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Abstract

Digital reconstruction of three-dimensional (3D) neuronal morphology from light microscopy images provides a powerful
technique for analysis of neural circuits. It is time-consuming to manually perform this process. Thus, efficient computer-
assisted approaches are preferable. In this paper, we present an innovative method for the tracing and reconstruction of 3D
neuronal morphology from light microscopy images. The method uses a prediction and refinement strategy that is based
on exploration of local neuron structural features. We extended the rayburst sampling algorithm to a marching fashion,
which starts from a single or a few seed points and marches recursively forward along neurite branches to trace and
reconstruct the whole tree-like structure. A local radius-related but size-independent hemispherical sampling was used to
predict the neurite centerline and detect branches. Iterative rayburst sampling was performed in the orthogonal plane, to
refine the centerline location and to estimate the local radius. We implemented the method in a cooperative 3D interactive
visualization-assisted system named flNeuronTool. The source code in C++ and the binaries are freely available at http://
sourceforge.net/projects/flneurontool/. We validated and evaluated the proposed method using synthetic data and real
datasets from the Digital Reconstruction of Axonal and Dendritic Morphology (DIADEM) challenge. Then, flNeuronTool was
applied to mouse brain images acquired with the Micro-Optical Sectioning Tomography (MOST) system, to reconstruct
single neurons and local neural circuits. The results showed that the system achieves a reasonable balance between fast
speed and acceptable accuracy, which is promising for interactive applications in neuronal image analysis.
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Introduction

Digital reconstruction of neuronal morphology from light

microscopy images provides a powerful technique for the analysis

of neural circuits forms and for the investigation of their

underlying function [1]. Since the manual reconstruction is very

time-consuming, especially for large-scale neuronal analysis, a

number of studies have been conducted to develop more efficient

computer-assisted approaches to support neurite tracing and

neuronal morphology reconstruction [2–4].

Methods of neurite tracing roughly fall in three categories. The

first category relies on the sequential presentation of serial 2D

images. These methods extract the profiles of neural structures in

each 2D cross-sectional plane and then connect the results in the

third dimension [5–7]. However, this may be in trouble when local

neurite segments lie parallel to the 2D plane. Resampling the

original images along different directions might work but is

computationally expensive and difficult to cover all neurites.

The second category is based on global image segmentation in

3D. These methods first turn the image into a binary form with

certain segmentation algorithms and then extract centerlines of

foreground areas with a skeletonization algorithm [8,9]. Here,

efficient segmentation algorithms, such as thresholding, prove

successful for uniformly high quality images, although it is not

always the case. Various sophisticated filters have been proposed

to enhance feature structures and to improve segmentation and

skeletonization. Typically, such filters are based on the analysis of

eigenvalues of the Hessian [10], Jacobian matrix [11], or steerable

filters [12]. However, these filters require multiple scaling or

orientations and are computationally expensive because they

operate on the entire image. A few other algorithms, such as voxel

coding [13,14] and voxel scooping [15], can trace multiple neurite

branches directly from the grayscale images but they operate on a

voxel-by-voxel basis and are more dependent on the high quality

of pre-processed images.

The third category explores images only in local regions

around the structures of interest. These methods usually start

from a seed, which can be located automatically or manually,

and trace recursively where neurite branches go in the 3D image.

The direction of tracing is determined according to the

distribution of local signal and background. A representative
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algorithm is to use a template that comprises four predefined

parallel edge detectors, to determine the direction and boundary

of a single branch [16–18]. More robust algorithms often rely on

certain mathematical or graph models. They usually define a cost

or energy measure that is based on local image features and

curve regularity; then convert the problem into searching for an

optimal path or minimum spanning tree between given crucial

points [19–25]. If initial structures or prior knowledge can be

obtained, it then becomes optional to fit a snake-based or active

contour model to the image data [26–28]. A potential problem is

that these local tracing algorithms may fail at branch points or

crossover regions because of a lack of global information. Thus, a

separate branch merger or segment join step is needed to trace

whole tree-like structure [29–31].

To reconstruct 3D neuronal morphology, the neurite tracing

can be coupled with radius estimation at each node. The rayburst

sampling proposed by Wearne and Rodriguez can be used for this

[32,33]. It samples the image data in multiple directions using a

pre-computed array of unit vectors from a given node. The process

of sampling is defined as the simultaneous casting of rays in

multiple directions. Each ray grows from a given node until a

specified exit criterion is met, which returns a length representing

the forward sampling distance. In the original algorithm, a 2D

rayburst is run in the cross-sectional plane for each node, and the

diameter is computed from the ray lengths. It is worth noticing

that to reconstruct the whole dendritic tree, it is necessary to

extract the centerline of branches in advance.

The methods mentioned above are all helpful for the

reconstruction of neuronal morphology from light microscopy

images. However, these automated reconstructions often contain a

substantial number of false segments or short branches, requiring

post-correction with significant human effort [34,35]. Thus, to

achieve a reasonable balance between fast speed and high

accuracy, a rapid reconstruction system incorporating automatic

tracing and manual editing is preferable.

In this paper, we present a practical method for the tracing and

reconstruction of 3D neuronal morphology from light microscopy

images and implement it in an interactive visualization-assisted

freeware system named flNeuronTool. We extend the original

rayburst sampling algorithm to a marching fashion, which starts

from a single or a few initial seed points and marches recursively

forward along neurite branches to trace and perform reconstruc-

tion on the whole tree-like structure. We validate and evaluate the

method using synthetic data and real datasets from the Digital

Reconstruction of Axonal and Dendritic Morphology (DIADEM)

challenge [36,37]. Then, the system is applied to mouse brain

images acquired with the Micro-Optical Sectioning Tomography

(MOST) system [38–41], to reconstruct single neurons and local

neural circuits.

Methods

Neurite Tracing Strategy
At the typical resolution of light microscope images, each

segment of a neurite has a smooth tubular shape, which can be

approximated as a generic cylinder with a certain radius [42].

Moreover, the diameter and direction of a neurite in a local area

never changes abruptly, which means that two adjacent segments

have a similar radius and their centerlines often form a modest

angle. Thus, it is possible to predict the radius and direction of the

next segment according to the current presentation [43].

We trace individual neurite using a prediction and refinement

strategy. As shown in Figure 1, we recursively move a node along

the centerline of a neurite. For any given position, the node has

three properties: the location C is a point on the centerline; the

direction v is a unit vector that represents the tangent of the

centerline; and the radius r is the minimum distance from point C

to the structure boundary, which is estimated at the orthogonal

plane of the direction v. Two consecutive nodes are defined as the

parent and child nodes, respectively. If appropriate properties of

the parent node have been obtained, we can predict the child node

position along direction v. Then, using local images, the properties

of the child node can be refined. Recursively, we can trace the

whole tree starting from one single or a few of seed points.

Centerline Extraction and Branch Detection
We use augmented rayburst sampling to detect centerlines and

branches in the prediction step. Inspecting 2D rayburst sampling

at a given node, we find that the longest rays are always close to

the direction of the axis that represents the potential centerline of

the local neurite segment, while the shortest rays in the orthogonal

direction represent the local radius. Consequently, when extending

all of the rays from the position of the current node until their

length goes over a specified threshold (approximately 2.0,4.0

times the local radius), those rays that are far away from the axis

will reach or exceed the boundary of the neurite, and the

corresponding samplings will been terminated. The remaining

rays that are still inside the structure will be separated into a few

clusters according to their directions, which represent potential

branches. Specifically, they are together as a single cluster when

the branches are absent. The length threshold of each ray is

defined as the sampling distance, which is only related to the local

radius but independent of the absolute size of the structural

structure. Moreover, to avoid backward tracing, we perform

sampling only in the forward direction. As shown in Figure 2A,

actual sampling could be restricted to a half circle, whose origin

locates at the current node position C, and the half angle ray

represents the node direction v.

The improved rayburst sampling is introduced for 3D. Here, to

detect branches, sampling is restricted to a hemisphere; thus, it is

crucial to generate an approximately uniformly distributed

sampling core on the hemisphere surface. The random generation

or polygon subdivision used in the original algorithm cannot

achieve this goal. As shown in Figure 2B, we solve this problem

in a spherical coordinate system for which the origin O is located

at the current node position C, the z axis coincides with the

current node direction v and the orthogonal plane parallels the

cross-section that covers the local radius r. For any vector OP with

length r, its endpoint coordinate is P(r, h, Q), in which h and Q
represent the inclination and azimuthal angles, respectively. We

divide the whole hemisphere into M (M = 7) stacks according to

the inclination angle h, with equal intervals. For each given h, we

divide corresponding small circles into N slices according to the

azimuthal angle Q, with equal intervals. The angular distribution is

expressed as

Figure 1. Neurite tracing strategy. A node is recursively moved
along the centerline of a neurite, to reconstruct neurite segments as a
sequence of cylinders. At any given position, the node has a location C,
a direction v and a radius r.
doi:10.1371/journal.pone.0084557.g001
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h(i)~i
p

2M
, 0ƒiƒM

Q(j)~j
2p

N
, N~ max (1,8i), 0ƒjƒN

where the function max selects the maximum value from two

given numbers, and the reason for setting the variable N values

will be explained below. To sample the original data, vector OP

should be converted into the Cartesian form, in which the

coordinate of the endpoint P(x, y, z) is expressed as

x~r sin h cos Q, y~r sin h sin Q, z~r cos h

It is convenient to set r to one for automated normalization.

Nevertheless, in some case, where neurite segments are really thin

and comparatively straight, one can speed up the sampling in the z

direction. Thus, an anisotropic sampling core is optional and has

no influence on the sampling form, while the conversion to the z

axis is expressed as

z~er cos h

where e is defined as the anisotropy coefficient (approximately

1.0,1.1). Then, these vectors could be normalized and used as a

per-computed sampling core.

To perform 3D hemispherical sampling at a given node, we

rotate the sampling core to correct the orientation using a

transformation matrix, by which we match the current node

direction v with the z axis. Then, each vector in the sampling core

is iteratively extended with a pre-specified step-length from the

current position C until the length goes over the pre-specified

sampling distance. Those rays who reach the boundary of the local

structure should be terminated early. One could use an adaptive

hysteresis threshold to detect the boundary along a sampling ray

(supporting information, Text S1 in File S1). In the end of the

sampling setup, the sampling state whose ray endpoint is still in the

inside of the structure is recorded as a value of one, and the

remaining is recorded as a value of zero. A possible set of sampling

state on the hemispherical surface is projected to the orthogonal

plane as shown in Figure 2C, in which the sampling rays that

have the same inclination angle h form a circle, and nonzero value

samplings suggest possible branches.

In the plane, each circle can be mapped into a circumscribed

square with slight deformation, as shown in Figure 2D.

Figure 2. Centerline extraction and branch detection using hemisphere sampling. (A) 2D illustration of the centerline and branch
prediction with improved rayburst sampling. (B) 3D illustration of a vector of the hemisphere sampling core in a spherical coordinate system. (C) The
sampling state on the hemispherical surface is projected to the orthogonal plane, in which the sampling rays that have the same inclination angle h
form a circle, and nonzero value samplings (bright blue) suggest possible branches. (D) In the plane, each circle can be mapped into a circumscribed
square, and each local center detected (orange) represents a neurite branch.
doi:10.1371/journal.pone.0084557.g002
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Consequently, these sampling squares with different inclination

angles h and azimuthal angles Q form a uniform grid. Besides, the

number of samplings in the innermost square is only one, and the

difference between the adjacent squares is 8, which is the reason

for setting the variable N values for the sampling core generation,

as described above. In this uniform grid, nonzero value samplings

are separated into a few areas for which the local centers could be

detected by multiform ways, such as a simple and effective distance

transform [44]. In general, each local center represents a potential

neurite branch that can be mapped back to the hemisphere surface

and is expressed in both spherical coordinates and the Cartesian

form. Then, a new node can be located in the branch as the child

whose parent is the current node. The distance between it and the

parent node is defined as the location distance, which is

approximately equal to a diameter of the parent node.

Centerline Refinement and Radius Estimation
The location of a node that is predicted by hemispherical

sampling may be a bit off the real centerline of local neurite

because of holes or other artifacts in light microscopy images, and

the radius of predicted child node equals the parent node radius,

which should be refined. We run an improved 2D rayburst

sampling to perform this step.

As shown in Figure 3A, a set of unit vectors that are parallel to

the sampling plane and uniformly distributed in a circle are used

as a sampling core. The sampling starts at the predicted node C.

Each ray iteratively extends with a pre-specified step-length from

the origin point until the structure boundary is reached. We record

the intersection of a ray and the boundary as P. Ideally, the cross-

section is a generic ellipse, of which a centroid is simply the

average location of all intersections. For real images, to gradually

approach to the real position, we iteratively perform multiple

sampling in which each calculated centroid is regarded as the

origin for the next sampling. This process is terminated when the

Euclidean distance d between two calculated positions from

successive iterations is less than a pre-specified threshold, which is

a radius-related value (the coefficient e= 0.05). For the last

iteration, the lengths of all of the rays are also calculated, of which

the mean is regarded to be the estimated radius r of the current

node. This process is expressed as

Ciz1~
1

N

XN{1

j~0
Pi,j , dst(Ciz1,Ci)§eri

ri~
1

N

XN{1

j~0
dst Pi,j ,Ci

� �

where N (N = 32) is the number of the 2D sampling rays, Pi, j

represents the intersection position of the ray numbered j and the

boundary in the iteration numbered i, and the function dst

calculates the Euclidean distance between two given points.

The segment from the parent node to the current node

represents the local centerline. However, a potential problem is

that it could no longer be orthogonal to the reconstructed circle

because the sampling origin used to refine the centerline and

estimate the radius has shifted during the iterations. There is a

space angle d between the initial direction that was predicted by

hemispherical sampling and the refined direction, which suggests a

calculation error of the centerline, as shown in Figure 3B. To

improve the precision of the centerline and radius refinements, we

iterate the step described above in a new plane that is orthogonal

to the current direction until the angle between the last direction

and the prior direction falls under a pre-specified threshold (d= p/

36), which result in an appropriate precision while preventing

unnecessary iteration. Then, the cross-section of neurite is

reconstructed as a circle with a radius r that locates at the position

C and is approximately orthogonal to the refined centerline.

Reconstruction of Neuronal Morphology
The algorithm described above is implemented in a freeware

system named flNeuronTool, which is programmed in C++ and

potentially supports multiple platforms. This system allows users to

reconstruct and proofread neuronal morphologies in a cooperative

3D interactive visualization-assisted environment (supporting

information, Text S2 in File S1). The source code and binaries

are freely available at http://sourceforge.net/projects/

flneurontool/.

To run the tracing algorithm, an initial node has to be created

as the seed point. We select one single or a few points that are

inside of a neuron and are close to the root of the tree-like

structure, and pushed them into a queue as seed points. This can

be automatically done, but we do prefer a manual way in a 3D

interactive environment, which can significantly reduce false

positive errors. At each selected location, two hemisphere

samplings that have opposite directions are carried out to

detection branches. The rest of tracing process is recursive

prediction and refinement as described above. In every recursion,

generated nodes are all pushed in the queue, which will be orderly

popped as new seed points. When all seed points are run out and

the sampling end, one could select a new seed point to reconstruct

remaining branches of the tree-like structure. This process iterates

until the expected reconstruction is achieved.

Due to imperfect images or excessive seed points, the

reconstruction will have a number of redundancy paths and short

branches. Here, redundancy paths cover the same neurite, in

which each pair corresponding nodes have a similar direction and

radius, and cover a more or less overlap area. One could find and

merge all such node pairs from the root to endpoints based on

whether the Cartesian distance between them is less than any one

of them radius [23]. The centroid of each pair nodes is calculated

to produce a final node location, while radius is averaged. As

additional gains, this method uses redundancy paths to generate a

more complete and better reconstruction. The length of a branch

is defined as the path length that from the last bifurcation to its

endpoint. One could remove short branches based on their

absolute length and their lengths relative to the local radius [15].

Experiments and Results

Parameters Selection
To validate and evaluate the proposed method, we tested it on

synthetic data and real datasets from the DIADEM challenge.

Then, we applied the system to mouse brain images acquired with

the MOST system to reconstruct single neurons and local neural

circuits. All of the experiments were performed on an ordinary

computer (Intel Core Duo 2.6 GHz CPU, NVIDIA GeForce 9800

GPU, 4GB RAM, Windows 7). Table 1 summarizes the sampling

parameters for these experiments, in which most parameters

remain constant across all experiments, while other parameters

need to be adapted for each dataset to produce optimal results.

Validation on Synthetic Data
First, we inspected the performance of the branch detection

using synthetic tree-like structure data. The original image and the

corresponding truth structure were created by VascuSynth [45]

and were downloaded from website (http://vascusynth.cs.sfu.ca/),

as shown in Figure 4A. To find the optimal value of the 3D

Rapid Reconstruction of 3D Neuronal Morphology
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sampling distance for the branch detection, we traced the tree in

the image with different sampling distance, which ranges from 1.5

to 4.5 with an increment of 0.5 times the local radius (supporting

information, Text S3 in File S1). For each tracing, we measured

the total length of correct branches and the number of correct

bifurcations, and reported the proportions of them to true values.

Because the test was run directly on the image without any

additional pre-processing or manual editing and used only one

seed point that was located at the root of the tree by one mouse

click, we could report the computation time for each tracing, as

shown in Figure 4B. From the trend in these measurements, it is

found that a sampling distance too big or too small would lead to

the branch detection lost or redundancy, and the optimal value is

about 3.0. Considering the difference of images, one may set this

value between 2.0 and 4.0. In general, the value of length is always

more than the value of the bifurcations and has smaller change, for

which lost branches are relatively short.

Then, we validated the robustness of the branch detection. We

used ImageJ (http://rsb.info.nih.gov/ij/) to generate a set of

images based on the original tree-like structure data with additive

Gaussian noise, whose standard deviation (SD) ranges from 5 to 30

with an increment of 5. Figure 4C shows the highest noised

image and the corresponding automated reconstruction. For each

image, the value of the sampling distance was set to 3.0. Once

again, we reported the length of branches, the number of

bifurcations and the computation time, as shown in Figure 4D.

It is obvious that the tree-like structure becomes more ambiguous

when the noise is higher, making the tracing more difficult.

However, considering that there is only one seed point for each

tracing, the result is acceptable. Overall, low-level noise could lead

to more short branches, which must be removed expending

additional time. High-level noise tends to cause the early

termination of tracing, which is helpful for reducing false positive

errors.

Evaluation with DIADEM Dataset
We evaluated the proposed method with two real datasets from

the DIADEM challenge. Specifically, the two datasets were

drosophila olfactory projection (OP) [46] and mouse neuromus-

cular projection fibers (NM) [47]. The image stacks and their gold

standard reconstructions were downloaded from website (http://

www.diademchallenge.org/).

Figure 3. Centerline refinement and local radius estimation using iterative rayburst sampling. (A) Centroid refinement and local radius
estimation using iterative 2D rayburst samplings in which each calculated centroid is regarded as the origin for the next sampling. (B) 3D illustration
of centerline refinement. The sampling described above is iterated in a plane that is orthogonal to the current centerline direction.
doi:10.1371/journal.pone.0084557.g003

Table 1. Sampling parameters selection.

Parameters Value Notes

3D sampling distance 2.0,4.0 (radius) Each ray is terminated when its length is over the threshold. A value too big or too small will lead
to the branch detection lost or redundancy. Default value is 3.0.

Anisotropy coefficient 1.0,1.1 An anisotropic sampling core can speed up the sampling in the axial direction. Default value is 1.0.

Inclination division number 7 This value determines the number of 3D sampling rays. The larger value will create a more delicate
sampling core, but will require more calculated amount.

Sampling step-length 1.0 (voxel) Each ray is iteratively extending with the step-length from the origin until the exit criterion is
satisfied. For anisotropic images, a super sampling should be applied in the low resolution
direction.

Location distance 1.5,2.5 (radius) The distance between the child and the parent node affects the density of nodes in the
reconstruction. Default value is 2.0 but no more than the 3D sampling distance.

2D sampling ray number 32 These rays are used to refine centerline and radius.

Iteration exit distance 0.05 (radius) Centroid refinement is terminated when the distance between two successive locations is less than
the threshold.

Iteration exit angle p/36 Centerline refinement is terminated when the angle between two successive directions is less than
the threshold.

doi:10.1371/journal.pone.0084557.t001
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The first test was run on 9 image stacks of dataset OP. For each

image stack, we traced three times with different sampling

distances that range from 2.5 to 3.5, from which the one that

had longest path was selected as final reconstruction. The final

reconstruction of the first stack is shown in Figure 5A, in which

the reconstruction is shifted slightly relative to the voxel data to

improve the visibility. Local detail of the reconstruction and the

corresponding gold standard are displayed in different colors in the

inset, which shows a very small difference between them, especially

at several potential topological errors that are indicated with

circles. To evaluate the completeness of the reconstructions, we

measured their path length, which was reported as the proportion

of the length to the gold standard. To quantify the accuracy of

automated reconstructions, we compared them to the gold

standards by using the DIADEM metric [48]. Let G be the

number of nodes in the gold standard, T be the number of nodes

in our reconstruction, M be the missing nodes (false negatives)

reported by the DIADEM metric, and E be the extra nodes (false

positive) in test reconstruction, we define the recall and precision

as

recall~1:0{
M

G
, percision~1:0{

E

T

The measurements are shown in Figure 5B. Specifically, the

path length and DIADEM score are approximately 0.9560.03

(mean 6 SD) and 0.8160.05, respectively, which indicate that the

quality of the reconstructions is generally high. In these automated

reconstructions, typical errors such as branch breakings and

topological connection mistakes could be easily proofread and

corrected in the editing mode of flNeuronTool, which requires

approximately 5,10 minutes of user intervention per stack.

The second test was run on dataset NM subset 2. As an

example, we reconstructed a piece of volumetric data of 4 image

stacks that have been integrated, in which 15 axon fibers start from

one of the stacks and continue through the remaining stacks, as

shown in Figure 6A. It should be noted that we could not

reconstruct the entirety of the axon fibers at a high confidence

level because of the absence of appropriate pre-processing.

Focusing on the local detail, potential errors in the reconstruction

include branch breaking from the high unevenness of the voxel

intensity, one of which is indicated with a circle. Because of the

differences in data dimensionality and tracing root, the DIADEM

metric could not be used as expected to evaluate the quality of the

reconstruction. Instead, we reconstructed a single image stack, and

compared the result with the reconstruction from NeuronStudio.

As shown in Figure 6B, flNeuronTool can create an acceptable

automated reconstruction without additional manual editing. In

contrast, as shown in Figure 6C, in the reconstruction from

NeuronStudio, there are a few errors such as branch breaking or

Figure 4. Validation of the branch detection on tree-like structure data. (A) The original image (voxel size 10161016101) and truth
structure (branch length 3325 voxels, bifurcation number 199). (B) The performance analysis for the tracing of the tree structure in the original image
with different sampling distance. For each tracing, only one seed point is used. The total length of correct branches and the number of correct
bifurcations are measured, and the proportions of them to truth values are reported, as well as the computation time in seconds. (C) The highest
Gaussian noised image (SD 30) and the corresponding automated reconstruction (branch length 2036 voxels, bifurcation number 122). (D) The
robustness analysis for the tracing of the tree structure in different level Gauss noised images with the same sampling distance (3.0 times local
radius).
doi:10.1371/journal.pone.0084557.g004
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steal that are marked with circles. One possible reason of these

differences is that the hemisphere sampling is more or less

equivalent to smooth the original image, which could suppress the

influence of individual voxels. Indeed, NeuronStudio could create

a high-quality reconstruction with appropriate parameters or a

small amount of manual editing. However, in our experience, the

proofread in 2D projection planes that is adopted by Neuron-

Studio is not trivial, while the 3D interactive editing adopted by

flNeuronTool is more convenient.

Application to MOST Image
We applied the proposed system to mouse brain images

acquired with the MOST system to reconstruct single neurons

and local neural circuits. We used two datasets, which are from a

green fluorescence labeled [40,41] and a modified Golgi-Cox

stained [38,39] whole mouse brain and provide micron-resolution

tomography images at the neurite level. For these original images,

pre-processing is necessary, which strongly depends on the details

of the neuron labeling. We applied flNeuronTool to pre-processed

datasets to reconstruct a few single neurons and local neural

circuits.

The first subset of images was labeled using green fluorescence,

which has a 3D resolution of 0.5 mm60.5 mm62.0 mm. An

example for the reconstruction of a pyramidal neuron is shown

in Figure 7A, in which the reconstruction was slightly shifted to

improve the visibility. To evaluate the accuracy of the reconstruc-

tion, we compared it with the reference reconstruction that was

created using commercial software Amira (http://www.amira.

com/). A part of the details of them is displayed in different colors

in Figure 7B, and a few of the differences between them are

indicated with circles. In general, the result is acceptable.

Specifically, potential errors in the reconstruction such as branch

contraction could be due to uneven labeling. The proportion of

total length and number of bifurcation of the reconstruction to the

reference are 0.96 and 0.94, respectively. The time to achieve the

final reconstruction using flNeuronTool is less than 10% of the

Figure 5. Evaluation with the DIADEM dataset OP. (A) The original data and the automated reconstruction of the first image stack (voxel size
5126512660), which is shifted slightly relative to the voxel data to improve the visibility. Local detail of the reconstruction (orange) and gold
standard (cyan) are displayed in the inset, in which potential errors are circled (red). (B) The quantitative measurements of nine image stacks. The
DIADEM score, recall and precision are report based on DIADEM metric measurements compare with the gold standards. Specifically, the path length
and DIADEM score are approximately 0.9560.03 (mean 6 SD) and 0.8160.05.
doi:10.1371/journal.pone.0084557.g005
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manual method, which is very attractive for large-scale neuronal

image analysis.

The second subset of images was stained with the modified

Golgi-Cox method, which has a 3D resolution of

0.3 mm60.3 mm61.0 mm. We expected to reconstruct local neural

circuits from these images, because the density of neurons in this

dataset is suitable. However, with our experience, it is very difficult

to achieve this goal even by hand because of the complexity of the

neuronal morphologies and local connections and the uneven

staining. These images exhibit variable contrast, and there is

frequent loss in the continuity of neuron. Hence, the best strategy

is to reconstruct neuron only when the confidence level is relatively

high. An example of the pre-processed images is shown in

Figure 8A. The reconstruction from flNeuronTool is shown in

Figure 8B, which contains 10 neurons, starting from the somas in

the same volumetric subset, as well as 73 separate neurite

fragments that have a length of more than 50 voxels. To illustrate

the completeness of the neuronal morphologies, we used a sphere

to represent a soma location. It is reasonable that the reconstruc-

tion contains a few errors, although we have spent approximately

an hour on proofreading and correcting them.

Discussion

We presented an innovative method for tracing and reconstruc-

tion of 3D neuronal morphology from light microscopy images.

Figure 6. Evaluation with the DIADEM dataset NM subset 2. (A) An example of 4 image stacks (voxel size 185166326125) and the
reconstruction, in which an error is circled. (B) An image stack (voxel size 5126512657) and the reconstruction from flNeuronTool, which is an
acceptable result without additional manual editing. (C) The automated reconstruction of the same stack from NeuronStudio, in which potential
errors are circled.
doi:10.1371/journal.pone.0084557.g006

Figure 7. Application the proposed system to MOST fluorescence images. (A) An example of the original images (voxel size
1728610886176) and the reconstruction of a pyramidal neuron. (B) Detailed comparison of the reconstruction (orange) with the reference
reconstruction from Amira (cyan), in which potential errors are circled (red). The proportion of total length and number of bifurcation of the
reconstruction to the reference are 0.96 and 0.94, respectively.
doi:10.1371/journal.pone.0084557.g007
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We validated and evaluated the proposed method using synthetic

data and the DIADEM datasets, and applied the system to MOST

images. The main contribution of this paper is the augmented

rayburst sampling algorithm. The original rayburst sampling has

been extended to a marching fashion, which is capable of using

only local information to perform neurite centerline extraction,

branch detection, centroid refinement and radius estimation. The

advantages of the method are summarized, as follows. First, all the

tracing and reconstruction steps are achieved in a single step, in

which the centerline extraction or the extra radius estimation is

unnecessary. Second, this method only needs to sample a part of

points rather than processing all neuronal voxels one by one.

Consequently, the improvement of the reconstruction speed

becomes possible, while the influence of random noises is

reasonably suppressed so that appropriate computational accuracy

could be guaranteed. Third, the sampling is only related to the

local radius but not depend on the absolute size of the structural

structure, thus, it has the potential to deal with images of different

spatial resolutions.

It is worth mentioning that we implemented the method in the

freeware system flNeuronTool. The system incorporates automatic

tracing and manual editing of neuron reconstruction into a

cooperative 3D interactive visualization-assisted environment,

which is a powerful tool for analysis of complex neuronal images.

Experimental results showed that it provides an effective means of

minimizing the human effort that is required to improve the

quality of the final reconstruction. In general, the system can be

faster than manual reconstruction and be more accurate than fully

automatic tracing.

One limitation of the proposed method is its poor performance

on beaded neurites. For these images, we think that those graph

model-based algorithms may be a better choice [21]. We also

found that it would be unreliable or unnecessary to reconstruct the

exact morphology for some very fine dendrites which is about one

voxel wide in light microscopy images. In this case, the actual

application may only need to trace the centerline of neurites, and

those snake-based algorithms may be more appropriate [28].

Besides, some computationally expensive but more robust

algorithms could be resorted to. For example, it has been shown

that the optimal path is useful for automated branch mergers or

segment joins [30]. In addition, for a real large-scale dataset, such

as the MOST Golgi images that are stained highly unevenly and

exhibit variable contrast, a practical pre-processing platform that

produces more high quality images for automated tracing and

reconstruction is appreciated.

In summary, the proposed system provides an efficient means

for the rapid reconstruction of 3D neuronal morphology from light

microscopy images, which achieves a reasonable balance between

fast speed and acceptable accuracy. This system is very promising

for interactive applications of large-scale neuronal image analysis,

such as the reconstruction of single neurons and local neural

circuits from MOST images.

Supporting Information
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estimation.
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