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Abstract

Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli
such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a
treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/
proteins belonging to regulons, which are known to have important functions in the oxidative stress response of other
organisms, were found to be upregulated, such as the Fur, Spx, SOS or CtsR regulon. Strikingly, parts of the fundamental
PerR regulon responding to peroxide stress in B. subtilis are not encoded in the B. pumilus genome. Thus, B. pumilus misses
the catalase KatA, the DNA-protection protein MrgA or the alkyl hydroperoxide reductase AhpCF. Data of this study
suggests that the catalase KatX2 takes over the function of the missing KatA in the oxidative stress response of B. pumilus.
The genome-wide expression analysis revealed an induction of bacillithiol (Cys-GlcN-malate, BSH) relevant genes. An
analysis of the intracellular metabolites detected high intracellular levels of this protective metabolite, which indicates the
importance of bacillithiol in the peroxide stress resistance of B. pumilus.
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Introduction mmprovement of industrial production strains, since oxidative
stress can occur in all phases of fermentation processes [1-3].

Reactive oxygen species (ROS) such as superoxide (Oy "),
hydrogen peroxide (HyOs) and hydroxyl radical (OH:) are
successive one-electron-reduction products of molecular oxygen
and therefore occur in all aerobically living organisms [3,6,7].
Increased ROS production that exceeds the cell defense capacity
leads to oxidative stress in the cell and to the oxidation of nucleic
physiology and stress adaptation is required. acids, proteins and lipids [2,3,8-10].

During fermentation processes a variety of stresses (e.g. salt, heat
and oxidative stress) can impair the fitness of the production host
and the quality of the fermentation product [1-3]. B. pumilus
strains are highly resistant against UV radiation and hydrogen
peroxide, which may explain the finding of viable spores of B.

Bacillus pumilus is a Gram-positive, rod-shaped and endospore-
forming bacterium closely related to the industrially relevant
bacteria Bacillus subtilis and  Bacillus  lchenyformis.  B.  pumilus
represents a potential alternative host for the industrial production
of enzymes. For the evaluation and optimization of fermentation
processes with this organism a comprehensive knowledge on its

In B. subtilis, the cellular defense against oxidative stress is
ensured by the detoxification of harmful agents, protection of
macromolecules and the repair or removal of damaged molecules.
The oxidative stress response of this organism is regulated by
S ; ’ Rl specific transcriptional regulators, such as PerR, SigB, LexA/
pumilus in hostile environments such as the interior of the Sonoran RecA, Spx and OhrR, as previously described in detail [11-13].
desert basalt and spac.ecrafts [4.5]. This natural potential and The oxidative stress response of B. pumilus differs significantly from
resistances of B. pumilus could be a major benefit for the the response in B. subtilis, as major oxidative stress genes of B.
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subtilis are missing in the genome of B. pumilus, such as the catalase
KatA or alkyl hydroperoxide reductase AhpCF. For some of these
genes no homologs could be found in the B. pumilus genome. This
leads to the questions, which genes compensate the missing genes
and are thus responsible for the oxidative stress resistance of B.
pumilus. In this study we used a combination of proteomics,
transcriptomics and metabolomics to investigate the individual
peroxide stress response of B. pumilus.

Materials and Methods

2.1 Strain, Media, Growth and Cell Sampling

Bacillus pumilus Jo2 (DSM 14395) was used for all experiments
described in this study. Cells were grown aerobically at 37°C and
180 rpm in minimal medium containing 15> mM (NH4),SOy,,
8 mM MgSO, x7 HyO, 27 mM KCI, 7 mM Na-citrate x2 H,O,
50 mM Tris-HCI (pH 7.5) supplemented with 1.8 mM KHyPO,,
2 mM CaCly, 1 uM FeSO,x7 HyO, 10 uM MnSO4 x4 H,0,
4.5 mM glutamate, 0.2% w/v glucose and 0.04 uM biotin.
Exponentially growing cells at an ODsgg ,n, of 0.6 were exposed
to a final concentration of 2 mM hydrogen peroxide. Proteome
samples were taken from unstressed cultures before and 10 as well
as 30 minutes after exposure to hydrogen peroxide. Samples were
pulse-labeled with L-[**S]-methionine for 5 min, as described by
Hoti et al. [14]. Samples for preparative gels were prepared from
unlabeled cells 30 and 60 min after exposure to HyOy [14].
Preparative gels were used only for spot identification via mass
spectrometry.

Samples for RNA extraction were taken before (control) and 3
and 8 min after addition of HyOy. Cell samples for RNA
extraction were mixed with 0.5 volumes of ice-cold killing buffer
(20 mM Tris-HCI pH 7.5, 5 mM MgCl, 20 mM NaNj3), and
immediately harvested at 10000 xg for 5 min at 4°C.

2.2. Scanning Electron Microscopy

For the scanning electron microscopy, the cells were separated
from the culture medium by filtration through a 0.2 um pore size
polycarbonate filter. The filter were placed in fixation solution (1%
glutaraldehyde, 4% paraformaldehyde, 50 mM NaNj in 5 mM
HEPES [pH 7.4]) for | h at room temperature and 4°C overnight.
After fixation, the samples were treated with 2% tannic acid for
1 h, 1% osmium tetroxide for 2 h, 1% thiocarbohydrazide for
30 min, 1% osmium tetroxide overnight, and 2% uranyl acetate
for 30 min with washing steps in between. The samples were
dehydrated in a graded series of aqueous ethanol solutions (10—
100%) and then critical point-dried. Finally, filter were mounted
on aluminum stubs, sputtered with gold/palladium and examined
in a scanning eclectron microscope EVO LS10 (Carl Zeiss
microscopy GmbH, Oberkochen, Germany).

2.3 Transmission Electron Microscopy

Cells were fixed in 1% glutaraldehyde, 4% paraformaldehyde,
50 mM NaNj in 5 mM HEPES for 1 h at room temperature and
then at 4°C overnight. Subsequent to embedding the cells in low
gelling agarose, cells were postfixed in 2% osmium tetroxide for
2 h at 4°C. After dehydration in graded series of ethanol (20—
100%) for 10 min each step with 0.5% uranyl acetate in 70%
ethanol for 30 min (at 4°C) in between, the material was
embedded in Epon. Sections were cut on an ultramicrotome
(Reichert Ultracut, Leica UK Ltd, Milton Keynes, UK), stained
with uranyl acetate and lead citrate and analyzed with a
transmission electron microscope LEO 906 (Carl Zeiss microscopy
GmbH, Oberkochen, Germany).
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2.4 2D-Gel Electrophoresis

Cytosolic protein extracts were loaded onto IPG-strips in the
pH-range 4-7 (GE Healthcare Bio-Sciences AB, Finland) using
100 pg protein for labeled samples and 500 pg for preparative
gels. 2D-PAGE was performed as described by Biittner et al. [15].
Autoradiography of radioactively labeled gels was performed as
previously described [14]. Preparative gels were stained with
Coomassie Brilliant Blue as described by Voigt et al. [16]. Proteins
were excised from preparative gels, digested and the peptide
solution spotted onto MALDI targets using the Ettan Spot
Handling Workstation (GE Healthcare, UK). Identification was
performed using MALDI-TOF-MS/MS (Proteome Analyzer
5800 MDS Sciex, USA) and an in-house B. pumilus Jo2 (DSM
14395) database as described by Wolf et al. [17]. Protein
quantification was done with the Delta?D proteome software
(Decodon, Germany).

2.5 Microarray Experiment

Total RNA of B. pumilus was prepared by the acid phenol
method [18] with the modifications described elsewhere [19]. The
1solated RNA was treated with DNase (RNase-free DNase Set,
Quiagen, Germany) and subsequently concentrated and cleaned
(RNA cleanup and concentration Kit, Norgen Biotek, Canada).
Quantity of RNA was determined on a microscale spectropho-
tometer (Nanodrop ND-1000, Peqlab Biotechnologic GmbH,
Germany) and RNA integrity was analyzed using a capillary
electrophoresis system (Bioanalyzer 2100, Agilent Technologies,
USA). Synthesis and purification of fluorescently labeled cDNA
was carried out according to Schroeter e/ al. [20] with minor
modifications described below. After the labeling and clean-up
step [20], 600 ng of respective Cy3- and Cy) -labeled cDNA were
admixed (ad. 44 ul), denaturated and mixed with 11 pl pre-
warmed blocking agent and 60 ul hybridization buffer (both Gene
expression hybridization kit, Agilent Technologies, USA). 100 ul
of the emerging cDNA mixture, respectively, were used for any
hybridization. Custom-made B. pumilus Jo2 4x44 K gene expres-
sion microarrays were obtained from Agilent Technologies
(https://earray.chem.agilent.com/earray/), containing 60-mer
Oligonucleotide probes (SurePrint technology, Agilent Technolo-
gies). Probe design was performed on the chromosome sequence of
B. pumilus Jo2 (Sequence Intellectual Property of Henkel KGaA).
In addition to the annotated open reading frames (ORFs), ORF's
were predicted using (i) Glimmer 3.0 [21], (ii) ZCURVE [22], (iii)
Genemark HMM [23], and (iv) Prodigal [24]. Predicted ORFs
were added to the design provided that: (i) they were non-
overlapping with existing ORFs; or (ii) they were in the reverse
complementary strand of existing ORFs. On the annotated and
predicted ORFs, up to 5 probes were designed. Altogether, a total
of 41377 probes were designed by means of OligoWiz 2.1.3 [25]
using default parameters for prokaryotic long-mers. The arrays
were hybridized and washed according to the manufacturer’s
instructions  (T'wo-Color Microarray-Based Gene Expression
Analysis Protocol, Agilent Technologies, USA), followed by a last
wash step with acetonitrile (Carl Roth GmbH+Co. KG, Germany)
for 30 sec. Microarrays were scanned using the Agilent scanner
Type G2565CA with high resolution upgrade G2539A and the
software Scan Control 8.4.1 (Agilent Technologies, USA). Data
were extracted from scanned images using Agilent’s Feature
Extraction Software (version 10.5.1.1; Agilent Technologies, USA)
using default settings. A common reference type of design was
employed, and data from three biological replicate hybridizations
for each point in time were used for data analysis. Spot signals
were normalized using Lowess as described earlier [26]. Next, for
each ORF a signal was determined by taking the median signal of
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the up to 5 probes per ORF. Differential regulation was
determined from the biological triplicate measurements by false-
discovery rate (FDR) from the Cyber-T p-values [27] by means of
multiple testing correction [26]. Differential regulation was defined
as a 2-fold or higher differential expression with a FDR cut-off
value of 0.05 or lower.

2.6 Metabolomic Analysis of Thiols as their
Monobromobimane-derivatives

Cells were grown in minimal medium as described above and
exponentially grown cells from 10 ml culture medium were
harvested before oxidative stress, 10, 30 and 60 min after addition
of hydrogen peroxide. The isolation of LMW-thiols for HPLC
analysis was performed as described previously [28]. In brief, after
centrifugation the cells were washed with 50 mM Tris—-HCI
(pH 8.0) and resuspended in 50% acetonitrile containing 20 mM
Tris-HCI (pH 8.0), 1 mM penicillamine as internal standard and
2 mM monobromobimane (mBBr). Control samples were resus-
pended without penicillamine and 5 mM N-ethylmaleimide
(NEM) was used prior to addition of mBBr. Thiols were extracted
at 60°C and directly labeled with mBBr. Labeling reaction was
stopped with aqueous methane sulfonic acid in a final concentra-
tion of 5 mM. BSmB (monobromobimane-derivative of BSH)
standards were synthesized as described previously [7,29]. For
detection and quantification of LMW-thiols, ion pairing HPLC
was performed as described before [30]. For absolute quantifica-
tion the ratio peak area thiol/peak area internal standard was used
and an eight-point calibration between 10 nM and 2000 nM was
generated.

2.7 Prediction of the PerR Consensus Sequence

Prediction of the PerR consensus sequence was done with the
PRODORIC® database (http://prodoric.tu-bs.de/v{p/index2.
php) release 8.9 [31] using the consensus sequence as described
by Fuangthong et al. [32].

Results and Discussion

3.1 Effects of H,0, on Growth and Cell Morphology

Exponentially growing B. pumilus cells were treated with 2 mM
hydrogen peroxide. Thus, the concentration of HyOy that was
used to trigger the stress in this study was about 40-fold higher
than those used for comparable analyses with B. subtilis or B.
licheniformis [13,20]. The highest peroxide concentrations allowing
growth for B. subtilis and B. lchemiformus were 4 and 1 mM,
respectively (Table S1). B. pumilus is still able to grow with 20 mM
hydrogen peroxide. This indicates a striking resistance of B. pumalus
against peroxide stress. Compared to unstressed cells, growth was
significantly impaired for a short time (approximately 15 min)
after the HyOy treatment (Figure 1). However, after that time, cells
continued to grow for about one hour. An electron microscopy
analysis indicated that after exposure to HyO9 most of the cells are
morphologically intact, but some of the cells exhibited major
damage of their envelope (Figure 2D). Furthermore, scanning
electron microscopy revealed some atypically long cells (up to
approximately 10-20% two hours after HyOy treatment,
Figure 2B, 2E) indicating an impact of hydrogen peroxide on
processes involved in cell division.

3.2 Global Expression Profile

All values presented for up- and downregulation of genes or
proteins are fold change values. The analysis of the soluble
intracellular proteome of B. pumilus revealed 54 significantly
upregulated and 111 downregulated proteins 10 min after HyO4
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treatment (with a threshold of 2-fold, Table 1, Table S2, Figure 3).
For the visualization of the fast and early response on proteome
level, a labeling with **S-methionine was necessary. 30 minutes
after initiating the stress, 73 proteins were up- and 59 proteins
downregulated (Table 1, Table S2 and S3, Figure 4). Transcrip-
tome analysis revealed an at least 2-fold increased transcription of
181 genes three minutes after treatment with HyOg; 76 of them
were more than 3-fold upregulated. Eight minutes after treatment,
the transcription of 558 genes appeared at least 2-fold increased
(307 genes with an at least 3-fold increased transcription). Three
minutes after the stress, 266 genes were transcribed with an at least
3-fold lower rate than under control conditions, for 296 genes this
decreased transcription rate was shown eight minutes after
treatment. To indicate quality of the transcriptome results, raw
data for individual probes for selected genes (which were not found
to be induced in the proteome analysis) are presented in Table S4.
These data show similar basal values and changes following
addition of hydrogen peroxide for all five probes corresponding to
a gene.

To compare the physiological changes in HyOy treated B.
pumalus cells with the oxidative stress responses of other organisms,
the upregulated genes and proteins were assigned to putative
regulons known from related organisms like B. subtilis and B.
lichemiformis [13,20]. 139 of the upregulated genes and proteins
could be assigned to these putative regulons (Table S2). The thus
classified genes and proteins identified in this study are summa-
rized and discussed below.

3.3 PerR Regulon

The PerR regulon is known to be highly induced by oxidative
stress caused by hydrogen peroxide and paraquat [13]. As shown
previously for B. licheniformis, the B. pumilus genome encodes a PerR
regulator protein with a high level of identity (93%) to the PerR-
protein known from B. subtilis [20]. Transcription of the perR gene
was significantly increased immediately after stress (Table 1). This
indicates a regulation mechanism of PerR in HyOy treated B.
pumilus cells that is similar to the de-repression model reported for
B. subtilis [33].

In our study genes assigned to a putative PerR regulon,
including those encoding the regulator proteins Fur and SpxA as
well as the zinc-uptake protein ZosA, the heme biosynthesis
complex HemABCD2LX and the general stress protein YjbC
were significantly induced at transcriptional level (Table 1).

Strikingly, some of the PerR-regulated genes exhibiting the
highest induction in B. subtilis cells subjected to hydrogen peroxide,
are absent from the genome of the B. pumilus strain used in our
study, as well as from a previously published B. pumilus genome
[34]. This applies e.g. for the genes encoding the catalase KatA
and the DNA-protection protein MrgA. Furthermore, B. pumilus
lacks not only the genes aipC and ahpF, encoding subunits of the
alkyl hydroperoxide reductase, but there are no genes annotated
with this function in the genome.

Instead of KatA, a gene annotated as catalase KatX2 (53%
sequence similarity to B. subtilis KatX) was significantly induced in
B. pumilus cells at transcriptional and translational level (up to 10
and 20-fold, respectively, Table 1). Thereby, KatX2 was one of
the proteins with the highest induction rates detected. B. subtilis
and B. lchenyformis subjected to hydrogen peroxide exhibit a more
than 100-fold induction of KatA [13,20]. KatX2 comprises about
0.38% of the cytoplasmic protein present in the gel before addition
of hydrogen peroxide. The values for B. subtilis and B. licheniformus
are 0.13% in both strains (personal communication C. Scharf, B.
Voigt). After addition of hydrogen peroxide KatX2 comprises
about 3.8% of the cytoplasmic protein. This is comparable to the
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Figure 1. Growth of B. pumilus. Growth of B. pumilus under control conditions (filled squares) and stressed with 2 mM H,0, at ODsgg 1y, 0.6 (empty

squares).
doi:10.1371/journal.pone.0085625.9001

Figure 2. Electron microscopy micrographs. Scanning (A,B,E) and transmission (C,D) electron microscopy micrographs of B. pumilus cells under
control conditions (A,C), 30 min (B,D) and 120 min after treatment with 2 mM H,O0, (E).

doi:10.1371/journal.pone.0085625.9002
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Selected genes and proteins that are induced in H,0, treated B. pumilus cells.

Genes and proteins are listed, which could be assigned to putative regulons known from other Bacilli. Complete lists of upregulated as well as downregulated genes/proteins is given in supporting information Tables S2 and S3.
For transcriptome, selected genes are shown for 3 and 8 minutes after stress compared to the control conditions (0 min). For a complete list of induced and repressed genes see Table S3. Differential regulation was determined

from the biological triplicate measurements by false-discovery rate (FDR) from the Cyber-T p-values [27] by means of multiple testing correction [26]. Differential regulation was defined as a two-fold or higher differential

expression with a FDR cut-off value of 0.05 or lower. Protein quantification was performed by the Delta 2D software (Decodon) from 3 biological replicates with a FDR cut-off value of 0.05 or lower.

doi:10.1371/journal.pone.0085625.t001
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value of 3.6% for B. licheniformis (personal communication B. Voigt)
but higher than the value for B. sublilis (1.2%, personal
communication C. Scharf). These values indicate that in B.
pumilus there is a higher synthesis of KatX2 already in unstressed
cells compared to B. subtilis and B. licheniformis KatA explaining the
lower induction rate. In B. subtilis, KatX 1s the major spore catalase
and under control of SigB and SigF [35,36]. We detected a B.
subtilis PerR consensus sequence [32] containing 2 mismatches
about 90 bases in front of the start codon of KatX2 indicating a
possible involvement of PerR in its regulation.

3.4 Fur Regulon and Fe-metabolism

The PerR-regulated fur gene of B. pumilus, shows 95% similarity
to the fur gene known from B. subtilis and was induced 3.6-fold
after stress [32]. The regulator protein Fur of B. subtilis controls the
expression of genes responsible for iron uptake [37]. Immediately
after exposure to HyOy, cytosolic iron concentration is consider-
ably reduced to prevent the formation of OH" by the Fenton
reaction [13]. Upregulation of the Fur-controlled genes may be a
reaction of the cells to optimize iron uptake in order to face the
resulting iron limitation. Alternatively it might be that Fur is HyO4
sensitive as it 13 in E. col [38].

Nine genes of a putative Fur regulon showed a significantly
increased expression in B. pumilus cells after HyOy treatment,
including the ABC transporter system fhuB1CI1GI (Table 1). The
JhuC gene was induced by HyOy in B. subtilis and B. licheniformis, too
[13,20]. Further Fur regulon member genes known to be induced
by HoOy in B. subtilis showing an induction in our study were ykulV,
ykuP (flavodoxins) and the hypothetical protein ykuO. With an
about 30-fold higher mRNA level 8 minutes after treatment, these
were among the highest upregulated genes in this putative regulon.
The putative nitroreductase YthC, also induced in HyOg stressed
B. subtilis cells, was the only member of the putative Fur regulon
we observed to be upregulated at translational level.

The gene ywjd, encoding another ABC transporter of yet
unknown function, the peptidase encoding gene yfkM and the
bacillibactin esterase encoding gene ybbA were upregulated, too.
These genes are Fur-regulated in B. subtilis, but they were not
upregulated by HyOy in this organism [13,39]. In B. subtilis and B.
licheniformus, the siderophore biosynthesis complex encoded by
dhbACEBF was strongly upregulated by HoOs. In our study, these
genes showed no significant changes in their expression level.

Other genes that exhibited higher transcription rates after HyOo
treatment were the iron ABC transporter protein encoding gene
Jeud and its upstream-located regulator y6bB (renamed btr in B.
subtilis) [40]. Unlike B. subtilis, the B. pumilus genome encodes a
second Fhu-related iron uptake system. Our study showed an
induction of the genes encoding FhuC2-FhuB2-BPJ35820 as well
as fuG2 and fhuD immediately after subjecting the cells to the
stress. Two further putative iron transporter systems, 6p35830-
bpr35840-bpi35850 and  bpj08420-bpj08450-bp08440, were in-
duced, too. The proteins encoded by the latter genes showed no
significant homology to any protein known from related Bacillus
species.

Furthermore, the proteomic approach revealed a strong
induction of the siderophore synthesis proteins RhbA, RhbE and
RhbF, encoded by the 1bABCDEF-operon (Table 1). A rather
slight induction at the translational level was shown for the iron/
sulfur cluster biogenesis proteins SufB, SufS, SufD and SufC as
previously shown for B. licheniformis [20]. The sufU gene was found
to be only slightly upregulated at the mRNA level.
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3.5 Spx Regulon and Bacillithiol [41,42]. This gene exhibited an about 4-fold increased transcrip-

Another regulator protein assigned to the putative PerR regulon tion rate in HyOy stressed B. pumilus cells. Some of the genes and
is SpxA, controlling the expression of the Spx regulon in B. subtilis proteins attributed to a putative Spx regulon in B. pumilus
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appeared to have rather moderately increased expression rates or encoded by three of them, nitro/flavinreductase NfrA, putative
were not induced after HyOy treatment. NADPH-dependent butanol dehydrogenase Yug] and thiore-
In our study we detected six genes of a putative Spx regulon to doxin-disulfide reductase TrxB, were induced in HyO, treated

be induced following HyOy treatment (Table 1). The proteins cells, too. Upregulation of msrAB (methionine sulfoxide reductase
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operon) and #xA (thioredoxin) was detected at transcriptional level
only. The proteins TrxA and TrxB are described to act in direct
detoxification of hydrogen peroxide [43-45]. Cystathionine
gamma-lyase MccB and DinB-like domain-containing protein
YuaE showed an induction only at proteome level.

The Spx-regulated s/ operon, mediating competence and
metabolic functions in B. subtilis, is absent in the B. pumilus
genome as shown before for B. lcheniformis [42,46,47].

We noticed an increased transcription of ypdA and ygiWW as well
as an induction of the yphP gene product (Table 1). These genes
co-occur with bacillithiol (Cys-GlcN-malate, BSH) synthesis genes
[48]. However, only one gene encoding a protein involved in
bacillithiol synthesis, ygyG was transcribed at a slightly elevated
level (Table S2). Bacillithiol is one of the major thiols in B. subtilis
and known to be involved in resistance against organic peroxide
stress and disulfide stress [7,49,50]. For further investigation, we
analyzed the cytosolic metabolome of HyOq treated B. pumilus cells
concerning the concentration of thiol compounds. Our analysis
revealed a bacillithiol level of 2.6 nmol per mg cell dry weight
already under control conditions. Similar BSH concentrations
have been detected in B. subtilis (0.6-2.2 nmol per mg) [7,48,51].
Ten minutes after HyO, treatment, the cytosolic concentration of
bacillithiol increased to 5 nmol per mg cell dry weight (Figure 5).
The increase continued up to a concentration of about 6.2 nmol
per mg cell dry weight 60 minutes after stress. Since only one
bacillithiol synthesis gene (ygjG, renamed bshB2 in B. subtilis) was
slightly upregulated, increase of bacillithiol concentration in the
cells might be regulated allosterically, for example, by an oxidation
of the BSH pool leading to a relief of feedback inhibition. [52,53].

3.6 SOS Regulon

H,0, treatment leads to the formation of OH" by Fenton
reaction, which exhibits a high DNA-damaging potential.
Lowering the concentration of iron in the cells reduces this threat.
As a result, B. subtilis and B. licheniformus cells subjected to oxidative
stress caused by HyOy, induced the SOS regulon, regulated by the

PLOS ONE | www.plosone.org
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proteins RecA and LexA, responsible for repair of DNA
[13,20,54,55].

The proteomic analysis displayed the induction of two proteins,
excinuclease subunit UvrB and the recombinase RecA, assigned to
a putative SOS regulon in B. pumilus following HyOg treatment
(Table 1). The transcriptomic approach added further 13
upregulated genes belonging to this putative regulon; among
them the excinuclease subunits encoding genes uor4 and worC. The
operon yneABynzC, induced by HyOy and involved in suppression
of cell division in B. subtilis, was also strongly induced in our study
[13,56]. This might be an explanation for the formation of
atypically long cells as described above. Showing an about 44-fold
increased transcription rate, yned belongs to the strongest induced
genes observed in our study. Furthermore, the putative DNA
double-strand break repair cluster yhaONM exhibited a signifi-
cantly higher transcription rate following HyO, addition [57].

3.7 CtsR Regulon

The CtsR regulon, mediating repair and/or degradation of
misfolded and damaged proteins, was induced by several oxidative
stressors in B. subtilis and B. licheniformis [13,20,58]. In our study,
we detected an upregulation of nine genes assigned to a putative
CtsR regulon in B. pumilus indicating a significant impact of HyOq
on protein quality (Table 1). The operon ctsR-mesAB-clpC was
transcribed with significantly higher intensity after the addition of
HyOy as well as the genes clpFE, clpX and clpP, encoding members
of the proteolytic complex. Only ClpP was observed to be induced
at the protein level. Furthermore, the DNA repair protein
encoding gene radA and the DNA integrity scanning protein
encoding gene disA showed higher transcription rates compared to
control conditions.

3.8 SigB Regulon

Besides the induction of the above described putative regulons
more or less directly associated to oxidative stress, HoOq treated
cells exhibited an upregulation of 47 genes known to be under
control of the general stress sigma factor SigB in B. subtilis (Table 1)
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[59,60]. A part of a putative SigB-regulon in B. pumilus detected to
be upregulated in our study was the sigB gene itself with its signal
cascade genes rsbRSTUVIW and r5b.X indicating an activation of the
putative regulon via the general stress response cascade known
from B. subtilis [61].

Another of these putative SigB-dependent genes, encoding the
putative universal stress protein NhaX, showed the highest
induction rate detected in this study (more than 60-fold). Further
strongly upregulated genes are the regulator protein encoding
gene mgsR and pdaG (general stress protein), both also detected to
be induced in HyO, stressed B. lcheniformis cells [20]. The
upregulated genes mgsR and ydaG encode proteins with still
unknown functions. Six of the upregulated putative SigB-
dependent genes could be also detected to be induced in the
proteomic approach. The putative general stress protein YtxH is
among the strongest induced proteins (about 14-fold). The putative
iron storage/DNA protecting protein Dps, providing peroxide
resistance in B. anthracis, was induced in HyOq treated B. pumilus
cells, too [62].

3.9 CymR Regulon

The results of our study showed an upregulation of several
proteins belonging to a putative CymR regulon. In B. subtilis, it is
described to be involved in regulation of the sulfur metabolism
[63]. An induction of genes belonging to this regulon has been
shown in cells afflicted with oxidative stress caused by paraquat,
but not stress caused by HoO, [13]. Our proteome study showed a
strong induction of three putatively CymR-regulated proteins. The
adenylyl-sulfate kinase (CysC) was with an induction of about 24-
fold the strongest induced protein. An upregulation of the sulfate
adenylyltransferase (Sat) catalyzing sulfate assimilation to 3’'-
phospho-adenylylsulfate was also detected (Table 1). Further
proteins involved in cysteine biosynthesis were not significantly
upregulated. The third upregulated protein is the uroporphyrin-3
C-methyltransferase (CysG). This enzyme catalyzes a reaction in a
branch in the heme pathway producing precorrin2. An induction
of the enzymes that continue the pathway from precorrin2 to
siroheme could not be detected.

3.10 Other B. pumilus Upregulated Genes/proteins

The OhrR-regulated peroxiredoxin-encoding gene oA is
reported to be involved in organic peroxide resistance in B. subtilis
[64]. Following H,O, treatment, there was no induction of this
gene observed in B. subtilis and B. licheniformis [13,20]. In our study,
we observed a strongly induced expression of this gene at
transcriptional and translational level indicating an involvement
of this peroxiredoxin in the HyOy resistance of B. pumilus (Table 1).
Transcription of the other organic peroxide resistance peroxir-
edoxin (ohrB) as well as their regulator gene oirR was also slightly
induced in hydrogen peroxide treated B. pumilus cells.

H50O, treatment induced some additional regulator genes. One
of them is fadR, encoding a regulator protein mediating fatty acid
degradation in B. subtilis [65]. Two genes putatively controlled by
FadR, etfAB - encoding the electron transfer flavoprotein alpha
and beta subunit, were also induced (Table S2). Another regulator,
AbrB1, controlling the expression of genes induced by transition
from exponential to stationary growth in B. subtilis [66], was
induced at transcriptional and translational level. Similar results,
but with significantly higher induction rates in the proteomic
approach, were observed for the AbrBl-regulated peroxiredoxin
YkuU and thiol-disulfide oxidoreductase YkuV. Furthermore,
several putative regulator genes with still unknown targets were
observed to be upregulated. Bpjl3620, bpj17020 and ydcl showed
the highest changes in their expression rates. Genes encoding a
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sensor kinase and a response regulator forming the two-
component system YhcYZ were significantly induced directly
after HoOy treatment. Its function is also unknown.

Several genes and proteins involved in transport processes were
detected to be upregulated following HyOy stress (Table 1, S2).
HyOy treatment caused an upregulation of the sodium uptake
system natAB and the mipABCDEFG cluster. This operon encodes a
sodium excretion system that is considered to be the major sodium
excretion system in bacteria and acts in pH homeostasis and
multiple resistances in B. subtilis [67,68].

Strikingly, transcription of the glycine betaine uptake system
consisting of opudA-AB-AC and opuCA-CB-CC-CD was observed to
be significantly induced after treatment, indicating that HyO,
impacts osmotic homeostasis in B. pumilus cells [69]. Furthermore,
it is worth to mention that HyO, induced expression of a putative
TRAP regulon in B. pumilus cells. An upregulation of the
tryptophan-synthesis operon #pABFCDE as well as histidinol-
phosphate aminotransferase HisC was observed in our analysis.
However, neither addition of tryptophan nor addition of glycine
betaine before peroxide treatment brought forth better growth or
survival of stressed B. pumilus cells (data not shown).

3.11 Downregulated Genes/proteins

As shown for many other organisms, the adaptation mechanism
of B. pumalus cells to oxidative stress includes also a downregulation
of vegetative cellular functions. Most of the down-regulated genes
encode proteins involved in main metabolic pathways. As shown
for B. subtilis and B. licheniformis, expression of the purine and
pyrimidine synthesis genes was downregulated as well as genes
involved in synthesis of arginine (Table S3) [13,20]. Contrary to B.
subtilis and B. licheniformus, a repression of histidine synthesis genes
was not observed. Instead, isoleucine and leucine synthesis genes
were expressed in lower amounts following H,Oj treatment. This
repression might due to the iron sparing response described by
Gaballa et al. [70]. Repression of enzymes involved in branched
chain amino acid synthesis has been found during iron starvation
in B. subtilis [37]. Furthermore, we observed a reduced expression
of most of the aminoacyl-tRNA-synthetases, with the exception of
tryptophanyl-tRNA-synthetase #pS, which matched the upregula-
tion of the tryptophan operon.

Strikingly, a stringent response, ie. a downregulation of
ribosomal proteins or elongation factors like fusd, tsf or tufd, as
described for other organisms (B. subtilis, B. licheniformus, E. colt)
could not be detected in B. pumilus [13,20,71].

Conclusion

The combination of proteomics and transcriptomics revealed a
specific adaptation of B. pumilus cells caused by the oxidative stress
trigger HyoOy. Although many of the induced genes and proteins
could be assigned to well-known oxidative stress regulons like
PerR, CtsR and Fur, there are particular mechanisms detectable
which seem to be involved in the remarkable oxidative stress
resistance of B. pumilus. The concentration of HyO, that was used
to trigger the stress in our study was about 40-fold higher than
those used for comparable analysis of B. subtilis or B. licheniformus.
Our study could enlighten several points at which the peroxide
stress response of B. pumilus cells is different from its Gram-positive
relatives. It is suggested that the catalase KatA is replaced by the
catalase KatX2. Furthermore, our study revealed an induction of
genes that are highly correlated to bacillithiol synthesis indicating
an involvement of bacillithiol in the peroxide stress response of B.
pumilus. Metabolome analysis demonstrated a basal level of this
protective metabolite but also an increase of the cytosolic
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bacillithiol concentration during peroxide stress. Furthermore, a
considerable set of HyOy induced unique proteins with so far
unknown function could be identified in this study. These proteins
are worth to address in follow up studies to elucidate their specific
role in the oxidative stress adaptation of this organism. Finally,
since B. pumilus is an organism of industrial interest, understanding
its oxidative stress response and defining marker genes for the
analysis of fermentation processes is important to prevent possible
negative influences on the process and the product quality.

Supporting Information

Table S1 Determination of minimal inhibition concen-
tration of hydrogen peroxide.
(XLSX)

Table S2 Genes and proteins that are upregulated after
addition of hydrogen peroxide.
(XLSX)
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