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Abstract

Management of catches, effort and exploitation pattern are considered the most effective measures to control fishing
mortality and ultimately ensure productivity and sustainability of fisheries. Despite the growing concerns about the spatial
dimension of fisheries, the distribution of resources and fishing effort in space is seldom considered in assessment and
management processes. Here we propose SMART (Spatial MAnagement of demersal Resources for Trawl fisheries), a tool for
assessing bio-economic feedback in different management scenarios. SMART combines information from different tasks
gathered within the European Data Collection Framework on fisheries and is composed of: 1) spatial models of fishing
effort, environmental characteristics and distribution of demersal resources; 2) an Artificial Neural Network which captures
the relationships among these aspects in a spatially explicit way and uses them to predict resources abundances; 3) a
deterministic module which analyzes the size structure of catches and the associated revenues, according to different
spatially-based management scenarios. SMART is applied to demersal fishery in the Strait of Sicily, one of the most
productive fisheries of the Mediterranean Sea. Three of the main target species are used as proxies for the whole range
exploited by trawlers. After training, SMART is used to evaluate different management scenarios, including spatial closures,
using a simulation approach that mimics the recent exploitation patterns. Results evidence good model performance, with
a noteworthy coherence and reliability of outputs for the different components. Among others, the main finding is that a
partial improvement in resource conditions can be achieved by means of nursery closures, even if the overall fishing effort
in the area remains stable. Accordingly, a series of strategically designed areas of trawling closures could significantly
improve the resource conditions of demersal fisheries in the Strait of Sicily, also supporting sustainable economic returns for
fishermen if not applied simultaneously for different species.
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Introduction

Demersal assemblages exploited in multi-species fishery are

characterized by a wide array of species, each having a distinct

population dynamic and pattern of occurrence in space and time.

Also fishing activity has its spatial and temporal dynamic. Fishing

effort distribution is driven by fishermen’s knowledge of spatio-

temporal distribution and abundance of resources which, in turn,

depend upon abiotic and biotic environment features, ontogenetic

and/or seasonal movements, and fishing efforts. In addition,

fishermen spread their efforts over different areas on the basis of a

series of a priori evaluations and an a posteriori feedback of costs and

catches, where one of the main pay-offs is represented by the

maximization of profits [1]. The interaction between spatial

dynamics of biological resources and fishing behavior frequently

generates complex spatial patterns of fishing mortalities on

exploited stock [2]. In the last decade, amid growing concerns

for the ecological aspects of fishery science, the regulation of

fishery activities in areas critical for the life cycle of commercial

species, such as nursery and spawning grounds, and in sensitive

habitats, such as sea grass beds and maerl communities, is

increasingly advocated as a complementary tool in conventional

fishery management [3]. Thus, assessment and management of

fisheries are moving toward a class of spatially explicit and bio-

economic approaches in which 1) both the impact of fishing

activities and the response of resources in space are taken into

consideration and possibly modeled, and 2) management measures

are evaluated on the basis of their observed or hypothesized effects

in space [4–7]. In this regard, the assessment of the impact of

fishing activity (and therefore the expected effects of alternative

management scenarios) is a crucial point to be investigated, and

may ultimately be identified in the spatially-resolved fishing

mortality of resources. The absence of an adequate knowledge

of fishermen’s dynamics (rather than of stock biology) has been

identified as the main critical aspect of fishery management [8].
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Nevertheless, there is still a lack of effective tools for predicting the

biological and economic effects of different scenarios of effort

allocation in mixed fisheries, so that the management of mixed

fisheries has generally been unsuccessful in the various different

contexts [9].

This paper proposes a spatial model for assessing the state of

demersal resources and certain aspects of bio-economic perfor-

mance under different management scenarios. Our model, called

SMART (Spatial MAnagement of demersal Resources for Trawl

fisheries), combines information from experimental trawl surveys,

monitoring of commercial catches and remote sensing of vessel

activity (captured from data provided by the Vessel Monitoring

System - VMS), gathered within the European Data Collection

Framework on fisheries (EC Regulation no 199/2008). The

SMART model is applied to assess behavior of demersal fisheries

in the Strait of Sicily, which represents one of the most productive

fisheries of the Mediterranean Sea [10,11]. Within a complex of

demersal species exploited in the area, the deep water rose shrimp

(DPS – Parapenaeus longirostris, Lucas 1847), the European hake

(HKE – Merluccius merluccius, Linnaeus 1758) and the red mullet

(MUT – Mullus barbatus, Linnaeus 1758), which account for about

54% of total yield and 70% of total revenue from groundfish

resources of the Strait of Sicily, have been selected as target species

in the present study.

The basic idea of our model arises from the following

assumptions: (1) the mean pattern of distribution of demersal

resources is influenced by sea bottom characteristics and mean

annual sea surface temperature, which should represent two of the

main environmental variables affecting the spatial pattern and

productivity of benthic communities [11,12]; (2) resource abun-

dance in space and its variations on a short temporal scale (from

one year to the next) are driven by the combined effect of internal

(demography) and external (fishery) factors [13,14]; (3) in mixed

fisheries, each fisherman independently and freely exploits

different resources in order to compose a selection based on a

series of constraints imposed by economic factors (e.g., market

prices, costs) which can change over time.

SMART was developed by setting up and combining the

following four tools:

1) A spatial analysis approach which models the distribution of

demersal resources, fishing effort and abiotic factors in order

to produce matrices of geo-referenced data in the investigated

area for the years 2006–2010;

2) An Artificial Neural Network (ANN) which captures the

relationships between resources, fishing effort and abiotic

factors on the basis of the time series of matrices obtained

from the previous step, and then predicts resources abundance

and distribution in the near future;

3) A deterministic model that computes the specific size structure

of catches corresponding to a given combination of resources

distribution and fishing effort using classic fishery science

equations. These catches are then converted into revenues on

the basis of market prices by species/size, while a simple

model is used to compute the fuel costs associated to the

fishing effort pattern. Finally, revenues and costs are used to

obtain gains;

4) A simulation approach using the previous tools to explore the

effects of different management scenarios of fishing effort on

resources abundance in the near future. This component of

the model works by iteratively generating patterns of fishing

effort for different scenarios and then applying tools 2 and 3 to

predict the bio-economic effects.

Our approach is effective in generating patterns of fishing effort,

which are similar to the current ones and/or satisfy some

constraints imposed by the manager (e.g. the displacement of a

fraction of effort from one area to another). The findings provide

important indications about the effects of fishing mortality

changes, even as result of partitioning and managing fishing

mortality in space. Moreover, SMART could potentially be a tool

in the context of Integrated Ecosystem Assessments and Integrated

Ecosystem-Based Management, since it integrates the interactions

among the different components of the system (including the

anthropogenic one), while it uses and valorizes a large platform of

data mandatorily collected in EU seas and shared among

researchers of member states.

Materials and Methods

The Strait of Sicily and its fisheries
The study area comprises the Italian side of the Strait of Sicily

(SoS) (Fig. 1a), that is the portion of Mediterranean sea identified

as Geographic Sub Area (GSA) 16 [15]. The area covers about

34,000 km2 with a wide range of water depths and habitats due to

the complexity of the bottom morphology. Along the Sicilian

coast, the shelf is characterized by two wide and shallow banks

(,100 m depth) in the western (Adventure Bank) and eastern

(Malta Bank) sectors respectively, separated by a narrow shelf in

the middle. SoS is one of the most important fishing areas for

demersal resources in the Mediterranean in view of the large fleets

operating there and the relative fish production [16,17]. Sicilian

trawlers between 12 and 24 m LOA are based in seven harbors

along the southern coasts of Sicily. These trawlers operate mainly

in the form of short-distance fishing trips ranging from 1 to 2 days

at sea, and fishing takes place on the outer shelf and upper slope.

Sicilian trawlers measuring over 24 m in LOA go on longer fishing

trips, which may last up to 4 weeks. These vessels operate offshore,

in both the Italian and international waters of the Strait of Sicily

[17] (Fig. 1a).

During 2009–2011 the mean total yield of demersal species was

17753 tons (sd = 546) [18]. At present, deep-water pink shrimp (P.

longirostris - DPS) is the main target species, accounting for about

41.7% of the demersal yield, with European hake (M. merluccius -

HKE) and red mullet (M. barbatus – MUT) totaling 8.2 and 4.0%

of the landing, respectively. According to the more recent

assessments carried out inside the Scientific Advisory Committee

- General Fisheries Commission for the Mediterranean (SAC-

GFCM) [19] and the Subgroup on the Mediterranean - Scientific,

Technical and Economic Committee for Fisheries (SGMED

STECF) [20], the status of all three species is ‘‘overfished’’. Based

on Length Cohort Analysis and Yield per Recruit Analysis, the

current fishing mortality (F) would have to be reduced by values

ranging from 20% (DPS) to 60% (HKE) in order to reach a more

sustainable exploitation in the area.

DPS is the main target of demersal trawling in the area and it is

fished exclusively by trawling in the outer shelf upper slope. A

strong relationship between size and depth has been observed,

with the smallest and youngest specimens inhabiting shallower

waters [21].

HKE is a necto-benthonic fish living at depths of between 10

and 1000 m, although it is found mostly between about 70 and

400 m. The bathymetric distribution of this species is related to

size, the smaller specimens being caught more frequently on the

outer continental shelf (50–200 m depth), while the larger ones are

mainly distributed along the continental slope [22]. The majority

of hake catches (more than 95%) is obtained by bottom trawling,

although the species is fished also using longlines and gillnets [23].

Bio-Economic Spatial Model for Demersal Fisheries

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e86222



MUT is a benthic species, frequently found on muddy bottoms

at depths of between 5 and 250 m [24]. In SoS, it is fished almost

exclusively by bottom trawlers [25].

Abundance and spatial distribution of target species
Geo-referenced abundance data of target species, collected

during the ‘‘Mediterranean international bottom trawl survey’’

(MEDITS) program, were processed in order to obtain the

quantitative spatial distributions for the years 2006–2010. The

MEDITS survey program is designed to produce basic informa-

tion on demersal species in terms of abundance and demographic

structure as well as spatial distribution [26,27]. MEDITS has been

carried out annually in spring/summer since 1994. Sampling

stations are replicated each year and selected using a stratified

random sampling design based on five depth strata: 10–50 m, 51–

100 m, 101–200 m, 200–500 m, 500–800 m, where the number

of hauls is proportional to the area of each stratum (Fig 1b). The

surveys were carried out using the same vessel, equipment and

protocol throughout the entire period [26]. Catches by haul were

processed, sorted to species level, and weighed as total catch. Sex,

maturity stage and length of each specimen were also collected.

The procedure extensively described in [26] and [28] was applied

to compute abundances by species/size class, standardized to

1 km2 (N/km2), in each bathymetric stratum. In this way, the total

abundance N of individuals of the species s, for the size class l, in

the year t, is equal to

Ns,l,t~
XI

i~1

Ai�xxs,i,l,t

where Ai is the area of stratum i, I is the total number of strata, and

�xxs,i,l,t is the mean number of individuals (specimens per km2) of the

size class l, at year t, in the hauls relative to stratum i.

These abundance indices were then used to reconstruct the

specific length-frequency distribution (LFDs) for each year. The

LFDs obtained in this way were inspected in order to identify the

optimal number of normal components (cohorts) for each year and

their characteristics in terms of proportion of total abundance,

mean length (in mm) and standard deviation. This step was

performed using the mixture analysis provided in R [29] by the

package mixdist [30] and offered the advantage of drastically

Figure 1. a) Map of the GSA16 (Strait of Sicily), with bathymetry represented by level line and nursery areas identified by [62]; b) positions (green
points) of the Mediterranean International Trawl Survey (MEDITS) hauls, which are the sample design annually repeated during the survey; c) the grid
(394 cells of size 6 min66 min) used in the present study. Green points allows to identify cells containing MEDITS hauls, while cells not interpolated
and excluded from the analysis are filled in red; d) Position of the three proposed boxes (overlapping nurseries) for fishing closure.
doi:10.1371/journal.pone.0086222.g001
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reducing the number of variables needed to characterize the LFD

in the grid cells. Given that the relationship between length and

age is different for the two sexes in all three species [31], data were

processed keeping the sexes separate. Due to the weak correspon-

dence between length and age in the largest size of the LFDs, the

number of components for each sex/species/year LFDs was set as

three for DPS and HKE (the latter grouping all the specimens of

age group 3+ years) and two for MUT. The mixture analysis

produced a set of overlapping component distributions that

provides the best fit for grouped data and conditional data using

a combination of a Newton-type method and EM algorithm

provided by mixdist [30]. The goodness-of-fit of these outputs was

assessed by comparing the quantiles of observed and fitted

distributions from the distance of Kolmogorov-Smirnov (K-S test).

[32–34]. For exploratory purposes, the mixtures for each species

were converted into biomass distribution using specific length-

weight relationships (Table 1).

After proportions by size in different years were identified in the

cohorts, the absolute abundance of individuals belonging to each

cohort was computed for each sampling station (Fig. 1b), based on

observed LFDs. Hence, the annual spatial distribution of cohort

abundance of each species was generated by inverse distance-

weighted deterministic interpolation [35], which has been

preferred to other approaches (e.g. kriging) since it does not

require strong assumptions such as isotropy. A grid cell of

6 min66 min (394 cells - Fig. 1c) was adopted, corresponding to a

subdivision of the 30 min630 min grid coded by the General

Fisheries Commission for the Mediterranean [36]. The cell size

was chosen taking into account the spatial resolution of the

MEDITS sampling, as the median distance among hauls was

about 4 nautical miles. The interpolation procedure was carried

out considering a neighborhood with a radius of 3 cells. The cells

for which no sampling station was available within the fixed radius

were excluded from the interpolation (Fig. 1c) as well as from the

subsequent analysis steps.

The final output of this analysis is represented by a series of

matrices, one for each/species/year. The matrix rows represent

the cells of the maps, while the columns refer to the cohorts (male

and female summed), and values are the estimated abundances.

These matrices were used as input for the subsequent analyses.

Abiotic factors
Sea bottom depth was considered as a proxy for the

environmental characteristics affecting demersal resources distri-

bution. This assumption is largely supported in literature

[11,12,37,38]. A digital bathymetry grid at 1 min resolution was

obtained using the Geodas Grid Translator of the National

Geophysical Data Center (NOAA – available online at: www.

ngdc.noaa.gov/mgg/global/global.html). Given that the map unit

(cell) used in this study was 6 min66 min, 36 depth pixels were

associated to each cell. These pixels were used to compute two

indexes: the first one ( �DDc) was the mean depth within each cell.

The second one (Dsdc) was the standard deviation of the depth, and

it was used as a proxy of the heterogeneity of the sea bottom within

each cell. Moreover, the mean annual sea surface temperature

(SST) was computed from the daily data available at the National

Oceanographic Data Center (NODC - http://data.nodc.noaa.

gov/) and processed to obtain annual values for each cell of the

grid.

Spatial distribution and intensity of the fishing effort
Fishing effort was used to quantify resources exploitation (fishing

mortality) as a function of fishing gear (trawl) deployed in each cell

of the spatial grid. It was estimated using data collected by the
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Vessel Monitoring System (VMS), introduced in 2002 by the

European Union [39] for the remote control of fishing vessels and

collected within DCF since 2006. Specifically, VMS data for the

years 2006–2010 from the activity of about 300 vessels (the

number slightly varied among different years) operating in the SoS

(Fig. 1a) were used. The VMS data were processed following the

methodology described in [40–42]. Briefly, single fishing tracks

(series of trips of a fishing vessel, starting and ending in a given

harbor) were cleaned and interpolated at 10-minute time intervals

in order to obtain standardized records of vessel positions; then a

speed filter was used to distinguish between fishing and non-fishing

pings; finally, records of vessel positions in a fishing state (fishing

points) were counted within each grid cell. The number of fishing

points was assumed to be a reliable proxy of fishing effort, the

spatial distribution of which was produced at the resolution of the

6 min grid.

Predictive model of resources abundances: Elman
artificial neural network

The spatial distribution of the target species is assumed to be a

function of environmental factors (abiotic factors), specific

demography (biotic factors) and fishing effort (anthropogenic

factors), the latter representing an external source of size-

dependent mortality. In practice, we attempted to predict

abundance and spatial distribution of target species at year t+1

on the basis of the following predictors: (1) gridded indices of sea

bottom morphology and SST to summarize abiotic factors, (2)

gridded indices of abundance by size class of target species from

the previous n years, recorded from mid-year surveys to

approximate the mean annual spatial distribution of the resources,

(3) gridded indices of fishing effort, originated by VMS, from the

previous n years. In this way As,k,h,t+1,c, that is the abundance (in

terms of number of individuals) of the cohort h, for the sex k of the

species s, at year t+1 in the cell c, is given by an unknown function

f:

As,k,1,tz1,c

..

.

As,k,l,tz1,c

0
BB@

1
CCA~f

As,k,h,t{n,c,:::,As,k,h,t,c

Et{n,c,:::,Et,c, �DDc,Dsdc,

SSTc,t{n,:::,SSTc,t,Ms,k,h,t{c,c,:::,Ms,k,h,t,c

0
B@

1
CA

where As,k,h,t-n,c is the species abundance and Es,h,t-n is the fishing

effort at year t-n, respectively, while SSTc,t is the sea surface

temperature of cell c at year t and Ms,k,h,t is the mean abundances

for the same species/sex/cohorts in the neighboring cells of c (ray

equals to two) at year t. Instead of attempting to model this

complex relationship via an explicit quantitative panel such as a

system of equations, an Elman multilayer perceptron network

(EMPN) was used since it is the simplest and most widely used

ANN architecture to pursue classification issues when sequential or

time-varying patterns are inspected [43]. The basic structure of a

multilayer perceptron network (MPN) consists of at least three

layers of neurons (also called units or nodes – Fig. 2). Information

flows in a unidirectional way from the first (input) layer to the last

(output) layer through a second (hidden) layer and is processed in

parallel by the neurons of each layer. The input layer contains as

many neurons as there are independent variables or descriptors

used to predict the dependent variables, which in turn constitute

the output layer. Neurons of a given layer are linked to the

neurons of the next layer by activation functions: hidden layer

neurons compute a weighted sum of the input variables through a

first activation function and then send a result to the output

neurons through a second activation function. A sigmoid function,

which is the most common choice because it is non linear and

characterized by a very easy to compute derivative [44,45], was

chosen in both cases.

The EMPN was devised to predict the absolute abundances

(Log10 of number of individuals) of each cohort of each species, for

each cell at year t (2010), using the relative abundances provided

by the MEDITS survey. The input variables are the abundances

Figure 2. Representation of the Elman network used in this study for the Mullus barbatus (MUT) model. The input layer comprises: four
neurons related to cohort abundances (two cohorts for males and two cohorts for females) at each time for each cell; other four neurons related to
abundance of the same cohorts in the neighboring cells (ray = 2); a neuron for the fishing effort; three neurons for the sea bottom characteristics and
mean annual sea surface temperature. These neurons directly propagate the information to the basic hidden neurons. At each step of the training
procedure, the updated pattern of the basic hidden neurons is memorized by the context neurons and, at the successive step, propagated to the
basic hidden neurons together with the new information in the input neurons. The output layer contains as many neurons as the number of cohorts
in the input layer.
doi:10.1371/journal.pone.0086222.g002
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of the same cohorts for the previous four years (t-1,…, t-4, that is

2006–2009), the physical characteristics for the cell and the

observed values of fishing effort for the same years. Conversely, it

is possible to observe (Fig. 2) that the hidden layer of an EMPN

contains the so called context neurons in addition to the common

‘‘basic’’ hidden neurons (it was preferred to adopt the adjective

‘‘basic’’ in order to avoid the confusion generated by the fact that

the term ‘‘hidden’’ is used to define both the whole layer and a

subgroup of neurons). In effect, Elman MPN (among others) is a

class of ANN explicitly devised to process data organized on time

series, and this is the reason for the presence of context neurons.

These neurons are used to memorize the previous activations of

the hidden neurons and can be considered as one-step time delays.

Although there are no technical reasons for restricting the

prediction to a short time horizon, it is generally accepted (as

suggested by the common sense) that prediction should be

restricted to a temporal depth no smaller than that of the time

series used for training [44,46]. For this reason we devised the

EMPN to perform prediction for just one year. More details about

EMPN training, which is analogous to the more classic MPN set

up, can be found in Appendix S1 [47–51]. Given that EMPN

training is sensitive to a random initialization step, the EMPN for

each species was trained 100 times and the results was inspected

before selection of the EMPNs to be used in the successive

analyses. The performances of the trained EMPNs were summa-

rized by the Pearson’ correlation coefficient between the matrix of

the observed and predicted standardized abundances. At the end

of this procedure, the EMPN showing the best performance was

selected (between the 100 trained) for each species. The EMPN

used in this study was implemented in R [29] using the RSNNS

package [52].

The relative importance of each input variable is a critical

aspect when using ANN. Given that each input variable is

associated with a set of weights (one for each neuron in the hidden

layers), the relative importance of input variables is intuitively

linked to the values of weights for the trained MPN [44] which

ultimately represent a series of coefficients for an input variable.

Thus, the effect changes of an input variable are linked to the

value of its corresponding weights in the hidden layers. However,

this offers the opportunity to evaluate the relative contribution of

each input variable (or group of variables) to the obtained

predictions. In this study, the patterns of weights in the hidden

layers were explored, following the rationale proposed by [53] and

applied in [41], to assess the influence of each group of input

variables as relative importance (RI). RI ranges between 0 and 100

with a cumulative sum of 100.

Bio-economic model for catches, revenues and gains: the
spatial-partitioning of F

A set of quantitative relationships was used to build a

deterministic model of catches and related revenues corresponding

to a given combination of resource distributions and fishing effort

in space and time. The model analytically relates abundances of

resources by length to fishing effort for each cell of the grid, so that

the specific length structure of catches can be determined. Then,

the cumulative length structure of catches was obtained for each

species by summing all the distributions obtained for all cells of the

grid. These specific catches were then converted into specific

revenues using the market prices by size category recorded for

each year and, finally, total revenues were computed by summing

the specific revenues of the three species.

Underpinning this process is the spatial-partitioning of the

overall fishing mortality by species (Fs), i.e. the data on fishing

effort and resource abundances are used to resolve Fs into its

components (fs,c) for each species/cell.

The first step of the analysis involves the computation of spatial

fishing mortality fs,c,l,t as [54]:

fs,c,l,t~qs|Sc,l|ec,t

Where qs is the catchability coefficient of the commercial fleet for

all the size class of species s, Ss,l is the selectivity of trawl for the l-th

length class of the species s, while ec,t is the effort deployed in cell c

at year t. Notice that, in this way, it is assumed that all the vessels

of the fleet are characterized by the same catching power. Future

investigation on this topic could allow overcoming this assumption.

The selectivity of the trawl can be modeled by the ‘‘explicit’’

logistic curve [55]:

Sl~ 1ze{(azb|l)
� �{1

Here Sl represents the proportion of the specimens retained within

the codend in length class l, a is the steepness parameter:

a~
2 loge(3)

L75{L50

with L75 and L50 corresponding to size at capture of 75% and

25%, respectively, and L50 denoting the size at capture of 50%.

The selectivity parameters for a mesh size of 40 mm and 50 mm

diamond opening in the cod end were obtained from literature (see

Table 1).

The catchability coefficient qs of the commercial fleet was

estimated for each species by using as reference the overall specific

fishing mortality (Fs) provided by Length Cohort Analysis (LCA)

[19,20]. More in detail, for each year in the period 2006–2010, we

estimated the amount of harvested individuals in each cell as the

product of the Fs by the mean density in number of individuals in

the cell, obtaining a vector (a value for each cell) of theoretical

catches. Then the values of qs which minimizes the vectorial

difference between these catches and those computed multiplying

the mean density in number of individuals in the cell c (qs6ec) - with

ec being being the fishing effort in cell c) was searched via the

optimization algorithm provided by the R basic function ‘‘optim’’.

Then, the catches by size were estimated as:

cs,c,l,t~ns,c,l,t|fs,c,l,t

where cs,c,l, is the catch for the l-th length class of the species s in

cell c at year t, ns,c,l,t represents the mean abundance for the l-th

length class of a given species s in cell c at year t, approximated

using the MEDITS abundance indices and fs,c,l,t is the harvest rate

computed as described in section 3.5.

Given that the indices by cell obtained by MEDITS were

expressed as relative indices, they were multiplied by the

catchability coefficient by species (qMs) of MEDITS gear in order

to obtain absolute estimates of standing stock by cell. This

coefficient was calculated as the ratio between the absolute

standing stock in number in GSA 16 from LCA (NLCA) [19–21]

and the relative standing stock in number obtained from the swept

area method (Nswept area) using the MEDITS catch rates over the

whole GSA16 surface:

qMs~
NLCA

Nsweptarea
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The harvested biomass for each species, cell, length class and year

(hs,c,l,t) was calculated by multiplying the numbers of individuals

caught cs,c,l,t by their length-specific average weights ws,c,l,t

estimated from the length-at-age function and the length–weight

relationship (parameters for these functions are reported in

Table 1):

hs,c,l,t~cs,c,l,t|ws,c,l,t

The total revenue of the three aggregated species for each year Rt

was calculated as follows:

Rt~
X
s,c,l

hs,c,l,t|Ps,l

where Ps,l are the average prices by size in 2006–2010 for the three

species landed by trawlers in the main ports of the Strait of Sicily

(Mazara del Vallo and Sciacca) (see Table 2).

For control purposes, the values of Biomasses, Catches and

Total Fishing Mortality computed by SMART for year 2010 were

compared to those available in literature [22–25] and online [18].

Fishing costs are generally distinguished between operational

costs (i.e. variable/running costs and fixed costs) that are

important in analyzing short-term economic performance and

capital costs [56,57]. A simple model was used in this study to

estimate the operational costs (i.e. fuel cost) associated to each real

or simulated pattern of fishing effort. For the trawler fleet

operating in the SoS, these costs account for over the 80% of

the total costs sustained by fisherman [18], and then can be

considered as a good proxy of the current whole cost value for this

fleet. The model assumes that the cost associated to a given fishing

effort pattern is a linear function of: 1) the mean annual price of

fuel (Et); and 2) a Pattern Score (PSt) measure related to the fishing

zone, which captures the distance at which fishing operations are

carried out. This rationale is very similar to the one applied in

[57]. These authors, while evidencing a good fit for their data, also

reported a strong effect of fuel price and fishing effort on the final

costs sustained by each vessel. Here we compute the PSt as the

yearly cumulative sum of the product of the fishing effort recorded

in each cell (as Log10 of the number of fishing set positions) by the

mean distance of the same cell from the three nearest harbors. The

yearly total fuel cost for the fleet was regressed on the Pattern

Score together with the mean annual cost of fuel [18]. The used

relationship has the form:

Table 2. Prices for different ranges of size, for the three
species (source: National Research Council, Institute for
coastal marine environment).

DPS (P. longirostris)

Size (mm) Prices(Euros/kg)

,21 2.5

[21–25) 5

[25–30) 8

. = 30 16

HKE (M. merluccius)

Size (mm) Prices(Euros/kg)

,300 ,300

. = 300 . = 300

MUT (M. barbatus)

Size (mm) Prices(Euros/kg)

,160 ,160

. = 160 . = 160

doi:10.1371/journal.pone.0086222.t002

Figure 3. Conceptual scheme of the simulation approach used in exploring different scenarios of fishing effort (Section 3.7).
doi:10.1371/journal.pone.0086222.g003
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TCt~b0zb0Etzb2PStze

where TCt is the total cost sustained by the fleet for fuel at year t, Et

is the mean cost of fuel at year t, and St is the yearly cumulative

score described above. The model has been estimated for the

period 2006–2011.

Finally, revenues and costs associated to each effort pattern are

compared in order to compute Gains for year 2011 (G2011) [58].

Exploring different scenarios of fishing effort
Classical economic theory predicts that the distribution of

fishing effort is determined by the expected economic return to

individual fishermen from fishing alternative target species in

different fishing grounds [1,59–62]. To preliminarily explore the

performance of different management strategies, two types of

alternative scenarios of fishing effort pattern in 2010 were

simulated and evaluated with respect to corresponding gains and

short-time effects on resources abundance (Fig. 3). In the first

scenario, the total effort deployed in the GSA16 was modified

(reduced or augmented) without any spatial constraint. Seven

levels of total fishing effort were analyzed, corresponding to

230%, 220%, 210%, status quo (0% variation), +10%, +20%

and +30%, respectively, of the total number of fishing points

observed in the real pattern of year 2010 (Tf2010). In the second

scenario, the fishing effort was set to zero in three ‘‘boxes’’

overlapping the nursery areas of the three species, as identified in

[63] (Fig. 1d), and the amount of fishing effort originally present in

these areas was redistributed outside them. Boxes were defined

supposing that the closure of strategic zones (i.e. Marine Protected

Areas - MPA), which are fractions of the environment character-

ized by the presence of essential habitats and/or by the highest

presence of resources biomass, can increase resources abundance

[64–67]. Four situations were analyzed in this scenario, corre-

sponding to the single closure (fishing effort set to zero) of each box

(one at a time), and to the simultaneous closure of the three boxes

(Fig. 1d).

In the first scenario, it is assumed that a manager controls total

fishing effort (by limiting the number of fishermen, days fished, or

by other means) but not its spatial distribution. This rationale is

valid also for the second scenario, but in this case some areas are

excluded by fishing effort allocation.

A number of 100 runs were performed for each level/effort

configuration within each scenario (Fig. 3). At each run, the

simulation started from the observed resource distribution and the

pattern of fishing effort (Tf2010) obtained modifying the observed

one according to the different scenarios. In practice, we counted

the number of fishing points in each grid cell to deduce the

probabilities to observe points in the different cells. More formally,

at each iteration, the location of each single fishing point was

modeled as a multinomial distribution with Tf2010 trials and

support provided by the grid of cells, each having a probability pc.

The (estimated) probabilities pc of this distribution were obtained

from the observed frequencies. The two different types of scenarios

were obtained by performing: 1) a variation of the total number of

fishing points (Tf2010) keeping the probabilities pc constant, for the

first scenario; 2) a transformation of the probabilities pc keeping

the total number of fishing points Tf2010 constant, for the second

scenario.

In the latter case, we have that:

p
0

i~0 for cells belonging to nurseries areas or boxes

p
0

i~
piX

i[O

pi

for cells NOT belonging to nurseries areas or boxes

Where O is the set of cells not belonging to the closed box. The

simulation proceeded by evaluating at each iteration the new

pattern of fishing effort with respect to the associated gains value

(G2010): if this was greater than those obtained at the previous step,

the newly generated pattern was accepted and memorized, while

the corresponding value of G2010 was updated. In this way, the

iteration approach was devised to use the G2010 as the critical

value to be optimized within each run. The run ended when none

of a set of 100 newly generated patterns showed a value of G

greater than the last accepted one. Finally, the corresponding

effects of the final fishing effort configuration on the resources

Table 3. Values of mean length and standard deviation (sd) by species/cohort/year.

Species Year Female (R) mean length (cm) ± sd Male (=)mean length (cm) ± sd

Cohort 1 Cohort 2 Cohort 3 Cohort 1 Cohort 2 Cohort 3

P. longirostris 2006 14.162.1 23.461.8 26.763.5 15.761.8 21.061.4 25.561.6

2007 15.662.4 25.062.2 31.561.9 15.761.8 21.061.4 25.561.6

2008 19.962.1 24.461.6 28.862.5 16.761.8 20.561.4 25.061.6

2009 19.363.0 23.661.6 27.962.5 15.761.8 21.061.4 25.561.6

2010 15.563.3 22.862.0 30.962.1 15.761.8 21.061.4 25.561.6

M.merluccius 2006 100.0616.0 200.0644.8 320.06110.5 100.0619.0 190.0644.2 280.0659.3

2007 105.0616.0 200.0644.8 320.06110.5 105.0619.0 190.0644.2 280.0659.3

2008 100.0616.0 200.0631.3 320.06110.5 100.0619.0 190.0630.9 280.0659.3

2009 100.0616.0 200.0631.3 320.06110.5 100.0619.0 190.0630.9 280.0659.3

2010 120.0616.0 220.0631.3 340.06110.5 120.0619.0 210.0630.9 300.0659.3

M.barbatus 2006 144.0610.0 169.0621.0 / 130.967.0 151.0614.0 /

2007 165.0615.0 176.0620.0 / 123.067.0 150.0614.0 /

2008 149.0612.0 175.0620.0 / 134.069.0 154.0614.0 /

2009 159.6617.0 187.0619.0 / 122.068.0 155.0613.0 /

2010 144.0610.0 169.0621.0 / 134.268.0 155.0613.0 /

doi:10.1371/journal.pone.0086222.t003
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Figure 4. Spatial distribution, for each species/year, of the reconstructed total biomass (Log10 of tons, mean values for the period
2006–2010) obtained after the interpolation procedure of the MEDITS data.
doi:10.1371/journal.pone.0086222.g004

Figure 5. Distributions of the fishing effort in years 2006–2010 (a). Each map represents the 6 min66 min grid in which the Log10 of the number of
fishing points (VMS frequency = 10 minutes) is reported in a yellow-red scale color; b) trend in total fishing effort, from 2006 to 2010, in the GSA 16
area.
doi:10.1371/journal.pone.0086222.g005
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abundances for the successive year (2011) were evaluate as follows:

the trained EMPNs were used to predict the distribution and

abundances by species at year 2011, and the total Biomass

(Bs,2011) at year 2011 was used as specific indicator to summarize

the stock characteristics for each species. Simulation outputs from

both scenarios were evaluated and compared using the respective

distributions of G2010 and Bs,2011 as indicators of short-term

economic profitability and effect on the stocks, respectively. These

indicators were successfully used in bio-economic models based on

a simulation approach to inspect and compare outputs [5,54]. The

status quo situation, corresponding to a non-spatial management,

was used as a baseline.

The overall specific fishing mortality (Fs) was also computed for

each simulation output by comparing catches and resources

abundances for each size class in number, in order to further

inspect the effects of each management approach. Finally, the

characteristics of the optimized pattern of fishing effort for each

scenario were inspected in terms of a key aspect: the mean distance

from coast, which is expected to have a direct impact on costs and

then on gains. This was done by computing the Pattern Score

(PS2010), as previously described (see section 3.6).

Results

Distribution and abundance of demersal resources
The original multimodal LFDs and the corresponding normal

components are reported in Table 3 and visualized, for each

species, in Figures S1, S2, S3 to illustrate the process of mixture

splitting. In all cases, the K–S tests indicated a high degree of

correspondence between raw length distributions and fitted

mixtures (data not shown). In the meantime, the characteristics

in terms of mean and standard deviation seem to be remarkably

stable throughout the years (Table 3). In general, most of the

whole DPS biomass is concentrated on the Adventure bank,

together with a substantial presence of HKE and MUT (Fig. 4).

However, HKE and MUT are mainly located on offshore banks

but also on the south of the SoS.

Spatial distribution and intensity of fishing effort
Fishing effort appears to be concentrated along the western

coast in front of Sciacca and Porto Empedocle and the eastern side

of the Adventure Bank (Fig. 5a), where the nurseries of the three

species are located (Fig. 1d). Although a high degree of stability of

the overall pattern is evident, changes in effort level can be

observed in different areas and/or for certain years. Overall, the

Figure 6. Analysis of trained EMPNs by comparison between observed and predicted abundances for the three species. Each dot
represents the average value for a cell, while abundances are reported as relative values (range between 0 and 1). The comparison was carried out on
the test subset of data, that is a group of observations (cells) not used during the training phase. Training and testing of EMPN was performed 100
times for each species, since performance could be theoretically influenced by the composition of training and validation dataset, which is randomly
determined.
doi:10.1371/journal.pone.0086222.g006
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total fishing effort decreased reaching a maximum in 2007 and a

minimum in 2008, while remaining stable in 2009–2010 (Fig. 5b).

Predicting resources abundances through the artificial
neural network

The trained EMPNs for the three species returned a high level

of correlation between observed and predicted number of

individuals of each cohort. The patterns in Fig. 6a show linear

relationships between standardized prediction and observation.

The bootstrap procedure applied to evaluate EMPN performance

(100 times for each species) returned similar distributions for DPS

and HKE (over 80% of correct predictions) and higher for MUT

(around 95% - Fig. 6b).

In this way, the data used to feed the EMPNs provided suitable

information to forecast the abundances for year 2011. The three

EMPNs used in the following analyses were selected within the

trained EMPNs with performance close to the distribution means.

The sensitivity analysis showed that the group of input variables

characterized by the largest RI, for all the three species, is that

corresponding to the cohort abundances for previous years in the

same cell (Fig. 7). For DPS, the fishing effort is the secondary

factor, while for HKE and MUT the group of abundances in the

neighbouring cells precedes fishing effort in terms of RI. In all

cases, the RI for �DDc scored around 10%, while RI for Dsdc and

SST ranged between 2 and 7%. Fishing effort is always a not

marginal factor.

Bio-economic model for gains and biomasses
Biomasses, Catches and Total Fishing Mortality computed by

SMART were very similar to the values estimated by other models

(Table S1). The costs model reported a significant effect of both

fuel price and fishing effort pattern (in terms of distance from the

coast). The estimated coefficients are reported in Table 4, while a

graphical representation of the regression plane can be found in

Fig. S4. Both PSt and Et positively affect the total annual fuel cost,

the second factor being the most important.

The simulation of the first scenarios returns a monotonic

relationship between the total effort and economic performance

(G2010 of the whole fleet) (Fig. 8). Clearly, B2011 is inversely

proportional to the total effort for all three species, whereas gains

are linearly proportional to the amount of effort. At one extreme,

the reduction of fishing effort to 70% of the value observed in 2010

leads to an increase of B2011 equal to about 5% for DPS, 15% for

HKE and 11% for MUT, respectively. Conversely, an increase in

fishing effort to 130% of the value observed in 2010 leads to a

decrease of about 6%, 13% and 12% of B2011 for DPS, HKE and

MUT, respectively. In general, HKE and MUT seem to be the

species most affected by changes of effort level, whereas DPS is less

sensitive. It is significant that the simulations corresponding to a

level of effort equal to that observed in 2010 (that is 100%, without

reduction or increase) returned gains values very close to that

estimated on the basis of real data (IREPA source). However, the

range 70–130% of the total effort corresponds to a range of 40–50

millions of euros for G2010.

The closure of single nursery areas (Fig. 9) leads to a benefit, in

terms of B2011, for all species. It is worth noting that some

significant synergic effects occur: the closure of DPS nurseries

negatively affects MUT but positively affects HKE, whereas the

HKE closure has small positive effects on DPS and negative effects

on MUT. MUT closure negatively affects the other two species. In

all the cases of single box closure, the gains (G2010) tend to

decrease. Conversely, while the simultaneous closure of the three

boxes strongly benefits all three species in terms of B2011, it

Figure 7. Boxplots of Relative importance index (RI) for the
EMPNs input variables, organized in 6 groups for the sake of
conciseness and clearness.
doi:10.1371/journal.pone.0086222.g007

Table 4. Results of the regression for the costs model
(* marks statistically significant values).

Parameter Estimate Std. Error t value Pr(.|t|)

Intercept 21.6076107 4.9336106 23.257 0.047*

PSt (yearly cumulative score) 2.2006102 3.2546101 6.760 0.001*

Ey (mean cost of fuel at year y) 1.3216107 3.1616106 4.178 0.025*

doi:10.1371/journal.pone.0086222.t004
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determines a decrease of gains to a value smaller than that

observed for the 70% of total effort (Fig. 8).

In terms of structure of catches obtained for the first scenario,

the patterns remain substantially stable among length classes

(Fig. 10). Changes in total value of fishing effort determine

coherent changes in the total catches, but changes in catches per

length class (increase or decrease with respect to total effort) occur

over the entire range of lengths. Conversely, in the second

scenario, closure of DPS Box returned important changes in the

length structure of catches for DPS (Fig. 10), corresponding to a

reduction of smallest length classes (lower than 20 mm carapace

length). In the case of HKE, the closure of the corresponding Box

does not alter the catches profile, whereas closure of MUT Box

determines different decrease of catches for different length classes.

The simultaneous closure of all the three Boxes produced

remarkable effects for DPS and MUT, and particularly for

smallest length classes, but have also positive effects for HKE.

Looking at the total fishing mortalities for the three species

(Fig. 11), it seems that: 1) changes of the total allocated fishing

effort lead to significant changes in mortalities: 2) the closure of

single Boxes (second scenario) implies a reduction of mortality for

the related species that is comparable with the effect of a reduction

of the about 10% in the total fishing effort (first scenario).

These results can be better understood by looking at the mean

PS2010 associated to each scenario (Fig. 12). It is evident that PS2010

is not even directly proportional to the amount of total fishing

effort (first scenario), but also that configurations belonging to the

second scenario are characterized by PS2010 values which

correspond to that observed for the 90% effort level in the first

scenario. However, the simultaneous closure of all Boxes

determines a dramatic increase of PS2010 (and then of costs) that

is reasonably at the base of the gains collapse documented for this

configuration.

Discussion

In recent years growing interest has been shown in fisheries

management literature in the use of bio-economic models to

represent and analyze the short-term (1–2 years) dynamics of

fishing effort in response to regulation [69–73]. In this general

framework, SMART represents a tool to analyze and predict

interactions between groundfish resources and bottom trawl

fishing effort, since it is also able to capture the spatial dynamics

of resources in the environment and the performance of fisheries in

terms of catches, revenues, costs and ultimately gains. SMART has

been applied to the demersal fisheries in the Strait of Sicily, taking

into account three of the most important commercial species

Figure 8. Outputs of the simulations for the first scenario (change of total fishing effort without spatial constraints). Convex hulls are
used to represent the set of values of B2011 (Predicted biomass at year 2011) versus G2010 (Gains for year 2010) corresponding to the optimized
patterns returned by each run, with red dashed lines and red points represent G2010 and B2011 for the real (observed) pattern of fishing effort in 2010.
The bottom x axis reports the absolute values for B2011, while the top x axis shows the same values as differential percentage from the reference value
(B2011 for the observed pattern of fishing effort at year 2010). A yellow-red color scale is used to emphasize the progressive increase of total effort
from 70% to 130% of the real (observed) value at year 2010.
doi:10.1371/journal.pone.0086222.g008
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exploited in the study area (both in terms of yields and revenues):

the deep water rose shrimp, the European hake and the red

mullet. With respect to model performance, our results indicate a

good coherence and reliability of SMART, with regard both to its

predictive component (trained EMPNs which allow resource

distribution to be predicted – Fig. 5), to the deterministic module

(see Appendix S1) and finally to the simulation module. The

substantial agreement between the optimized pattern for the

simulated status quo of fishing effort pattern and the real data can

be considered as a validation of the approach.

The core of SMART is represented by the interaction between

fisheries and demersal resources. It is widely recognized that

environmental, trophic and exploitation factors are the main

elements regulating fluctuations of stock production in space and

time [73–75]. In extensively exploited coastal areas, resources

abundance is often regulated by fishing effort [14]. Bearing in

mind these considerations and working on a short temporal scale

(i.e. one or two years), the spatial abundance of a given resource in

a given area could be predicted using, as input data, some key

environmental descriptors, the observed abundances of the

resource and the level of exploitation by fishery in the previous

year. To implement the model, Artificial Neural Networks (ANN)

were chosen for their ability to recognize and learn the complex

non-monotonic and non-linear relationships between biotic and

abiotic aspects of the marine environment. Due to their flexibility,

the ANNs have been used in different contexts dealing with

prediction in fishery ecology, from primary production [51] to

fishermen’s behavior [41,76], from stock abundance [77] to spatial

distribution of demersal fish species [78]. The results of this first

SMART application indicated that internal resources dynamics

and fishing effort are more important, as predictive factors at these

time scales, than the environmental aspects considered (Fig. 7).

This in turn implies that the processes affecting resources

dynamics (e.g. ecosystem changes or fluctuations of the specific

productivity [79,80]) can significantly influence SMART in terms

of predictive performances and outputs. In this way, the

application of SMART is possible only if populations monitoring

(i.e. through the MEDITS survey) is guarantee on a regular spatial

and temporal basis. Moreover, if the temporal scale of SMART is

expanded (e.g. to decades), some changes in cohort parameters

could arise.

In our model, human activity (fishing effort) is a factor that

regulates system dynamics, determining the near future of the

whole system itself. However, this model could be further

developed in order to take into account changes of fishing effort

through feedback from the system, since variations in resource

abundance/distribution will reasonably lead to a rearrangement of

fishing effort in space. In particular, as species and stock

composition of the groundfish community varies in response to

environmental variables and harvesting, fishermen would respond

by varying fishing practices (e.g. location of fishing grounds) so as

to maintain the highest possible rates of economic return on effort

[4].

Figure 9. Outputs of the simulations for the second scenario (closure of single or multiple boxes). See caption of Fig. 8 for details.
doi:10.1371/journal.pone.0086222.g009
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Classically, there are several different ways of managing fishing

mortality: i) by varying fishing effort intensity ii) by changing the

exploitation pattern, i.e. the catch by size and iii) by a combination

of the above two measures [66]. In areas such as the

Mediterranean, characterized by small mesh size in the trawl net

cod end (the legal minimum size for European Countries is 40 mm

square or 50 mm diamond mesh opening [81]), stock productivity

and fleet profitability are generally impaired by a combination of

high fishing mortality and inadequate exploitation patterns, with a

large number of small sized catches. According to [82], a simple

reduction in the current fishing mortality without any change in

the fishing selectivity will not allow either stock biomass or fisheries

yield and revenue to be maximized. The negative effect of the

combination of poor exploitation pattern and high fishing

mortality on small sized fish has been reported also for ICES

areas [83]. The Authors also pointed to the existence of a trade-off

between the exploitation rate and how this affects fish size

(exploitation pattern). In particular, either a combination of a

Figure 10. Histograms of the percentage differences between the length-frequency pattern of catches for the simulated pattern of
fishing effort and those estimated for the real pattern observed in 2010. Simulations for the second scenario are reported together with the
extremes (70% and 130% of the first scenario) as reference for the comparison. Length-classes characterized by a relative increase of catch are
highlighted in red, while those characterized by a decrease are highlighted in blue.
doi:10.1371/journal.pone.0086222.g010
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relatively high exploitation rate with a low relative exploitation of

immature fish, or a combination of a high relative exploitation of

immature fish with a low exploitation rate, could contribute to

improving current stock status in the northeastern Atlantic. This is

in line with the classical theory of Beverton and Holt [68] who first

showed that optimal fishing mortality in an exploited stock

depends on the relative selectivity of the exploitation pattern.

Due to the poor selectivity of Mediterranean trawl fisheries, a

combination of seasonal and spatial closures was proposed as a

way to improve the current exploitation pattern by postponing the

size/age of young fish on first capture [82].

Following this rationale and these trends in resources manage-

ment, SMART allows disaggregating the standing stocks by

critical areas as a function of the presence of a sensitive life history

stage (juveniles and spawners). This property allows fishing

mortality to be managed on fractions of the whole population by

regulating the use of space by fisheries. Thus, the results of

SMART allow to evaluate, in the short term, the effectiveness for

the stock status of banning nursery areas (or fractions of them),

indicating a significant change of exploitation pattern for two

species (DPS and MUT) and the increase in standing stock (as total

biomass) for the protected species, thus improving the stock’s

capacity to avoid risk of depletion or collapse (Fig. 8). In fact,

analyzing the main changes in the exploitation pattern associated

with DPS and MUT Boxes closure, a decrease in catches for

smallest length classes can be observed for the target species

(Fig. 10). If all Boxes are closed, a positive improvement in the

exploitation pattern of all species is also evident (Fig. 9). From an

economic point of view, the simulations of the first scenario

indicated that the closing of nurseries (with the total level of fishing

effort kept constant) determines a reduction of fishing mortality

(Fig. 11) but also implies a significant reduction of total gains

(around 15%) for the fleet (Fig. 9). This most likely occurs because

all the three banned areas are located near to the coast, and

banning them determines a shift of fishing effort towards more

offshore areas (Fig. 12), with a likelihood increase of fuel costs.

Apart from economic aspects, the simultaneous closure of Boxes

reduces the trawling impact on stocks and is effective for the short-

term increase B2011 of all three species. In contrast, the closure of

the nursery for a single species seems to determine positive effects

for that species (less evident for DPS), but it could also determine

adverse impacts for the other two species (except for HKE when

Figure 11. Box plots representing the sets of values for Fs (total fishing mortality for a single species) as function of the applied fishing effort pattern
(a). Simulations for the second scenario are located near the 100% effort level, in agreement with the scale of the first scenario. Boxplots of gains
(G2010) corresponding to each simulated pattern (b).
doi:10.1371/journal.pone.0086222.g011
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MUT Box is closed), in agreement with the results obtained in

other multispecies fisheries in which a substantial spatial hetero-

geneity (e.g. overlap) in the distribution of species exists [5,84].

Moreover, it should be stressed that the relative effects (increase or

decrease in B2011) of the different simulations should probably

reverberate through successive years: if for instance all the Boxes

are closed, leading to an increase of B2011 between 5–25% for all

the three species, then also the catches and the revenues for the

successive years should increase (while the costs should remains

almost constant), so that the lowering of gains could be at least

partially compensated.

SMART is based on some assumptions: (1) the intra-annual

variability of the system is not considered, as the MEDITS survey

is carried out once per year; (2) the ANN approach does not

explicitly consider the effect of variations of fishing mortalities on

survival of recruited fish and on the generation of new recruits by

spawning stock; (3) inter-specific interactions are ignored.

With reference to point 1, it is important to observe that most

exploited demersal populations move between certain preferential

habitats at certain stages of their life cycle. For instance, most of

the demersal species aggregate in nursery and spawning areas and

fishermen take advantage of this behavior, increasing fishing effort

when and where the population is aggregated [69,83]. The annual

scale on which SMART currently works does not take into

consideration the fact that areas could be critical for times of less

than one year. However, from a conservationist point of view, this

apparent limit could be interpreted as a precautionary buffer: to

the extent that the closed areas might also be associated with a

high fishing effort (and catches) for the rest of the year (relative to

areas left open), fishing mortality would be reduced immediately

from a given level of nominal effort if they were closed all year

round [5]. Recent studies support this rationale [85–86].

Furthermore, the closures were expected to allow demersal stocks

to build up inside their boundaries since these areas, probably

‘‘essential habitats’’, are also characterized by the highest

concentrations of fish. The possibility of considering the intra-

annual dynamics of the system is definitely linked to modeling

migration and the different use of the habitat and space of the

investigated species during the year.

With reference to point 2, in the absence of an appropriate

model, it was not possible to include the increase of biomass due to

the growth of survivors and the effect of the increase in spawning

stock biomass on the recruitment from a given year through the

successive years. These limitations, together with the fact that

VMS data have been available only since 2006, lead to the

awareness that this model is presently appropriate only for short-

term predictions and comparative evaluations of fishing effort

patterns mainly during the year in which the measures are

adopted.

With reference to point 3, inter-specific interaction (i.e.

competition, predation, etc.) in modeled species is assumed to be

absent. However, the ANN model developed for this study could

be further expanded to incorporate inter-specific relationships.

Although the present form of SMART needs an extensive

testing in other areas and some of its modules must be integrated

and refined, there is a list of possible alternative scenarios that can

be explored. Namely, it could be interesting to explore changes in

some key parameters, such as those linked to trawl selectivity. The

model also allows combinations of changes in total effort and

closure of areas to trawling to be simulated and evaluated.

Conclusions

Spatially based fisheries management is crucial to sustainability

but implies conceptual, technical, and implementation challenges

[87–89]. This study combines environmental, biological, and

fisheries data in a modeling approach aimed to explore the impact

of different combinations of fishing effort management, including

area closure, on stock status, exploitation impact and fisheries

performance. In presenting our model, we have used information

and management scenarios for the trawl fisheries in the SoS. In its

current form the model is limited to short-term forecasts. The

inclusion of aspects linked to migrations of target species

(according to life phase and season) and then of explicit stock

dynamics is necessary to allow long-term simulation. However, the

model provides significant insight into the impact of management

measures that can prove useful for shifting multi-species demersal

fisheries, such as the trawling fisheries in the Strait of Sicily, from

the overfishing status to a more sustainable exploitation. The

substantial improvement in exploitation pattern by means of single

nursery closure with an increase of biomass for the successive year

and a relative decrease of gains, is a major output of the SMART

model. According to our results, a series of strategically designed

areas of fishery bans could significantly improve trawl fisheries

resource conditions in the Strait of Sicily.
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