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Abstract

While metabolomics has tremendous potential for diagnostic biomarker and therapeutic target discovery, its utility may be
diminished by the variability that occurs due to environmental exposures including diet and the influences of the human
circadian rhythm. For successful translation of metabolomics findings into the clinical setting, it is necessary to exhaustively
define the sources of metabolome variation. To address these issues and to measure the variability of urinary and plasma
metabolomes throughout the day, we have undertaken a comprehensive inpatient study in which we have performed non-
targeted metabolomics analysis of blood and urine in 26 volunteers (13 healthy subjects with no known disease and 13
healthy subjects with autosomal dominant polycystic kidney disease not taking medication). These individuals were
evaluated in a clinical research facility on two separate occasions, over three days, while on a standardized, weight-based
diet. Subjects provided pre- and post-prandial blood and urine samples at the same time of day, and all samples were
analyzed by ‘‘fast lane’’ LC-MS-based global metabolomics. The largest source of variability in blood and urine metabolomes
was attributable to technical issues such as sample preparation and analysis, and less variability was due to biological
variables, meals, and time of day. Higher metabolome variability was observed after the morning as compared to the
evening meal, yet day-to-day variability was minimal and urine metabolome variability was greater than that of blood. Thus
we suggest that blood and urine are suitable biofluids for metabolomics studies, though nontargeted mass spectrometry
alone may not offer sufficient precision to reveal subtle changes in the metabolome. Additional targeted analyses may be
needed to support the data from nontargeted mass spectrometric analyses. In light of these findings, future metabolomics
studies should consider these sources of variability to allow for appropriate metabolomics testing and reliable clinical
translation of metabolomics data.
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Introduction

Of the growing number of omics techniques in current use in

basic and clinical science, metabolomics is most closely related to

organismal phenotype [1,2]. With this technique, all of the

metabolites produced endogenously (and sometimes exogenously)

in a living organism are analyzed in order to ascertain the internal

biochemical and metabolic processes taking place, such that

insights regarding normal physiology and pathophysiology can be

gleaned. To date, there have been many inroads using

metabolomics in medicine, such that the field is now poised to

discover clinically useful biomarkers and therapeutic targets in

nephrology, cancer, and other medical fields (reviewed in [2–4]).

However, despite these advances, a healthy dose of caution is

required with respect to clinical translation in light of some widely

publicized premature attempts (discussed in [5]). Given the

relatively recent and rapid proliferation of clinical human studies

on metabolomics, it is essential that due diligence be considered

with regard to the terms of limitations of data interpretation, such

that future studies, and their conclusions, as well as clinical

applications are robust, reproducible, reliable and informative. For

a single (or a suite of) metabolite biomarker(s) to be useful as a

diagnostic or prognostic screening tool, its variability as a function

of time of day, dietary exposure, exercise, medication use, smoke

exposure and other exogenous stimuli needs to be established and

quantified such that interpretation of the data is reliable and

accurate. For example, one would not like to perform a cancer
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biomarker study only to find that what is identified as a

metabolomics signal is a function of time after a meal or due to

a medication exposure, rather than as a result of the underlying

biology of the cancer of interest [6].

While there have been several human and animal studies

attempting to address these issues, there have been very few

evaluations of metabolome variability in human subjects under

tightly controlled conditions in clinical settings [7,8], and even

fewer studies have evaluated all relevant parameters concurrently

in both blood and urine [7]. While there have been attempts to

evaluate normal individual metabolomes [9,10] demonstrating the

presence of personal metabolomic phenotypes [11], there have

been no published studies analyzing the sources of variability

utilizing blood and urine in an inpatient environment in the setting

of a chronic stable disease. In addition, most of the available

studies on diet and metabolomics have focused on the effects of a

specific dietary intervention [12–14] rather than time-of-day or

day-to-day variability. Therefore the present study was undertaken

utilizing healthy volunteer subjects (half with a chronic stable

hereditary kidney disorder) who were admitted to an inpatient

clinical research center and given standardized meals with regard

to calorie and carbohydrate intake at a consistent time of day while

blood and urine samples were obtained under uniform conditions

at specific times. Following sample procurement, samples were

handled in standardized fashion for both urine and blood samples,

and metabolomics data were subjected to rigorous statistical

evaluation. An extensive analysis of the data was performed to

identify intrinsic sources of variability as well as the nature of the

mealtime and temporal changes that occur within these two

readily accessible biofluids. Incorporating these findings into future

blood and urine based metabolomics studies will lead to

considerably sounder study conclusions.

Materials and Methods

Ethics statement
The study was approved by the Institutional Review Boards

both at Emory University and at the University of California,

Davis. All participants gave written informed consent.

Subject enrollment
To qualify for the study, participants had to be without any

medical condition (with the exception of ADPKD in that cohort),

not be taking any prescription medications or over the counter

medications within two weeks of study; and for women, have

regular menstrual cycles or be post-menopausal. In addition, all

clinical laboratory analyses including measurement of hematopoi-

etic and kidney function were required to be within normal limits.

Thirteen healthy volunteers and 13 subjects diagnosed with

ADPKD according to the Pei et al criteria [15] (Table S1) were

recruited and admitted to the inpatient unit of the Clinical

Research Network (CRN) of the Atlanta Clinical and Transla-

tional Science Institute at Emory University Hospital. Subjects did

not take prescription or over the counter medications for a

minimum of 2 weeks prior to study with the exception of one

subject, who had taken St. John’s Wort, vitamin E and black

cohosh within one day of evaluation. All female subjects who were

menstruating were evaluated in the follicular phase of the

menstrual cycle to eliminate variability related to post-ovulatory

changes. All subjects were interviewed by the research dietician of

the CRN and weighed. Based on the subject food preferences and

allergies a standardized test meal was developed by the Bionutri-

tion unit of the Clinical Research Network (CRN) that provided

similar calories as a function of body weight with breakfast, lunch,

and dinner, each prepared in identical fashion for each day of

testing. The 24-hour calorie intake prescribed was 2,500 kcal/kg/

day and 1.1 g/kg/day protein intake. Subjects were admitted to

the CRN for two days of testing (Days 1 and 2) and on a separate

occasion for Day 3 of testing. During this time period, subjects

were fed the pre-prepared standardized meals and fluids at set

times of day. Subjects were asked to consume all foods on their

tray within a specified period of time. Following completion of the

meal, the research dietician retrieved the food trays and kept all

unfinished foods for analyses. Following the initial two-day study,

the subjects were admitted again for another half day of testing

(Day 3). All subjects were fed the same standardized meals as those

served on Day 1 and 2 at the same time of day, blood and urine

samples were drawn at the same time (see Study Design in Table 1)

and then handled similarly by the same person (S.H.), frozen at

280uC within 30 min. All sample collection tubes were from a

single batch and plasma was separated from whole blood before

freezing. Samples were shipped on dry ice to the analytical

laboratories for metabolomics analysis.

Non-targeted metabolomic analysis
For these studies, the chemical identification of only a subset of

metabolites was performed, since compound identity is not

required for evaluating pure metabolome variability. For logistical

reasons, the urine and blood analyses were performed in two

distinct state-of-the art laboratories; however, the experimental

design was identical for the entire course of the metabolomics

analyses.

Plasma sample preparation. Frozen plasma samples were

thawed at room temperature, and a 10-mL aliquot was removed

from each tube and transferred to a polypropylene microcen-

trifuge tube containing 90 mL of HPLC-grade methanol. These

mixtures were centrifuged at 10,0006g and 4uC for 10 minutes,

and 50 mL of each supernatant and 50 mL of Milli-Q water were

transferred to an amber autosampler vial containing a low volume

glass insert. The samples were organized based on a pre-

determined order of analysis, including a series of technical

replicates analyzed with each 54-vial tray of plasma extracts.

Plasma metabolite profiling. Plasma metabolites were

profiled using liquid chromatography/time-of-flight mass spec-

trometry (LC/TOF-MS) using a LCT Premier mass spectrometer

(Waters Corp., Milford, MA) that was coupled to three LC-20AD

pumps, column oven, and a SIL-5000 autosampler (Shimadzu,

Columbia, MD) equipped with a six-tray chilled autosampler stack

that was held at 10uC. Aliquots (10 mL) of each extract were

injected, and metabolites were separated using an Ascentis Express

C18 column (2.1650 mm; 2.7 mm particles; Sigma-Aldrich, St.

Louis, MO) and linear gradient elution based on solvents A

(0.15% aqueous formic acid), B (acetonitrile/methanol 1:1 v/v),

and C (acetone) as follows (A/B/C): 0–1.0 min (95/5/0), 1–3 min

(program to 40/60/0). 3–9 min (program to 0/100/0), hold until

11 min. At 11 min, the solvent was programmed to 100% C at

12 min to wash the column and this composition was held until

13.5 min, after which the solvent was returned to the initial

condition. Total flow rate was 0.40 mL/min, and the column was

held at 50uC. Mass spectra were acquired using electrospray

ionization (data were acquired in both positive and negative modes

separately), over m/z 50–1500. Quasi-simultaneous acquisition of

mass spectra was performed in four separate acquisition functions

using W-mode ion optics (mass resolution of 10,000), transit lens

voltage settings of 10, 30, 50, and 75 volts, and spectrum

acquisition time of 0.15 seconds per function. Only data acquired

under the first acquisition function were processed during this

study, but the higher energy functions yielded fragment ions useful
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for metabolite annotation [16], and this process was aided through

manual comparison of molecular and fragment masses with entries

in the Human Metabolome Database [17].

LC/TOF-MS data were processed using Waters MarkerLynx

software, which performs peak detection, integration, and

retention time alignment. Processed results were exported as

unscaled peak areas, organized by chromatographic retention time

and m/z (mass) value, into a Microsoft Excel spreadsheet.

Urine sample preparation. Urine sample aliquots kept at

280uC were thawed on ice and 150 mL of ice-cold methanol was

added to each sample [18]. The volumes of the urine samples were

normalized to osmolality. Samples were vortexed vigorously then

placed at 220uC for 1 hour in a pre-chilled tube rack. Samples

were then vortexed briefly and microcentrifuged for 10 minutes at

max speed. Supernatants were removed and transferred to a clean

microcentrifuge tube while leaving pellet undisrupted. Superna-

tant was microcentrifuged again at max speed and once again

transferred into a clean microcentrifuge tube. Samples were then

subjected to SpinVac to dryness with heating to 60uC or less for

approximately 3 hours. Samples were then resuspended in 50 mL

of water: acetonitrile (98:2) and centrifuged for 5 minutes in

microcentrifuge at max speed and transferred to plastic auto-

sampler tube and capped. Samples were stored at 4uC if used

within 1–2 days otherwise kept at 220uC.

Urine metabolite profiling. HPLC-MS analysis was per-

formed on an Agilent 1200 Series Autosampler coupled to an

Agilent 6530 Accurate Mass Q-TOF with an Agilent Jet Stream

electrospray ionization source. Analytes were separated on a

Phenomenex Kinetex 2.6 mm XB-C18 100A reverse phase

column using 0.1% formic acid in water (A) and 0.1% formic

acid in acetonitrile (B). The gradient was run at 0.35 ml/minute

and consisted of an isocratic separation for 0.5 minutes of 2% B,

and then B was increased at a linear rate to 70% at 13 minutes,

95% at 14 minutes, held at 95% until 15 minutes, then re-

equilibrated for 3 minutes with 2%B at 0.5 ml/min. The mass

spectrometer was set to measure ions over m/z 60–1000 in positive

ionization mode at a rate of 6 spectra per second. Automatic MS/

MS was enabled with a scan rate of 6 spectra per second and a

range of m/z 25–1000. MS/MS active exclusion was enabled and

collision energy was set to range from 20–70 eV. Agilent Mass

Hunter Qualitative Analysis was used to export raw peak areas

from the RP-HPLC-QToF using the ‘‘find by molecule’’ feature.

The data were then exported as a CEF file to Agilent Mass Profiler

Professional for peak alignment. Retention time window was set to

+/20.5 min and there was no minimum area cutoff. This aligned

peak list was then exported for recursive analysis using the ‘‘export

for recursion’’ function by Agilent Mass Profiler Professional.

Recursive analysis was then performed, which is a more targeted

approach to fill in the missing values, using the ‘‘find by formula’’

feature in Agilent Mass Hunter Qualitative analysis with known

retention times. The peaks were then re-exported to Agilent Mass

Profiler Professional and re-aligned. The filter by frequency

function was used and set to 60% of all samples. Raw data were

then exported to a CSV file and put into Microsoft Excel. A

compound database was made using MS/MS matches from

NIST, ReSpect, LipidBlast, Metlin AM, and manual search by

accurate mass and MS/MS features found in samples. Retention

times and formulas were recorded and put into the database. The

‘‘find by formula’’ feature in Agilent Mass Hunter Qualitative

Analysis was used with retention time matching +/20.3 minutes.

Compound peaks were then exported as CEF files to Mass Profiler

Professional and aligned. Raw data were then exported to

Microsoft Excel.

Statistical Analysis
Six plates were required to analyze all samples using the LC-MS

equipment for both urine and plasma; placement of samples on

each plate was randomly determined. To investigate batch effects

potentially resulting from the need to use six plates, we randomly

selected 3 control and 3 ADPKD subjects’ fasting samples

collected on Day 2 (urine and blood analyzed separately) to serve

as ‘‘reference’’ quality control samples; each of these reference

samples was analyzed on every plate analyzed on the LC-MS

platforms. Batch effects and within-lab reproducibility were

evaluated using the repeated measurements of the six reference

samples included on all plates.

A total of 782 urinary metabolites and 873 blood metabolites

were identified in at least one sample. Among them, only the 294

Table 1. Study Design: Times of urine and blood collection and meals.

Day 1 Day 2 Day 3

+1 hour (Fasting Pre Breakfast) +1 hour (Fasting Pre Breakfast) +1 hour (Fasting Pre Breakfast)

08:30 08:30 08:30

09:00 Meal 09:00 Meal 09:00 Meal

+3 hour (Post Breakfast) +3 hour (Post Breakfast) +3 hour (Post Breakfast)

11:00 11:00 11:00

12:00 Meal

+7 hour (Post Lunch)

15:00

+9 hour (Pre Dinner)

17:00

17:30 Meal

+11 hour (Post Dinner)

19:30

+14 hour (Late Night)

21:30

doi:10.1371/journal.pone.0086223.t001
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urinary metabolites and 121 blood metabolites were detected in all

296 samples (26 subjects610 time points plus 36 reference

samples) analyzed. Because this study focused on variability and

imputing missing values could artificially affect the variability, we

limited our analyses to the 294 urinary metabolites and 121

plasma metabolites that were detected in all samples to avoid the

bias that could be induced by imputation. For normalization, the

intensity values for each sample run were summed, and then the

median value of the sums across all samples was determined. The

intensity values of each sample were scaled such that the sum of

the scaled intensities equaled the median value. Thus, the sum of

the scaled intensities was the same for all samples. Normalized

intensity values were then log2 transformed to meet assumptions of

normality and homoscedasticity of statistical tests and reduce the

influence of extreme values.

We conducted variance component analyses (VCA) to estimate

the relative contributions of the temporal factors (meals, time of

day, and day-to-day effects) to the total variation in metabolite

intensities. To assess meal effects, we restricted the analysis to

samples collected before and after breakfast (hours +1 and +3;

Table 1) and before and after dinner (hours +9 and +11). Meal

effects were separately analyzed for each day. For day-to-day

effects, we used samples repeatedly collected over 3 days at each

time point before and after breakfast (i.e., at hour +1 and hour +3

separately). Finally, time of day effects were evaluated using all

samples collected on Day 1 with time of day modeled as a

categorical variable. A VCA was conducted for each metabolite.

Specifically, the intensity level of the each metabolite, Yi, were

modeled as follows: Yi = mi+TempFactori+Subjecti+ei, where TempFac-

tor,N(0, s2
F) is the effect of each temporal factor (meal, time-of-

day, and day-to-day) variation among measurement units;

Subject,N(0, s2
S) is the effect of subject variation among

measurement units; and ei,N(0, s2
R) is the residual error, i.e.,

variation caused by factors other than the variables included in the

model. All factors were modeled as random effects. Given the

small sample size of the study population relative to the number of

variables, we did not evaluate age, gender, race or ADPKD effects.

Instead, all subject characteristics (age, gender, race, PKD status,

etc.) were encompassed by the ‘‘subject’’ component to quantify

the subject-to-subject variability. For each metabolite, variance

components were estimated by the relative proportion of the total

variation of the metabolite contributed by each temporal factor

(meal, time-of-day, and day-to-day), subject and residual error.

The total variance was assumed to be the sum of three

components: VARTot = VARTempFactor+VARSubject+VARResidual. The rel-

ative proportion of each source of variation was calculated as a

ratio of the variance estimate to the sum of all three variance

estimates. For example, pMeal~
VARMeal

VARTot

calculates the propor-

tion of the temporal factor variation attributed to meal and

pRe sidual~
VARResidual

VARTot

calculates the proportion of variation due

to unaccounted variation (residual error).

We also performed differential analyses to identify individual

metabolites whose intensities were altered significantly in relation

to the temporal factors. We used a mixed effects analysis of

variance (ANOVA) for the differential analyses. The intensity of

each metabolite was modeled as a function of the temporal factor

of interest (meal, time-of-day, and day-to-day). A random subject

effect was included to account for the correlation of repeated

measurements from the same subject. False discovery rates (FDRs)

were calculated to adjust for multiple testing and a FDR rate

,0.05 was considered significant. Variance component and

differential analyses were conducted with Proc Mixed in SAS

version 9.2 (SAS Institute, Cary, NC).

Results

Subject population and protocol conduct
Subjects were studied on the inpatient unit of the Clinical

Research Network of the Atlanta Clinical and Translational

Institute between March and October, 2010. Characteristics of the

subjects are provided in Table S1. Of note these were relatively

young (33+/210.9 years), non-obese (BMI 24.3+/23.3 m2)

subjects with 12 men and 14 women (58% Caucasian). Mean

eGFR based on the MDRD formula was 99+/217 mls/min/

1.73 m2. Women were studied between days 5–13 of their

menstrual cycle. All breakfasts were served between 8:57 am

and 9:35 am, all lunches between 12:00 and 12:05, and all dinners

between 17:29 and 17:55 (Table 1). One hundred percent of 123/

130 meals were consumed with the remaining seven meals being

completed by more than 91% of gms provided. Average measured

dietary intake was 2620+/2560 kcal/kg/day and protein intake

was 1.04+/20.3 gm/kg/day.

Reproducibility of metabolomics data: batch effects
The rationale for using both normal, healthy individuals as well

as an identical size cohort of subjects with a chronic stable kidney

disease (ADPKD) with normal kidney function was to be able to

ultimately extend our findings to biomarker studies of this and

other diseases. However, the subsequent data were also evaluated

separately for these two cohorts and showed qualitatively similar

results (File S1), confirming the utility of our analysis for both

normal and diseased states. The metabolites analyzed were limited

to those present in all samples, as our study was not designed to

discover metabolite biomarkers for PKD.

All urine and plasma samples were separately processed from

the participants by LC/TOF-MS in one equipment run (albeit

there were separate plates for each run as necessitated by several

day operation, see below) for each biofluid (Files S2a [plasma] and

S2b [urine], uploaded into MetaboLights). However, because of

the high number of samples (296) and the consequent necessity to

process the samples in several batches (i.e. plates), it was

considered possible that this introduced variability into the data.

Thus, batch effects on the metabolome (defined as the systematic

error introduced by time and plate-dependent variations prior to

specific metabolome variability analyses) were evaluated by

including six reference biofluid samples on each plate. For the

assessment of batch effects, intensity values were log2 transformed

but not normalized, since normalization could preclude discovery

of systematic shifts between plates. Boxplots of the intensity values

of each reference sample on each plate did not reveal any large,

systematic pattern in the magnitude or distribution of intensities

across batches (Figs. S1, S2). Scatter plots for each reference

sample showed high correlations between intensities measured on

different plates (data not shown). We calculated the coefficient of

variation (SD/mean) across the six plates for each metabolite in

each reference sample to provide a direct quantitative measure of

technical between-batch variability. The median CV values of the

6 samples ranged from 0.012 to 0.097 and 0.070 to 0.110 in urine

and blood, respectively (Fig. S3, S4). These low CV values

demonstrate adequate technical reproducibility of sample analyses

across all of the six plates used for the LC/TOF-MS analyses.

Further, the results demonstrate that systematic batch effects were

minimal and that, at a gross level, the LC/TOF-MS procedures

that required running multiple plates for both analyses (plasma

and urine) yielded reproducible results.

Metabolome Variability in Urine and Plasma
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Source and proportion of variation attributable to each
effect

For a metabolite biomarker, or suite of metabolite markers, to

be clinically useful, it is critical to define sources of variation of the

metabolome that could result in changes in the metabolite

concentration and thereby confound the clinical interpretation.

For example, if the metabolite signal changes as a function of meal

or collection times, specific sample procurement procedures will

need to be implemented in order to eliminate variability due to

influences other than the factor of interest (e.g. disease state), and

to avoid bias which can occur during the process of specimen

collection. In this study, we focused on assessing the influence on

the metabolome of environmental and physiological factors related

to meals and time of day of sample collection, because these are

clinically relevant parameters with respect to sample selection and

collection.

Using VCA, we quantified the relative amount of variation in

the metabolomic data arising from the following clinically

important factors: mealtime, time-of-day, day-to-day, subject-to-

subject, and residual variability. It is important to keep in mind

that we are looking at the relative amount of variability attributed to

each source of variance proportional to the total variability in the

data (total variability = 100%), since the absolute quantitation of

variability varies by experiment and mass spectrometer used for

each run. The largest percentage source of variability in this study

was attributable to ‘‘residual variability,’’ which accounted for

.50% of the observed variation in intensity for most of the

metabolites (Figs. 1 and 2). This form of variability is a result of

technical variability (i.e., the multiple step process of sample

preparation and LC/TOF-MS analysis) and possibly experimental

variability (i.e., sample collection, although this was very unlikely

in this study due to the high consistency in the collection

procedures) rather than intrinsic biological variability. Although

less than technical and experimental variability, between subject

variability, which represents intrinsic biological properties of the

samples (i.e., genetic or metabolic differences among subjects), was

also large across the subject population and may have been in part

related to gender and ethnic heterogeneity and general health

status among the human subjects. This data suggest that

minimizing technical variability is equally important to increasing

a sample size to yield significant findings for a clinically applicable

human biomarker study.

To evaluate the effect of meals on metabolome variability, we

obtained blood plasma and urine from the subjects under tightly

controlled conditions in an inpatient clinical research facility using

prepared meals with standardized components for equivalent

carbohydrate and calorie intake normalized to BMI. Samples were

obtained at fasting (+1 hr) and 1 hour post-breakfast (+3 hr) as

well as 1 hour before (+9 hr) and after dinner (+11 hr; Table 1).

Repeated samples taken from the same subject before and after the

morning and evening meals showed a surprisingly low degree of

variation attributable to meals as compared to other factors. In

addition, variation attributable to meals was higher in urine than

in blood (‘‘meal’’ bars in Fig. 1). Interestingly, for the majority of

the metabolites, the meal effects on the metabolome variability

were more pronounced in the morning than in the evening meal,

indicating that the impact of eating after the approximately

8 hours fast and sleep overnight on degree of changes in the

metabolome was more evident than that of eating after a short fast

of 4 hours during an awake and active period (compare ‘‘Day 1-,

2-, 3-Breakfast’’ with ‘‘Day 1-Dinner’’ in Fig. 1).

The between day comparison of each fasting to post-breakfast

sample over 3 days demonstrated that the variability attributed to

meals was relatively consistent in both urine and blood (Fig. 1),

indicating reasonable inter-day reproducibility of the metabolite

intensity, an important consideration for reproducibility in any

future metabolomics-based biomarker test. To further assess inter-

day variability as a function of meals, the coefficient of variation

(CV) was calculated for each metabolite across three days for

fasting samples and post-breakfast samples. The distributions of

the CVs were very similar for fasting and post-breakfast samples

(Fig. S5). Thus, both fasting and post-breakfast meal samples had

similar inter-day reproducibility and inter-day variability was not

prone to variability due to meals.

The estimated proportions of total variability attributed to each

temporal factor across all metabolites are summarized in Table 2.

The percentage of the variance accounted for by the morning

meal varied among urinary metabolites, ranging from 0 to 84.6%

with an average of 7.6% on Day 1, from 0 to 86.1% with an

average of 8.7% on Day 2, and from 0 to 67.6% with an average

of 6.2% on Day 3. The evening meal accounted for less variation

than the breakfast meal and ranged from 0 to 44.2% with an

average of 3.6% on Day 1. Consistent with previously discussed

biofluid differences, the meal effects were nearly half or lower in

blood as compared to urine, with a maximum percentage of

36.3% on Day 2.

Metabolite intensities showed some variability as a result of time

of day, which was partially confounded by meal effects (Fig. 2) and

was also considerably lower in blood than in urine. The

correlations in metabolite intensities were calculated between

each pair of measurements at two time points on Day 1. In urine,

the correlations between repeated measurements were larger for

nearby times than far-apart times (Table 3), however, this did not

occur with the blood metabolome. The correlation coefficients

were constant regardless of the length of time interval between the

measurements in blood (Table 4), demonstrating that the blood

metabolome was less influenced by meal or time of day of sample

collection than was the urine metabolome. We also observed that

the intraday temporal patterns of metabolite intensity change over

time varied by individual subject and by metabolite (Fig. S6),

indicating the presence of complex heterogeneity of metabolite

changes among subjects. Figure 3 illustrates the temporal patterns

of variability of specific blood metabolites selected as representa-

tive of the full range of degree of variability, as determined by CVs

(Table S2), from highly variable to most stable (Table 5).

Factors most influential to changes in metabolite
intensities

To further understand the features that modify metabolite

intensities among subjects, we conducted differential analyses to

identify which factor(s) significantly influence metabolite intensi-

ties. The VCA characterized the relative contribution of each

temporal factor but did not address the actual magnitude of the

effect of each factor and its significance. The effects of meals and

time-of-day were significant for a large number of urinary

metabolites but day-to-day variation was minimal with only few

metabolites differing significantly across days especially in blood

(Table 6). Thus, we found that meals were a significant source of

variability in some urine metabolites, but that meals had minimal

to no influence on blood metabolites. In general, day effects (as

assessed on three days) were not statistically significant, which

confirmed the minimal day-to-day variability we observed in the

VCA results. However, time-of-day appeared to be a significant

factor in urine while its effect on blood metabolome was minimal.

The time-of-day effects were partially attributable to meal effects.

Taken together, meals and time-of-day appear to be important

factors to consider for urinary metabolites and to a lesser degree

for blood metabolites.
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Figure 1. Variance components analysis in urine (A) and blood (B) metabolites for meal effects. Distribution of the relative proportion of
total variance explained by each factor (meal, subject, residual) across all metabolites. Data of Hours +1 (pre-) and +3 (post- breakfast) and Hours +9
(pre-) and +11 (post-dinner) in each day were used in the analysis to estimate the proportion of variation attributable to meal effects for each of
individual metabolites separately.
doi:10.1371/journal.pone.0086223.g001

Figure 2. Variance components analysis in urine (A) and blood (B) metabolites for time of day effects. Distribution of the relative
proportion of total variance explained by each factor (time of day in hour, subject, residual) across all metabolites. For time of day effects, data
measured at hour +1, +3, +7, +9, +11, and +14 on Day 1 were used in the analysis to estimate the proportion of variation attributable to time of day
effects for each of individual metabolites separately.
doi:10.1371/journal.pone.0086223.g002
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Discussion

While extant studies support the contention that metabolomics

has enormous potential to provide insight into physiological as well

as pathophysiological processes in human biology with tremen-

dous clinical applicability, the limitations of this technique

especially with respect to clinical translation, as with other omics

technologies [5], are conceivably manifold. Most such limitations

are related to the fact that metabolic processes, more than genes

and proteins, are by nature influenced by exogenous as well as

endogenous stimuli, for example: meals, medications, menstrual

cycles, and circadian rhythms [8,19–23]. While several studies in

humans and animals evaluated the influence of these factors on the

metabolome, we could find no published studies performed on

human subjects in a tightly controlled dietary environment, as

would occur in an inpatient clinical research center, such that

highly accurate conclusions can be drawn. The current study of

plasma and urine metabolome variability was undertaken in a

setting of extreme consistency of human subjects in such an

inpatient facility in the time scale of hours and days. While this

extreme of consistency would of course not occur in the everyday

clinical setting, it is necessary to perform this type of study to draw

conclusions about which factors of the external environment,

particularly parameters related to sample collection, contribute to

human metabolome variability and how the metabolome is altered

as a result of these factors.

The observed variability in our data can be explained by, in

general terms, (1) biological and (2) technical variation. Biological

variation reflects the intrinsic properties of a biological system,

such as genetic background, gender, age, and state of health. In

contrast, technical variability represents non-biological variability

such as sampling or technical issues, which often cannot be

explicitly pinpointed. Sources of such technical variation include,

but are not limited to, measurement errors associated with sample

collection (unlikely due to the extreme consistency in this process),

sample preparation for chemical analysis, sample injection time

and order in the mass spectrometer, chromatographic separation,

LC-MS data acquisition and instrument drift, and data processing.

While we found minimal systemic inconsistency among batches

run on the analytical equipment, there was a large component of

residual variability, which resulted from other technical sources

other than temporal and mealtime parameters, of the metabolome

in all samples. While residual variability will never be completely

eliminated, the relatively large proportion of the variability

attributed to residual variation (in relation to biological variation),

even in such a tightly controlled environment and state-of-the-art

analytical laboratories as were used in this study, emphasizes the

importance of using standardized and consistent methods of

collecting, processing and analyzing samples to minimize as much

as possible this source of variation. On the other hand, mealtime

variability was relatively low, particularly in blood as compared to

urine, indicating high utility of metabolomics for biomarker

discovery.

Table 2. Proportion (mean 6 SD) of variance attributable to each source of variation relative to the total variation in metabolite
intensity across all metabolites.

Within-Day Variability
Between-Day
Variability

Source of
variance Meal effects

Time of day
effects Day-to-Day effects

Day 1 Day 1 Day 2 Day 3 Day 1 Days 1–3

(+1 &+3) (+9 &+11) (+1 &+3) (+1 &+3) (hours +1 to +14) (only +1 hour)

Meal 0.07660.14 0.03660.08 0.08760.15 0.06260.13 0.08460.13 0.02360.039

Urine Patient 0.39660.22 0.30660.21 0.22860.21 0.2860.24 0.24960.19 0.30660.17

Residuals 0.52860.24 0.65860.22 0.68560.23 0.65860.25 0.66760.22 0.67060.18

Meal 0.02560.04 0.00760.03 0.04160.07 0.00960.02 0.02760.04 0.0160.02

Blood Patient 0.3560.28 0.3760.29 0.3660.24 0.36260.29 0.32260.26 0.28760.24

Residuals 0.62560.27 0.62360.29 0.59960.23 0.62860.29 0.65160.26 0.70360.24

doi:10.1371/journal.pone.0086223.t002

Table 3. Pearson’s correlation coefficients of urinary
metabolite intensities between hours of collection on Day 1.

Hour 1 Hour 3 Hour 7 Hour 9 Hour 11 Hour 14

Hour 1 1.00 0.81 0.74 0.74 0.73 0.73

Hour 3 0.81 1.00 0.82 0.80 0.81 0.76

Hour 7 0.74 0.82 1.00 0.84 0.81 0.82

Hour 9 0.74 0.80 0.84 1.00 0.81 0.82

Hour 11 0.73 0.81 0.81 0.81 1.00 0.83

Hour 14 0.73 0.76 0.82 0.82 0.83 1.00

doi:10.1371/journal.pone.0086223.t003

Table 4. Pearson’s correlation coefficients of plasma
metabolite intensities between hours of collection on Day 1.

Hour 1 Hour 3 Hour 7 Hour 9 Hour 11 Hour 14

Hour 1 1.00 0.93 0.93 0.93 0.93 0.94

Hour 3 0.93 1.00 0.91 0.92 0.91 0.94

Hour 7 0.93 0.91 1.00 0.94 0.94 0.93

Hour 9 0.93 0.92 0.94 1.00 0.95 0.93

Hour 11 0.93 0.91 0.94 0.95 1.00 0.93

Hour 14 0.94 0.94 0.93 0.93 0.93 1.00

doi:10.1371/journal.pone.0086223.t004
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It is important to note that this study was conducted to

specifically assess variability in the metabolome as a function of

temporal and mealtime parameters and not to identify metabo-

lomic changes associated with any particular disease state or

specific biologic parameter. Thus, we utilized a mixed subject pool

of healthy subjects with ADPKD as well as healthy volunteers to

Figure 3. Temporal variability of selected metabolites. Variability in intensity values (log2 transformed) of selected metabolites in healthy
volunteers is graphed as a function of indicated time (see Table S2). Each colored line represents one subject.
doi:10.1371/journal.pone.0086223.g003
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broaden our results to the general population; however the

subject-to-subject variation due to biological differences among

subjects (which included but was not limited to ADPKD state) was

partitioned separately as a ‘‘subject’’ random effect component in

the VCA. It should also be pointed out that the study was not

powered to specifically dissect variability attributable to each of

intrinsic biological properties, such as genetic mutation of

ADPKD, gender, age, race, while controlling for each other’s

confounding effects. Despite of the lack of statistical power, we

evaluated variability separately and show that the individuals with

ADPKD showed qualitatively similar results to the disease-free

healthy subjects as well as the combined cohort with respect to the

temporal variability, suggesting excellent applicability of metabo-

lomics to disease biomarker studies.

Interestingly, urine showed more biological variability than

blood, emphasizing the need for more urine samples as compared

to blood samples in a well designed metabolomics biomarker

study, consistent with a previous animal study from our laboratory

[24]. In addition, both blood and urine variability was higher after

the morning meal than the evening meal, perhaps reflecting a

more pronounced influence on homeostasis when food is

consumed after an 8 hr fast as compared to a shorter inter-meal

time interval during daytime which may be due to circadian

influences independent of meals changes the metabolome. It was

also evident that there were a considerably higher number of

significantly changed metabolites in urine as compared to blood,

with the highest number being a function of time-of-day and

mealtime. It was also apparent that there was less variation after

the evening meal than the morning, indicating that post-breakfast

sampling should be avoided. These data stress the need to be

consistent in collection times, and that it may be best to consider

fasting samples (which includes mealtimes) when evaluating the

urinary metabolome in particular.

Other studies have evaluated the effects of dietary interventions

on the human metabolome. In one study, a cohort of 10 healthy

volunteers was admitted to a clinical research center for 2 wk of

dietary standardization, and urine and plasma metabolomes were

measured daily by NMR spectroscopy [7]. These data showed that

a standardized diet that lasts a single day is likely sufficient to

provide all of the normalization that can be achieved in the human

metabolome, and is therefore consistent with our findings of high

day-to-day reproducibility. However, a separate study of urine

metabolomics in healthy subjects [25] showed a trend towards

reduced inter- and intra-individual variation during 3 days of diet

standardization. In another study [26], the effect of multiple

interventions on metabolomic parameters were evaluated; this

study demonstrated that such challenges (extended fasting, glucose

and lipid tolerance tests, controlled meals, physical exercise, and

physiological stress) increase metabolite variability between

volunteers, allowing discrete metabotypes to be identified that

would not be seen in normal fasting conditions. As far as

examination of the effects of a single dietary intervention on the

metabolome, another group in several studies evaluated the effect

of the urine metabolome after a single intake of cocoa and found

significant changes at 24 hours, inferring that the strategies which

they used can dissect the complex relations between the

consumption of phytochemicals and their expected effects on

human health [27,28]. Although it was not the purpose of this

study, we have shown that for example that glucose and other

sugars as well as phospholipids are changed in the post-prandial

state (Table S2). Furthermore, citric acid was found to be relatively

sensitive to meal difference compared to other metabolites

(Table 5). Thus it is important to standardize meals when studying

TCA cycle involved diseases.

While the urinary metabolome exhibited considerablly more

biological variability than blood in the current study, others have

also evaluated the urine metabolome with respect to gender, age,

and diet. One group found that metabolites related to mitochon-

drial energy metabolism helped differentiate gender and age, while

dietary components and circadian rhythm metabolites were

related to time of day [19]. Another group also used NMR-based

techniques to generate models differentiating subjects according to

gender and age [29], and another showed that the urine

metabolome, in contrast to that in the plasma and saliva, can

reflect acute dietary intake [20]. However, none of these studies

evaluated relative sources of varbiability; this is an unique aspect of

our work and is very germane to clinical translation of any

metabolomics study.

There are several studies, performed over a much longer time

frame than the current study, that confirm the existence of a stable

part of the metabolome that appears in the urine and which seems

to be specific to the individual subject. Bernini et al, in a study for

which the time scale was years rather than hours and days as we

have evaluated, showed that an invariate part of the metabolome

was stable over this long period [9]. Assfalg et al also demonstrated

an invariate portion of the metabolome characteristic of each

person in urine samples taken over a period of 3 months [10].

However, while consistent with our findings, neither of these

studies reported hourly or daily changes, or at specific changes as a

function of mealtimes in a controlled environment. Heinzmann et

al [11] performed an exhaustive study evaluating the human

Table 5. Coefficients of variation for blood metabolites
representing the full range of variability.

Metabolite Meala Hourb Dayc

Glucosylceramide 0.1370 0.1352 0.1246

Glucose-6-Phosphate 0.1065 0.1253 0.1099

Citric acid 0.1017 0.0902 0.0848

Cholesterol 0.0766 0.0766 0.0723

Palmitic acid 0.0513 0.0497 0.0496

aMeal CVs were calculated using pre and post breakfast samples from each day.
bHour CVs were calculated using all values from Day 1.
cDay CVs were calculated pre-breakfast values from each day.
doi:10.1371/journal.pone.0086223.t005

Table 6. Number and percentage (%) of significantly
changed metabolites (FDR,0.05) in blood and urine by three
factors (meal, day, hour).

Urine Blood

Factor Number (%) Number (%)

Meal

Day 1 (+1 &+3) 67 (23) 0

Day 1 (+9 &+11) 20 (7) 0

Day 2 (+1 &+3) 34 (11) 7 (6)

Day 3 (+1 &+3) 39 (13) 1 (0.8)

Hour 135 (46) 11 (9)

Day 2 (0.7) 1 (0.8)

There were a total of 294 metabolites identified in urine and 121 in blood.
doi:10.1371/journal.pone.0086223.t006
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urinary metabolome in 7 individuals in a 7-day controlled diet,

although unlike our study these individuals were not admitted to a

clinical study center. Consistent with our study, these investigators

found marked differences in the individual metabolomes such that

each individual possessed his/her own ‘‘metabolic phenotype’’; the

authors made the suggestion, based on their data, that individuals

should serve as their own controls. In another study comparing

urine, plasma, and saliva on a standard diet [20], it was found that

urine was more sensitive in detecting dietary differences than the

other biofluids, consistent with our findings in the present study.

In summary, our study utilizing volunteer human subjects in a

tightly controlled environment provides for the first time a

framework in which to view the data obtained from a well

designed and consistently executed metabolomics experiment.

While the day-to-day variability was minimal, there are meal and

collection time effects to be considered, and these are more

pronounced in urine than blood. Given the ready availability of

LC-MS techniques in many universities, clinical and commercial

laboratories, and the accepted power of metabolomics for clinical

translational research, there will likely be many more studies using

this technique in the near future. While our study confirms the

utility of metabolomics for both blood and urine analysis for

discovery of disease targets and biomarkers, the data shown here

inject a cautionary note into the design of future metabolomics

studies, as has been highlighted in a recent study [5]. For example,

based on our data presented here, a well-designed study biofluid

metabolomics should have the following characteristics: (1) the

study should be designed to avoid systematic errors by minimizing

bias by controlling for extraneous variables such as meals or time

of day of sample collection; (2) the study should have broad

applicability (i.e., the results hold for more than the subjects tested

in a study); (3) the study should have sufficient statistical power to

test the effect of the parameter of interest (i.e. disease); (4) the study

should attempt to minimize technical variability by optimizing

analytical tools; and (5) it would be prudent to utilize fasting blood

samples, and, if such samples were not feasible, random pre-meal

samples obtained during midday would be preferable over post-

meal samples to minimize bias by extraneous variables. Keeping

these concepts in mind, in both design and interpretation of

metabolomics data, will enhance the already considerable utility of

this growing field.

Supporting Information

Figure S1 Distribution of log2 transformed intensities
of compounds in each urine reference sample across six
LC-MS plates. Data from urine of 3 ADPKD and 3 control
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Figure S2 Distribution of log2 transformed intensities
of compounds in each plasma reference sample across

six LC-MS plates. Data from plasma of 3 ADPKD and 3

control patients. 121 compounds were detected in all plasma

samples on all plates and used in the analysis.

(TIF)

Figure S3 Distribution of coefficients of variations
(CVs) of metabolites calculated using log2 transformed
intensity values in urine across six plates for six
reference samples.

(TIF)

Figure S4 Distribution of coefficients of variations
(CVs) of metabolites calculated using log2 transformed
intensity values in plasma across six plates for six
reference samples.

(TIF)

Figure S5 Distribution of CVs of 294 urinary metabo-
lites (left) and 121 blood metabolites (right) across three
days in fasting and post-breakfast samples.

(TIF)

Figure S6 Time courses of intensities for three highly
variable metabolites in urine of healthy subjects
throughout Day 1. These three metabolites had the highest

CVs calculated using all observations on Day 1. Each line

represents one person.

(TIF)
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Table S2 Temporal and mealtime variability of selected
blood metabolites.
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