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Abstract

Phenotypic performance in different environments is central to understanding the evolutionary and ecological processes
that drive adaptive divergence and, ultimately, speciation. Because habitat structure can affect an animal’s foraging
behaviour, anti-predator defences, and communication behaviour, it can influence both natural and sexual selection
pressures. These selective pressures, in turn, act upon morphological traits to maximize an animal’s performance. For
performance traits involved in both social and ecological activities, such as bite force, natural and sexual selection often
interact in complex ways, providing an opportunity to understand the adaptive significance of morphological variation with
respect to habitat. Dwarf chameleons within the Bradypodion melanocephalum-Bradypodion thamnobates species complex
have multiple phenotypic forms, each with a specific head morphology that could reflect its use of either open- or closed-
canopy habitats. To determine whether these morphological differences represent adaptations to their habitats, we tested
for differences in both absolute and relative bite performance. Only absolute differences were found between forms, with
the closed-canopy forms biting harder than their open-canopy counterparts. In contrast, sexual dimorphism was found for
both absolute and relative bite force, but the relative differences were limited to the closed-canopy forms. These results
indicate that both natural and sexual selection are acting within both habitat types, but to varying degrees. Sexual selection
seems to be the predominant force within the closed-canopy habitats, which are more protected from aerial predators,
enabling chameleons to invest more in ornamentation for communication. In contrast, natural selection is likely to be the
predominant force in the open-canopy habitats, inhibiting the development of conspicuous secondary sexual
characteristics and, ultimately, enforcing their overall diminutive body size and constraining performance.
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Introduction

Evolutionary and ecological processes that drive adaptive

divergence and, ultimately, speciation can be influenced by

phenotypic performance in different environments. As new

environmental niches become available for populations to exploit,

morphological and physiological adaptations arise, often resulting

in enhanced performance in the novel habitat [1]. Evidence for

these adaptations can be found in the improved performance of

animals in their new environment [1]. For example, habitat

structure or complexity is known to influence a range of lizard

behaviours, including communication and anti-predator defences.

Densely vegetated, structurally complex habitats may afford

lizards greater cover from avian predators. If indeed predation

pressure is released in dense vegetation, chameleons may invest

more in conspicuous features, such as ornamentation and bright

colouration, for increased detectability to conspecifics. However,

in less vegetated habitats, where visibility to predators is high,

rather than being visible chameleons may need to be cryptic to

avoid detection (e.g., [2,3]). Because the head is involved in many

ecologically and socially relevant activities, such as feeding, mating

and aggressive interactions, its morphology and association to bite

performance and habitat have been widely investigated to better

understand the adaptive significance and the underlying processes

shaping phenotypic variation within and between species (e.g., [4–

15]). Many of these studies have shown that bite force is influenced

by both natural and sexual selection, yet the relative contribution

of these selective pressures remains difficult to unravel as they

often interact in complex ways. Moreover, sexual and natural

selection can act in opposite ways, with sexual selection favouring

conspicuous coloration or ornamentation for effective communi-

cation and conflict avoidance, and natural selection favouring
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cryptic coloration and reduced ornamentation to avoid injury

from predation, as well as high bite forces in the context of

intraspecific encounters [16,17]. This results in a trade-off between

the two selective pressures, with the relative strength of natural and

sexual selection on particular head traits being partly dependent

on the environment (e.g., [18–20]). This complex interaction often

results in interspecific variation; however, it can also lead to

intraspecific variation in the form of varying degrees of sexual

dimorphism (e.g., [21–24]), both of which have been shown to

contribute significantly to adaptive radiations [1,24].

Chameleons have radiated into multiple habitats, including

forests, grasslands, heathlands, savannah, and desert; and their

colonisation of these different niches corresponds with the

emergence of these biomes on the landscape [25]. Indeed,

chameleon morphology may be under rapid directional selection

in instances where novel habitats are colonised [26–28], and this

process may be well illustrated by a radiation of dwarf chameleons

(Bradypodion) from KwaZulu-Natal (KZN) Province, South Africa.

The species complex is comprised of five phenotypic forms, two of

which are described species (Bradypodion melanocephalum, Bradypodion

thamnobates) and the remaining three (Types A, B and C)

designated as morphotypes [29–33] (Fig. 1). These forms have

been defined based on their morphology, particularly in terms of

ecologically relevant morphological traits [33]. All forms are

allopatric in distribution, but mitochondrial markers show they

lack the divergence expected at the species level, which reflects the

recent nature of the radiation [27,28]. This lack of genetic

differentiation has led some to deduce that the complex is

comprised of phenotypically plastic forms of a single species.

However, this hypothesis is unlikely, given that common garden

experiments showed that B. melanocephalum and B. thamnobates

juveniles developed the phenotype of their parent populations,

regardless of the habitat in which they were raised [34]. At present,

it is likely that no gene flow takes place between forms given that

the habitats in which they occur are fragmented and isolated.

There are also ecological differences between their macro- and

micro-habitats, with B. melanocephalum and Type A occupying more

open-canopy habitats (e.g., grasslands), which contain densely

clustered, vertically-oriented vegetation for chameleons to perch

upon; while B. thamnobates and Types B and C occupy closed-

canopy habitats (e.g., forests, transformed landscapes) that contain

broader perching substrates arranged both vertically and hori-

zontally [33]. These ecological differences were found to correlate

to functional differences in forefoot grip strength, suggesting that

the forms are adapted morphologically to their different environ-

ments [35]. However, variation in head size and shape was found

to be the most important component in differentiating between

phenotypic forms in this radiation, accounting for approximately

half of the total variation in both sexes [33]. Moreover, the degree

of sexual dimorphism varied between forms, with little to no

dimorphism in head size and shape detected among open-canopy

habitat chameleons, yet extensive dimorphism among the closed-

canopy B. thamnobates [33]. As such, it is expected that considerable

sexual and interspecific (interform) variation will be uncovered in

bite performance, lending further support for the designation of

this radiation as adaptive.

Like most lizards, dwarf chameleons use their heads in

intraspecific communication signalling to rivals that confrontations

can be harmful, and displaying to females to assess their

willingness to mate [29,30,36–40]. Considering that different

structural habitats can select for different types of communication

behaviour [2,3,41,42], the effectiveness of a particular head design

may depend upon the environment. Given that closed-canopy

habitats can constrain the effectiveness of aerial predators, sexual

selection may be the predominant force within these habitats,

enabling chameleons, especially males, to invest more in

ornamentation, such as the casque, for communication; while, in

the open-canopy habitats, natural selection may outweigh sexual

selection to increase crypsis [22,36,43]. This likely explains why

chameleons with large heads and ornaments (B. thamnobates and

Types B and C) occupy closed-canopy habitats, while those with

proportionally smaller heads and ornaments (B. melanocephalum and

Type A) typically occupy more open-canopy habitats [29,33]. If

differential degrees of natural and sexual selection are, in fact,

influencing chameleon head morphology between and within

these habitats, this should be reflected in their bite performance

and in the morphological features used to produce it. Accordingly,

if ornaments are honest signals, in closed-canopy habitats, bite

force should correlate best to ornamentation, especially in males.

The result would be high levels of sexual dimorphism, with males

generating a greater force to assist them during intrasexual

competitions. In contrast, in open-canopy habitats, bite force is

expected to correlate with non-ornamented, functional characters,

with the proportionally larger headed chameleons producing a

greater force, irrespective of sex. Regardless of the degree of

natural selection within each habitat, its influence between

habitats is expected to be strong enough to ensure that larger

headed chameleons possess a harder bite, which in this radiation

would be the closed-canopy forms.

To test these predictions and gain insight into the adaptive

nature of the chameleon head within this recent radiation, we use

a combination of morphometric and bite force data for multiple

phenotypic forms. Specifically, we investigate whether the heads of

the phenotypic forms and sexes are morphologically and

functionally differentiated with respect to habitat structure, and

which morphological variables are most closely associated with

bite force within each form. The latter allows for inferences to be

made regarding ornamental features and behaviour.

Materials and Methods

Ethics Statement
Ethics clearance was obtained from Stellenbosch University

(Clearance No. 2009B01007) and the South African National

Biodiversity Research (Clearance no. 0010/08), and permits for

scientific research and collections were obtained from Ezemvelo

KZN Wildlife (OP 3538/2009; OP 4351/2009; OP 4596/2010),

permitting the collection and handling of the lizards.

Study Sites and Sampling Procedure
A total of 155 dwarf chameleons (79 males; 76 females)

representing four of the five phenotypic forms of the B.

melanocephalum-B. thamnobates species complex were sampled from

six field sites within southern KZN (Fig. 2) between January and

February 2010. These animals are a subset of individuals sampled

for a previous ecomorphological study [33]. Although sampled,

Type C was not included due to insufficient sample sizes. Animals

were collected at night and geo-referenced at the exact location

each chameleon was found. They were placed in separate cloth

bags then brought back to the field base overnight, where they

were measured and their bite force tested the subsequent day.

Once all data were collected, animals were released at the exact

site of capture.

Morphometrics
For all chameleons, snout-vent length (SVL) and nine head

measurements (ornamented or non-ornamented) were measured

to the nearest 0.01 mm using digital callipers (Table 1, Fig. 3). The

Bite Force in Dwarf Chameleons

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e86846



Figure 1. Photographs of the five dwarf chameleon forms within the B. melanocephalum-B. thamnobates species complex from
southern KwaZulu-Natal Province, South Africa. Figure reprinted from [33].
doi:10.1371/journal.pone.0086846.g001
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non-ornamented measurements included lower jaw length (LJL),

head length (HL), head width (HW), head height (HH), the

distance from the coronoid process of the mandible to snout tip

(i.e. snout length, CT), and posterior surface of quadrate to snout

tip (QT); and the ornamented measurements include casque head

length (CHL), casque head height (CHH), and casque height

(CH). The mass of each chameleon was also measured using a

PesolaH micro-line spring scale (model 93010).

Bite Force
Chameleons were allowed to thermoregulate in a sun/shade

setting to obtain their preferred body temperature (between 28–

32uC [44]). In vivo bite force was then measured in Newtons (N) at

ambient temperature using an isometric force transducer (Kistler

type 9203, 6500 N) connected to a bite plate and a Kistler charge

amplifier (type 5995A, Kistler Inc., Winterthur, Switzerland) [3,4].

The bite plate was then placed between the jaws of the chameleon,

which typically resulted in the chameleon biting down on the plate

repeatedly. When necessary, chameleons were induced to bite by

gently tapping the sides of their jaws. Five independent measures

were recorded per chameleon and the highest value retained for

analysis.

Statistical Analyses
All analyses were carried out using SPSS version 17.0 [45]. All

data were log10 transformed prior to analysis to fulfill assumptions

of normality and homoscedascity. To separate differences in shape

and performance from differences in body size, all data were size-

corrected against log10SVL and the unstandardized residuals

saved for use in subsequent analyses. Although studies have shown

that the head can develop at a different rate than overall body size

(e.g., [46,47]), this was not found to be the case for these

chameleons. After applying the methods of Braña [46] and

McCoy and colleagues [48] across all phenotypic forms and sexes,

all morphometric variables were found to share a common growth

axis and follow similar trajectories, and SVL was recognized as

having the highest principle component loading validating its use

as a suitable covariate for all measurements.

Although a previous study showed significant differences in

head morphology between the four phenotypic forms and sexes in

this study [33], a multivariate analysis of covariance (MANCOVA)

using a general linear model (GLM), and a principle component

analysis (PCA) were conducted to verify those results on this

dataset. The full GLM model specified SEX and FORM as fixed

factors, SEX x FORM as the interaction, log10SVLas the

covariate, and all log10-tranformed head variables as the

Figure 2. Distributions of four of the five phenotypic forms of the B. melanocephalum-B. thamnobates species complex. Numbers
indicate field sites sampled in this study: 1, Durban; 2, Hilton; 3, Karkloof; 4, Howick; 5, Dargle; 6, Nottingham Road; 7, Kamberg Nature Reserve.
doi:10.1371/journal.pone.0086846.g002
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dependent variables. The unstandardized residuals for the nine

head variables were then entered into a PCA and the principle

component (PC) scores were saved so that the magnitude and

direction of the eigenvector describing the differences between

forms could be illustrated. Only PCs with eigenvalues larger than

one were extracted, and the varimax rotation was used to

minimize the number of variables with high loadings on each

factor. Variables with communality values less than 0.5 were

omitted from the analysis, as low values indicate those variables

are uninformative [49]. The saved PC scores were then entered as

the dependent variables in analyses if variance (ANOVAs), with

FORM as the fixed factor to assess more fine-scale differences in

head morphology between forms. Bonferroni post-hoc tests were

run to determine which forms differed for each principal

component. Next, additional ANOVAs were conducted on both

absolute (log10-transformed) and relative (size-corrected) bite force

to test for differences in performance between forms. All P-values

were subjected to Holm’s sequential Bonferroni correction.

Because the morphological variables found to be most relevant

to bite performance differ between species (e.g., [5,13,18,50]),

multiple regression models were carried out on size-corrected

variables to explore which ones best explained the variation in bite

force within each form. Akaike’s information criterion (AIC) was

calculated using the residual sum of squares from each model, and

the difference between the lowest AIC and all others (Di) was

determined. Akaike’s weights (wi) were then calculated for each

model, with the one exhibiting the highest wi acknowledged as the

best fitting model [51].

Results

Morphological and performance data were gathered from 155

dwarf chameleons within the B. melanocephalum-B. thamnobates

species complex (Table 1). A MANCOVA revealed differences

in head morphology between the four phenotypic forms (Wilks’

l= 0.363, F3,36 = 4.890, P,0.001) and sexes (Wilks’ l= 0.859,

F1,9 = 2.745, P = 0.005), with the PCA and subsequent ANOVA

indicating that B. melanocephalum had proportionally the smallest

Table 1. Summary of morphological and bite performance data for male (M) and female (F) dwarf chameleons used in this study,
grouped by phenotypic form.

B. melanocephalum Type A B. thamnobates Type B

M F M F M F M F

Morphology

N 25 16 19 23 20 25 15 12

SVL (mm) 49.14 57.47 48.23 45.34 60.00 66.42 68.97 77.49

(0.88) (0.95) (1.68) (1.37) (3.27) (3.32) (1.20) (1.98)

Non-ornamented

LJL (mm) 11.55 11.05 13.27 14.29 14.39 13.56 11.06 11.65

(0.84) (0.86) (3.15) (2.29) (3.19) (3.06) (2.27) (2.56)

HL (mm) 11.68 11.23 13.08 13.96 14.47 14.17 11.12 12.72

(0.72) (0.85) (2.41) (2.18) (2.56) (2.76) (1.89) (2.60)

HH (mm) 6.98 6.89 8.44 9.08 9.00 8.73 6.81 7.42

(0.67) (0.47) (2.24) (1.65) (1.96) (2.10) (1.41) (1.45)

HW (mm) 7.54 7.33 9.28 9.87 10.41 9.84 7.51 7.87

(0.48) (0.59) (2.59) (2.10) (2.50) (2.60) (1.19) (1.71)

CT (mm) 9.05 8.82 10.22 10.94 10.84 10.57 8.48 9.07

(0.67) (0.80) (2.29) (1.71) (2.32) (2.41) (1.44) (1.64)

QT (mm) 10.29 9.79 11.82 12.50 13.08 12.18 9.51 10.36

(0.68) (0.87) (3.00) (2.05) (2.93) (3.00) (1.86) (2.15)

Ornamented

CH (mm) 4.66 4.44 7.04 7.23 7.85 7.49 5.12 5.48

(0.84) (0.70) (2.86) (1.84) (2.42) (2.42) (1.41) (2.05)

CHL (mm) 16.75 16.18 19.90 21.46 22.28 21.25 15.75 17.44

(1.12) (1.20) (4.79) (3.90) (4.83) (5.12) (3.17) (3.94)

CHH (mm) 9.85 9.57 13.29 14.41 14.69 14.53 10.11 11.25

(1.29) (1.04) (4.68) (3.03) (4.09) (4.23) (2.45) (3.29)

Performance

N 23 15 19 20 20 25 13 12

Bite force (N) 10.37 13.88 11.77 9.05 23.57 24.74 30.4 34.25

(3.11) (4.11) (5.55) (5.23) (17.89) (16.35) (7.58) (13.04)

Standard deviation shown in brackets. LJL, lower jaw length; HL, head length; HH, head height; HW, head width; CT, coronoid process of mandible to snout tip; QT,
posterior surface of quadrate to snout tip; CH, casque height; CHL, casque head length; CHH, casque head height.
doi:10.1371/journal.pone.0086846.t001
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head in both sexes, B. thamnobates the biggest, and Types A and B

being intermediate in head size, confirming that this subset of data

shows the same pattern as the previous study [33].

Bite force was found to correlate positively with body size (SVL)

in all phenotypic forms and sexes (Fig. 4). A comparison of bite

performance between the sexes revealed different patterns in

absolute and relative forces (Table 2). Females tended to have a

stronger absolute bite force than males (Table 1), with the most

pronounced difference detected in B. melanocephalum (F = 8.283,

P = 0.006; see Fig. 5). However, once bite force was corrected for

body size, B. thamnobates and Type B males were found to bite

proportionally harder than females (B. thamnobates: F = 9.437,

P = 0.004; Type B: F = 10.770, P = 0.003; see Fig. 6). The open-

canopy habitat forms showed no sexual variation in bite

performance (B. melanocephalum: F = 2.660, P = 0.111; Type A:

F = 0.870, P = 0.357).

When examining bite force between forms, differences were

only found for absolute (Males: F3,78 = 19.431, P,0.0001;

Females: F3,75 = 13.716, P,0.0001) and not relative bite forces

(Males: F3,78 = 1.437, P = 0.229; Females: F3,75 = 1.575, P = 0.189).

Similar patterns were detected for both sexes, with the four

phenotypic forms fitting into one of two strength categories: weak

(B. melanocephalum, Type A) or strong (B. thamnobates and Type B)

(Fig. 5). In males, Type B further differentiated from B. thamnobates

by possessing a significantly stronger bite.

Model selection using linear regression to find the morpholog-

ical variables that best explain bite force found different

correlations between the four phenotypic forms and sexes

(Table 3). Bradypodion thamnobates was the sole form whose

performance could only be explained by a single model (Table

S1), and this model was the same for both sexes (HH+CT). For the

other forms, several candidate models displayed significant

correlations to bite performance (Table S1). Apart from B.

thamnobates, different parts of the casque were identified as

contributing to bite force in males; however, the contribution

was only significant for B. melanocephalum (CHL) and Type B (CH,

Figure 3. Nine head measurements recorded for each chameleon. Images on the left are based on a mCT-scan, courtesy of R. Boistel,
Université de Poitiers. CT, coronoid process of mandible to snout tip; QT, posterior surface of quadrate to snout tip; HW, head width.
doi:10.1371/journal.pone.0086846.g003
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CHH). In comparison, non-ornamented features (HH, HL, CT,

QT) explained bite force in females (Table 3).

Discussion

Head morphology and bite performance within the B.

melanocephalum-B. thamnobates species complex is influenced by

varying degrees of natural and sexual selection, and the intensity of

each appears to depend, at least partly, on the structure of the

habitat. For all forms, bite force was found to correlate to overall

body size, with the larger, closed-canopy forms possessing a

stronger bite, as predicted under natural selection. Moreover, the

degree of sexual dimorphism in head shape resulted in comparable

levels of dimorphism in bite performance, with closed-canopy

males biting proportionally harder than females, as predicted

under sexual selection, and no dimorphism in bite performance

within the open-canopy forms, possibly due to natural selection

curbing sexual dimorphism for increased crypsis.

The influence of selective forces on performance is typically

assessed through an examination of the proportional (size-

corrected) differences between groups because morphological

traits, and their associated performance, typically scale with an

organism’s overall body size. Consequently, differences in trait

values among individuals within populations, and between

populations and species, will often arise simply because individuals

or populations differ in body size. With this in mind, the lack of

proportional differences in bite force between phenotypic forms

might suggest that natural selection is weak or not acting upon this

performance measure, possibly indicating that their differential

head morphologies may be a consequence of some other factor,

such as founder effects. However, the absolute differences detected

between open and closed-canopy forms may be of significance

considering, for many animals, body size is highly heritable [52]

and has been shown to be influenced by habitat use (e.g., [53,54]).

Each form approaches different body sizes [33], so the detected

differences in absolute bite force are likely indicative of ecological

differences between them, such as differences in diet (e.g., [12,55])

or how they conduct their social interactions.

The snout length (CT) was the common variable found to

explain bite force amongst both sexes of B. thamnobates and Type B

– in absolute terms, the two strongest forms. The muscles

attaching to the coronoid (see [56] for details) aid in bite force

generation. Bite force has been associated with prey size and

hardness in lizards, with animals possessing greater bite forces

capable of consuming larger and/or harder prey (e.g., [12,20,57]).

If similar correlations exist here, then these results suggest that B.

thamnobates and Type B are likely to consume larger and/or harder

prey items than B. melanocephalum and Type A.

Absolute bite force might also reveal something about the social

system in place within each habitat. In closed-canopy habitats,

larger body sizes are advantageous because they provide an honest

signal of bite force, enabling chameleons to display their potential

Table 2. MANOVA results examining bite force differences between sexes within each of the four phenotypic forms.

B. melanocephalum B. thamnobates Type A Type B

F P F P F P F P

Absolute Bite Force* 8.283 0.006 0.059 0.809 3.498 0.069 0.852 0.365

Relative Bite Force{ 2.660 0.111 9.437 0.004 0.879 0.357 10.770 0.003

*Based on log10-transformed data.
{Based on residual data of log10Bite Force against log10SVL.
doi:10.1371/journal.pone.0086846.t002

Figure 4. Regression plots illustrating the correlation between SVL and bite force within the B. melanocephalum-B. thamnobates
species complex.
doi:10.1371/journal.pone.0086846.g004
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threat from farther distances through the use of their ornamen-

tation and, if necessary, engage in combat (see [37,58]).

Chameleons in the open-canopy habitat, however, have experi-

enced a reduction in their secondary sexual characteristics,

suggesting they might be better at communicating in close

proximity [5]. The casque of B. melanocephalum and Type A males

was found to contribute to bite performance; therefore, despite its

reduced size, it may be effective enough to ward off unwanted

encounters at close range.

Much like between forms, absolute differences in bite perfor-

mance were also detected between the sexes. The general trend

showed that females bite harder than males, because they are on

average, larger in body size. Even though this relationship was

only significant for B. melanocephalum, it is possibly present within

other forms, yet could not be detected due to the reduced power

(ß ,0.2) brought on by limited sample sizes. Accordingly, the

greater absolute bite forces of females may reduce niche overlap

[59] as has been suggested for other lizards [4,9,12,60]. For these

chameleons, the bite of females was dictated by non-ornamented

features, namely QT which, along with CT represents the out-

lever for jaw closing. Due to the high energy demands of

reproduction, females often need to consume more and/or

different prey items than males [61]. Considering that insect

abundance and diversity can vary in vertical (canopy versus

understory) and horizontal (between habitats) stratification [62–

70], and females within the B. melanocephalum-B. thamnobates species

complex have been found to perch lower and occupy more open-

canopy habitats than males for all forms [33], the observed

differences in bite performance between the sexes may allow for

differences in dietary exploitation. However, a thorough dietary

analysis needs to be undertaken to test this hypothesis.

The stronger bite of females may also provide them with an

advantage during female-male interactions. In female dwarf

chameleons, the need to mate after each litter is reduced because

they have relatively long gestation periods for their body size (,
three months) and are able to store sperm, which enables them to

Figure 5. Error plots depicting mean absolute bite force for the five phenotypic forms. Absolute force equates to log10-transformed bite
force. Solid circles represent males; empty circles, females.
doi:10.1371/journal.pone.0086846.g005
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have asynchronous reproduction [29,30,38]. Consequently, 40–

80% of females are gravid at a given time [38]. Moreover, female

dwarf chameleons do not change colour to illustrate their receptive

or gravid state [38]; therefore, the chances of males encountering a

receptive female are rare. Consequently, males use courtship

displays to assess a female’s willingness to mate, with females often

responding with aggressive rejection behaviours [29,30,37,38],

including biting [37]. As a result, males tend to court smaller

females, which are less able to dominate or inflict injury [37].

Considering that our study has shown that large females possess a

stronger bite than small females, the aggressive behaviour of

females is potentially an honest signal of their ability to ward off

unwanted encounters.

In addition to sexual dimorphism in absolute bite force, relative

differences were also detected with closed-canopy males biting

harder than females of the same size. A likely explanation is that

closed-canopy habitats allow for increased competition between

males for access to females, as was found with increased colour

change within these habitats [3], resulting in a greater investment

in the jaw muscle in males, which is also reflected in their

proportionally higher and longer heads. Indeed, snout length and

head height were found to best explain male bite performance,

possibly by increasing the available space for jaw adductor

muscles, resulting in a higher physiological cross-section and hence

bite force [4,50,71]. This is particularly relevant because

altercations between males can be aggressive and often involve

biting [29,36]. Within Type B males, the casque (CH, CHH) was

also found to contribute to bite performance, and is almost

certainly used as an honest visual signal, notifying other males of

the potential cost of fighting. Even though the casque did not

explain bite force in B. thamnobates, it still appears to be an honest

signal of bite performance, as larger bodied males possess larger

casques and have a correspondingly harder bite.

Within the open-canopy forms (B. melanocephalum and Type A),

little to no sexual dimorphism in head morphology was uncovered,

which resulted in a lack of dimorphism in bite performance. The

Figure 6. Error plots depicting mean relative bite force for the five phenotypic forms. Relative forces represent the residual values from
regressing log10Bite Force against log10SVL. Solid circles represent males; empty circles, females.
doi:10.1371/journal.pone.0086846.g006

Bite Force in Dwarf Chameleons

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e86846



comparable bite forces between the sexes suggests that within

more open-canopy habitats there is either reduced direct

competition between males for access to females or the need for

increased crypsis is so strong it outweighs intrasexual selection.

While there is no evidence to support the former, the trade-off

between crypsis and communication/signalling ability in dwarf

chameleons has been studied extensively [3,5,72,73]. For example,

the spectral properties of chameleon signals varies predictably with

habitat structure, with the display colours of open-canopy

chameleons having lower UV reflectance than that of closed-

canopy chameleons [73]. High UV reflectance has been found to

increase an animal’s detectability [74]; and, although, the low

reflectance of open-canopy chameleons decreases their detectabil-

ity to conspecifics, it is also thought to protect them from UV-

sensitive avian predators [3]. Accordingly, natural selection is

likely to be the predominant force in open-canopy habitats,

inhibiting the development of conspicuous secondary sexual

characteristics and, ultimately, enforcing their overall diminutive

body size and constraining performance. However, the casque was

found to contribute to bite force in the open-canopy habitat forms

(B. melanocephalum: CHL; Type A: CH) and likely acts as an honest

signal of performance, indicating that sexual selection might also

be influencing performance in these chameleons. In fact, both

selective forces are certainly operating simultaneously, but to

varying degrees in each habitat.

Similar habitat-specific sexual differences have helped explain

the ecomorphological diversity produced by the adaptive radia-

tions of West Indian Anolis lizards [21,24,59,75]. In general, anoles

in low-visibility microhabitats, such as the tree crown which has

dense branches and leaves, tend to have low dimorphism; whereas

those in high-visibility microhabitats, such as the tree trunk or

open ground, have high dimorphism [21,75]. This relationship is

similar to that found with the KZN dwarf chameleons given that

the microhabitats of the open-canopy forms were actually found to

have a higher density of perches and, hence, are more likely to

have low-visibility, and vice versa in the closed-canopy habitats

[33]. The overall extent of sexual variation in anoles can be so

great, in fact, that it can exceed interspecific variation [24].

Consequently, overlooking sexual dimorphism could underesti-

mate the adaptive component of an evolutionary radiation [24]. In

light of this, sexual dimorphism should be deemed yet another

ecomorphological trait used to assess divergence within a radiation

or species complex. Accordingly, this study, coupled with the

functional differences in forefoot grip strength already detected

between open and closed-canopy forms in this species complex

[35], proves that these five phenotypic forms have adapted

morphologically to their different environments.
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Table 3. Morphological models found to best reflect bite force within each phenotypic form and sex.

Males Females

Phenotypic Form Model ß R2 P Model ß R2 P

B. melanocephalum CHL 0.625 0.391 0.001 QT 20.587 0.345 0.017

B. thamnobates CT 1.335 0.334 0.031 CT 2.122 0.247 0.044

HH 21.421 HH 22.292

Type A CH 21.607 0.245 0.105 HH 2.045 0.362 0.033

LJL 1.627 HL 20.17

QT 21.737

Type B CH 0.758 0.735 0.031 CT 3.044 0.594 0.017

CHH 21.218 QT 23.049

HH 20.988

LJL 0.78

CT 0.572

Type C CH 20.219 0.048 0.634 CHH 0.901 0.812 0.001

All variables were size-corrected prior to analysis. ß, Beta coefficient; R2, coefficient of determination; P, significance value; CHL, casque head length, CHH, casque head
height; CH, casque height; HL, head length; HW, head width; HH, head height; LJL, lower jaw length; CT, coronoid process of mandible to snout tip; QT, posterior surface
of quadrate to snout tip.
doi:10.1371/journal.pone.0086846.t003
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