 5 2 2

2 1 2 1

2
6664

3
7775

x1 x2 x3 x4

D Að Þ~

y1

y2

y3

y4

2 5 3 2

5 10 1 7

3 5 2 2

2 1 2 1

2
666664

3
777775

Here N: = {x1,x2,x3,x4}, B: = {y1,y2,y3,y4}

Iteration 1:

H: = {1,2,3,4}, P: = {1,2,3,4}, taking p = 1 we get L: = {1,2,3,4}.

Taking k = 1

y1 x2 x3 x4

D Að Þ~

x1

y2

y3

y4

1

2

5

2

3

2
1

{2 0 {5 3

{
1

2

5

2

1

2
1

{1 {4 {1 {1

2
66666664

3
77777775

N: = {y1,x2,x3,x4}, B: = {x1,y2,y3,y4}

Iteration 2:

P: = {2,3,4}, taking p = 2 we get L: = {3,4}. Taking k = 3

y1 x2 y2 x4

D Að Þ~

x1

x3

y3

y4

{
1

10

5

2

3

10

19

10

2

5
0 {

1

5
{

3

5

{
7

10

5

2

1

10

13

10

{
3

5
{4 {

1

5
{

8

5

2
666666666664

3
777777777775

N: = {y1,x2,y2,x4}, B: = {x1,x3,y3,y4}

Iteration 3:

P: = {3,4}, taking p = 3 we get L: = {2,4}. Taking k = 2

Determinant and Inverse of a Matrix
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y1 y3 y2 x4

D Að Þ~

x1

x3

x2

y4

3

5
{1

1

5

3

5

2

5
0 {

1

5
{

3

5

{
7

25

2

5

1

25

13

25

{
43

25

8

5
{

1

25

12

25

2
666666666664

3
777777777775

N: = {y1,y3,y2,x4}, B: = {x1,x3,x2,y4}

Iteration 4:

P: = {4}, taking p = 4 we get L: = {4}. Taking k = 4

y1 y3 y2 y4

D Að Þ~

x1

x3

x2

x4

11

4
{3

1

4
{

5

4

{
7

4
2 {

1

4

5

4

19

12
{

4

3

1

12

13

12

{
43

12

10

3
{

1

12

25

12

2
666666666664

3
777777777775

N: = {y1,y3,y2,y4}, B: = {x1,x3,x2,x4}

Now place the elements with respect to indices of variables in B

and N.

For example Here H: = {1,2,3,4}, So x1[B and y1[N, implies

a11~
11

4
. Also x1[B and y3[N implies a13~{3. Similarly placing

the remaining elements we get

y1 y2 y3 y4

D Að Þ~

x1

x2

x3

x4

11

4

1

4
{3 {

5

4

19

12

1

12
{

4

3
{

13

12

{
7

4
{

1

4
2

5

4

{
43

12
{

1

12

10

3

25

12

2
666666666664

3
777777777775

Comparison with Gaussian method
The above example illustrates the efficiency of the algorithm in

terms of memory storage and the number of elements computed.

If a matrix of order 4 is solved by Gaussian method the number of

elements computed will be 20 at each iteration. However our

method requires computation of 16 elements at each iteration. So

the total number of element computations needed for Gaussian

method is 80, on the other hand for our method it is 64. Also the

Gaussian method needs to store 32 elements for each iteration,

hence on the whole Gaussian method requires 128 elements to be

stored in the memory, while in contrast our algorithm stores 64

elements, which is a noteworthy reduction in terms of storage

requirement.

A comparison of the number of elements computed and stored

to evaluate the inverse by Gaussian method and our algorithm are

shown in table 2.

Applications

Matrix determinant and inverse have applications in various

fields like mathematics, economics, physics, biology etc. Solving

different models like population growth involve the use of matrix

determinant and inverse. Matrix inverse and determinant are also

used in cryptography [10]. Linear transformations (rotation,

reflection, translation etc.) involve the calculation of matrix

inverse. Matrix inverse and determinant are also employed in

operations research while solving linear programs, revised simplex

method and markov chains. Determinants of order 3 are used to

find area of triangles and for testing colinearity of points. Least

square analysis of data requires the evaluation of matrix inverse

[11]. p-dimensional volume of parallelepiped in <m is determined

by computing determinant [12].

Conclusion

This paper presented easy algorithms for computations of

determinant and inverse of a matrix. Since the order of the given

matrix has been reduced at each step while calculating its

determinant, the algorithm reduces the storage requirement (as

exhibited in the example). The calculation of inverse has been

done using the dictionary notation which obviates the use of

permutations and makes it easier to cope with in class room

teaching. Ill conditioned system can also be handled as the

selection of pivots has been kept arbitrary, thus improving the

numerical accuracy of the system.

Table 2. Comparison of Gaussian method with the algorithm 2 for evaluating inverse of matrix.

Order Gaussian Method Algorithm 2

No. of Element Computations
Storage Requirements (no. of
elements) No. of Element Computations

Storage Requirements (no. of
elements)

2 12 8 8 4

4 80 32 64 16

5 150 50 125 25

7 392 98 343 49

10 1100 200 1000 100

12 1872 288 1728 144

doi:10.1371/journal.pone.0087219.t002
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