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Abstract

Purpose: Previous nonlinear gradient research has focused on trajectories that reconstruct images with a minimum number
of echoes. Here we describe sequences where the nonlinear gradients vary in time to acquire the image in a single readout.
The readout is designed to be very smooth so that it can be compressed to minimal time without violating peripheral nerve
stimulation limits, yielding an image from a single 4 ms echo.

Theory and Methods: This sequence was inspired by considering the code of each voxel, i.e. the phase accumulation that a
voxel follows through the readout, an approach connected to traditional encoding theory. We present simulations for the
initial sequence, a low slew rate analog, and higher resolution reconstructions.

Results: Extremely fast acquisitions are achievable, though as one would expect, SNR is reduced relative to the slower
Cartesian sampling schemes because of the high gradient strengths.

Conclusions: The prospect that nonlinear gradients can acquire images in a single ,10 ms echo makes this a novel and
interesting approach to image encoding.
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Introduction

Parallel imaging, the use of locally sensitive receivers to provide

encoding, typically aims to reduce scan time by reconstructing

images from a reduced number of timepoints.[1–11] To facilitate

this, several groups, including our own, have studied whether the

geometry of gradient encoding can better complement the

information from locally sensitive receivers. [12–17] Previous

work has looked at whether this allows a further reduction in the

minimum number of echoes due to increased encoding efficiency

when the encoding is shared between the magnetic field gradients

and the receiver coil sensitivity profiles. This has led to many

studies of image encoding with nonlinear gradient shapes,

producing good image reconstructions from highly undersampled

datasets. [12–14] Previous nonlinear gradient encoding work has

also explored single shot trajectories employing EPI-like readouts.

One example is 4D-RIO (4-Dimensional Radial In/Out) which

uses an offset radial acquisitions on both linear and nonlinear

gradient channels. [18] EPI-like readouts have also been combined

with trajectories designed to enhance or sacrifice resolution in

different parts of the field of view. [19]

To date, these nonlinear fields have primarily had constant

amplitude over the readout. Here we present an image encoding

strategy that can produce extremely short image acquisition times

by using time varied waveforms that collect a single echo, making

a 642 image feasible in 4 ms. The proposed trajectories impose a

unique timecourse on each pixel in the image by applying rotating

nonlinear fields. Pixels with redundant or similar timecourses have

an azimuthal symmetry that can be distinguished via receiver coil

encoding.

Rather than producing images from a reduced number of

timepoints, the trajectory is designed to minimize the total slew of

the acquisition, allowing for high bandwidths that acquire the N2

datapoints in a minimal amount of time. [20–22] These images

produce a full 2D image after playing out a single sinusoidal

waveform on two nonlinear gradient channels. Thus, the entire

trajectory can theoretically be compressed to a 4 ms acquisition

time without violating peripheral nerve stimulation (PNS) thresh-

olds.

Theory
The shift in point of view that motivated this family of

trajectories was to consider gradient encoding as a means of

applying a unique phase/magnitude code or signature to each

pixel in the image. We refer to this timecourse as the code of that

pixel. The code of a pixel at (x,y) can be written as:

S(x,y,t,l)~Cle
i
Ðt
0

G(x,y,t)dt

ð1Þ

where l is the index for coil sensitivity Cl. So long as the code of a

pixel is unique and the noise is sufficiently low, the magnitude of

signal coming from that pixel can be deduced.

We can further justify this assertion by connecting it to the

matrix methods that are increasingly used to reconstruct MR

images. Typically, the reconstruction problem is defined as the
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solution, x, that satisfies: Ax = b, where b is the measurement data,

A is the encoding matrix, and x is the object or image. [23–30]

One typically describes A as being assembled row by row. Each

row describes the encoding Ai being applied when we measured

datapoint bi. Thus, each row captures the equation: Aix = bi

However, we can just as easily describe this same encoding

matrix as being assembled column by column. Each column

describes the code followed by a given pixel over the full course of

the acquisition. From this perspective, the matrix equation can be

understood as a decomposition of different timecourses, like those

commonly used in fMRI. [31,32] The object vector is equivalent

to the weight vector solved for in fMRI studies (the task for

example in such studies), and the weight of signal that follows a

given code tells us the density of spins in a given pixel.

Requiring a unique code for each pixel is equivalent to

requiring that the columns of the encoding matrix be linearly

independent to resolve the image. If two pixels have identical

codes due to gradient evolution (i.e. if two columns are identical),

those pixels ‘‘fold’’ on top of each other. However, just as in

SENSE, these pixels can be unfolded so long as the coil weightings

on the folded pixels are not identical. In terms of the encoding

matrix, the coil weightings create differently weighted versions of

the timecourse code, so that previously identical columns become

linearly independent.

The purpose of such sequences is to impose a unique code on

each voxel. Such a scheme should therefore be designed such that

voxels with the same gradient code should be distant in space so

that the receiver coil weightings may distinguish them. Further-

more, to achieve very fast acquisitions, we have focused on very

smooth gradient waveforms that could be played out in a single

acquisition window.

One field that produces an interesting code is that of a rotating

l = 3, |m| = 3 spherical harmonic, as shown in Figure 1. In

practice, any rotated version of that field can be achieved by

playing different proportions of the following third order fields:

G1 x,yð Þ~ 3x2{y2
� �

y & G2 x,yð Þ~ x2{3y2
� �

x ð2Þ

as shown in panels 1(a)–(c). If we play G1 with a cosine amplitude

modulation and G2 with a sine amplitude modulation, we rotate

the field through p/3, which returns us to the initial orientation

and spins anywhere in the FOV are dephased and rephased in this

cycle.

Figure 2b shows the code of the marked pixel (Figure 2a)

evolving under this field as it rotates clockwise. The pixel begins

accumulating negative phase at a rapid rate, but as rotation

continues, this rate decreases to zero as the null region of the field

approaches the pixel. Next the pixel begins to accumulate positive

phase, which it continues to do as the positive lobe of the field

passes over it. The pixel reaches its maximum positive phase when

the next null reaches it, and it then rephases to its initial phase as it

is traversed by the next half of the blue lobe.

We can also solve for this phase code analytically. The gradient

as a function of time is:

G(x,y,t)~ cos (vt)f3x2{y2gxz sin (vt)fx2{3y2gy ð3Þ

where t samples each dwell time of the acquisition and v is 2p
divided by the total acquisition time. Then the argument of the

exponential in Equation 1, the phase code of a voxel at (x,y), is:

i

ðt

0

G(x,y,t)dt! sin (vt)f3x2{y2gx{ cos (vt)fx2{3y2gy~

c1 sin (vt){c2 cos (vt):

ð3Þ

Thus, over the entire rotation, the phase code of any pixel will

look like a sine wave. The amplitude of the sine wave will be

proportional to its distance from the center, and the starting phase

is related to its azimuthal position. (See Figures 2c and 2d for the

location and code of a voxel at the same radius but different

azimuthal position.) Furthermore, every voxel returns to its initial

phase over the entire trajectory, so this is a self-refocused code.

Voxels at the same radius and p/3 radians apart will receive the

same phase code, but these are easily distinguished by the receiver

coil sensitivity encoding, especially at the periphery of the FOV.

Of course the weakness of this simple code is that the amplitude

of the sine wave diminishes near the center of the field of view,

which is also where coil encodings become least distinct. This can

make voxels difficult to distinguish, as can be seen in Figure 3.

Figure 1. Third Order Spherical Harmonics. Any orientation of this
field can be generated by the appropriate linear combinations of G1
and G2. Playing G1 and G2 with cosine and sine modulation
respectively generates a field rotating with constant angular velocity.
doi:10.1371/journal.pone.0086008.g001

Figure 2. Code for Peripheral Voxels under a Rotating Third
Order Field. Evolving under a rotating version of the field shown in (a),
the highlighted voxel accumulates a sinusoidal phase that returns to
zero over a full p/3 rotation of the field. A voxel at the same radius but a
different angular position has the same amplitude of variation, but
follows a sinusoidal phase code with different phase.
doi:10.1371/journal.pone.0086008.g002
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Here we show a voxel closer to the center of the FOV (3a) and its

timecourse (3b).

To address this limitation, we added a field with the shape of

(x2x0)2 + (y2y0)2, with x0 = 2.45FOV and y0 = 2.19FOV. This

field was then played out with an amplitude modulation that was

out of phase with field G1 and in phase with field G2. The spatial

shape of this additional field, which in practice is created by a

linear combination of the x, y, and z2- K(x2+y2) gradients, is

shown in Figure 3c, and is very similar to the fields used in O-

space imaging [12,13]. In general, adding linear components to

the z2-gradient only shifts the location of the field’s flat region or

center. However, because the strength of the linear magnetic

gradient fields changes during acquisition, the flat region of the

composite field across the field of view is translated across the field

of view during the readout. Though the relative proportions of

Gz2, Gx, and Gy remain constant, which corresponds to a constant

center placement of the Gz2 field, the changing proportion of G1

causes the saddle of the composite field to shift during the readout.

Simultaneously, the changing proportions of nonlinear gradients

also cause variations in the topology of the field, from a pure G1/

G2 combination, like those shown in Figure 1, to a stretched out

version that results from adding z2- K(x2+y2) gradient. The z2-

K(x2+y2) term is offcenter and thus introduces a steep gradient

across the center of the FOV where the G1/G2 gradients are

flattest thus allowing us to resolve spins in the center of the FOV.

Figure 3d shows the phase accumulation of this same voxel (3a)

using the modified trajectory. Since this additional field could

increase the overall bandwidth of the acquisition, the third order

fields are scaled accordingly to maintain the same bandwidth. In

addition, we show a voxel closer to the valley of the additional field

(3e) and its code (3f). These voxels now both have significant and

distinct phase excursions that can be used to distinguish their

codes.

Methods

Images were encoded using rotated versions of the fields shown

in Figure 1. This was simulated by applying linear combinations of

fields like those shown in Figure 4. Readout sampled 4096 points,

and encoding was simulated in Matlab at a 642 matrix size. Noise

was added to each readout from a white Gaussian distribution,

which was adjusted to provide an SNR of approximately 100 for

Cartesian images. The simulations used experimental receiver coil

profiles from an 8 channel coil. To capture intravoxel dephasing at

the edge of the field of view, we calculated the encoding matrix at

a resolution of 2562 and then summed over the 464 square

corresponding to our coarser voxels. This downsampled encoding

matrix was used for both data generation and image reconstruc-

tion. Reconstruction was performed with a Kaczmarz algorithm

Figure 3. Code for Central Voxels. Evolving under just the rotating third order field, a voxel such as that marked in (a) has little phase variation
over the acquisition. This is remedied by adding an offset 2nd order field like that shown in (b), using a combination of x, y, and z2 gradient shapes.
Giving this field a cosine amplitude modulation, the relatively flat part of the gradient changes both position and shape during the acquisition. This
creates the phase code seen in (d) for the same voxel. Voxels close to the nominal center placement, like the voxel highlighted in (e) also shows a
significant phase code (f) because the flat part of the field moves during the acquisition.
doi:10.1371/journal.pone.0086008.g003

Figure 4. Pulse Sequence for Single Echo Imaging. The sinusoidal
variations on the third order channel create a rotating third order field.
Meanwhile, since the amplitude modulation on the 1st and 2nd order
fields is different, the flat part of the gradient shifts in space, and the
center of the FOV is fully encoded. These trajectories encode the entire
image in a single shot, and the minimum slew analog on the right could
yield a complete image from a single 4 ms echo.
doi:10.1371/journal.pone.0086008.g004
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with 5 iterations. [12,23] The reconstruction included both

gradient and coil encoding in a single matrix, making this a true

parallel imaging reconstruction.

To study higher resolution reconstructions, we also simulated

reconstructions with longer acquisition times and higher recon-

struction matrix sizes. For 1282 images, the encoding matrix was

again 4-fold oversampled in space and binned down to capture

intravoxel dephasing, and noise was added by the same procedure.

Longer acquisitions were explored several ways: 1) by considering

the same shapes and number of points but with twice the dwell

time, leading to a longer acquisition window 2) by considering the

longer acquisition window, but maintaining the dwell time, leading

to twice the number of points, and 3) by acquiring more than one

echo. In the two echo simulations, the first echo uses linear and

second order fields that create G(x,y) = (x2x0)2 + (y2y0)2, while

the second echo uses the field G(x,y) = (x+x0)2 + (y+y0)2. The

amplitude modulation and the higher order gradient shapes are

otherwise the same.

To study the point spread function (PSF) properties of the

reconstruction, we also performed reconstructions of single point

images for each position in the FOV using our simulation for the

sinusoidal trajectory. These were also performed at 642 resolution,

with noise adjusted to produce an SNR of 150, and using

experimental coil receiver sensitivity profiles which were win-

dowed to the diameters of the bore of the coil before being

included in the reconstruction matrix. For each single point image,

we calculated a metric reflecting the localization of the PSF by

calculating the signal intensity at the occupied voxel divided by the

mean of signal intensity at all other voxels in the image.

Results

Figure 4a shows the basic pulse sequence for the rotating field

trajectory, with cosine and sine amplitude modulations on the

gradients. Limiting the gradient slew rate to 45T/s over the 20 cm

field of view (a limit commonly imposed on clinical scanners), we

find that this readout, which acquires the entire image, can be

played out in 8.2 ms. An acquisition time this short could be

achieved with the following maximum amplitudes for each field:

1800 Hz/cm, 180 Hz/cm2, and 1400 Hz/cm3 for the 1st, 2nd,

and 3rd order fields, respectively. Because fields are steepest at the

edge of the field of view, imaging over larger areas would require

lower bandwidth acquisitions and longer readouts, but our

projections would apply to normal brain imaging using a head

insert to generate the nonlinear fields.

To test the limits of fast imaging with this sequence, we also

studied a trajectory like that shown in Figure 4b. This linearized

trajectory reduces the maximum slew rate on each channel and

would theoretically allow us to acquire the data in 4.3 ms without

exceeding the mean threshold for peripheral nerve stimulation

discomfort (55T/s) over a 20 cm field of view. [33] This

acquisition scheme would imply a dwell time of approximately

1 ms. Maximum amplitudes along each channel would need to be

approximately doubled to achieve the same encodings over these

shorter dwell times.

Note that in both these pulse sequence diagrams, the sequences

and signals are shown in an arrangement that produces codes like

those shown in Figures 2 and 3. Thus the signal begins and ends at

its fully rephased state, reflecting the analysis described in the

Theory section. However, a symmetric echo can easily be

achieved with little additional time penalty. In practice, this could

be accomplished by simply running the sinusoidal trajectories for

an extra half-cycle and reading out the data in the last two thirds

of the trajectory. This would also place the echo at the center of

the readout, which is typically the best way to collect an echo.

Figure 5 shows reconstructions of images simulated from

acquisitions with both the sinusoidal and triangular trajectories

described above. The first column shows two phantoms recon-

structed using a standard Cartesian sampling scheme. If acquired

in an echo planar acquisition, this would correspond to a

minimum acquisition time of approximately 20 ms. The next

two columns show these phantoms as reconstructed from the

trajectories shown in Figure 4a and 4b, respectively. These images

show good image reconstruction, though noise levels are higher

than in the corresponding Cartesian trajectory. However, these

images could be generated by a single echo that is extremely short

and potentially allowing unprecedented temporal resolution.

To achieve higher resolution reconstructions, we studied various

trajectory modifications, with those results shown in Figure 6. The

first column shows reconstructions of the same data used to

reconstruct the 642 images of Figure 5 but here used to reconstruct

a 1282 image. The next two columns show reconstructions of

acquisition windows that would be twice as long. The longer

acquisition window would either result from acquiring the same

number of points, but doubling the dwell time, as we show in the

second column. This is equivalent to doubling the gradient

strength but, relative to the aforementioned acquisitions run at

maximum slew, this could only be achieved by increasing dwell

time. In the third column, the longer acquisition uses the original

gradient strengths and dwell times but acquires twice the number

of points. This shows a significant improvement in the recon-

struction. Finally we consider acquiring twice the original data

over two repetitions of the sequence. In the second repetition, we

use a different (x0,y0) for the circularly symmetric field, but this

shows little improvement over the longer readout and loses the

advantages of acquiring the entire image in a single echo.

In addition, we have also calculated and mapped a metric

reflecting our ability to localize signal in different parts of the field

of view. Figure 7 shows three individual single point image

reconstructions along with a map reporting the intensity observed

Figure 5. Simulation Results. Using two phantoms, we compare 642

reconstructions acquired with a standard Cartesian trajectory, and
compared these images with those obtained using the two trajectories
diagrammed in Figureô 4. Both the sinusoidal trajectory and lower slew
rate analog give excellent reconstructions, though dephasing notably
degrades SNR. However, these are promising reconstructions for single
echo data that could theoretically be acquired in as little as 4 ms.
doi:10.1371/journal.pone.0086008.g005
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at the target voxel divided by the average intensity in all other

voxels. As can be seen in panels a–c, the proposed trajectory

results in highly incoherent noise-like artifacts but no blurring.

These trajectories result in a relatively uniform sensitivity across

the field of view.

Discussion

Dynamically changing the gradient amplitude in sequences that

use nonlinear gradients can open a complex parameter space that

makes sequence design challenging. Due to memory constraints

and the structure of our simulation program, our simulations were

only feasible to a 1282 resolution, but the finer images could be

reconstructed by doubling the number of sample points in a single

echo. Still higher resolution reconstructions may also require only

an extended readout, still acquiring data for the entire image in a

single short echo.

By focusing on the code of each voxel, we can design sequences

that encode the entire image in a single readout. Redundancies in

the code are kept spatially separated such that the coil sensitivity

profiles from parallel receiver arrays can resolve the resulting

ambiguities. While the examples shown here used third order

gradients combined with an off-center z2 gradient a wide-range of

gradient shapes could potentially be explored to yield single echo

Figure 6. Higher Resolution Simulations. With the same trajectory and acquisition used in Figureô 5, but reconstructing to a 1282 matrix size,
(first column) we find a notable lack of resolution, particularly at the center. Doubling the length of the acquisition window, but acquiring the same
number of points (2nd column) shows little improvement, presumably due to incoherent artifacts related to inadequate sampling bandwidth.
However, by doubling the length of the acquisition window and collecting twice as many points (third column), the images are greatly improved. We
also simulated the effect of using a two-echo acquisition (fourth column), but little image quality is gained with the additional repetition time.
doi:10.1371/journal.pone.0086008.g006

Figure 7. Point Spread Function Map. Using the proposed 8 ms trajectory, we generated images of single point objects (a–c) as well as a map of
(signal at target voxel)/(mean signal in all other voxels), shown in (d). As can be seen from the individual single point images, the proposed encoding
results in noise-like artifacts distributed throughout the image, leading to a relatively uniform ability to localize signal across the field of view.
doi:10.1371/journal.pone.0086008.g007
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images. The important feature is to design dynamic gradient

trajectories that impose a unique phase and frequency history on

each voxel in the FOV in order to spatially localize each voxel.

This approach abandons the constraints that Fourier transform

theory conventionally imposes in terms of the data required to

reconstruct an image and yields a highly efficient encoding

strategy.

The use of extremely smooth sinusoidally varying gradient

amplitudes may make it possible to play these out on very short

time scales without violating physiological peripheral nerve

stimulation limits. Using these techniques, our simulations suggest

that it may be feasible to acquire a 642 image in as little as 4 ms

using only a single echo acquisition.
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