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Abstract

As a major class of noncoding RNAs, long noncoding RNAs (lncRNAs) have been implicated in various critical biological
processes. Accumulating researches have linked dysregulations and mutations of lncRNAs to a variety of human disorders
and diseases. However, to date, only a few human lncRNAs have been associated with diseases. Therefore, it is very
important to develop a computational method to globally predict potential associated diseases for human lncRNAs. In this
paper, we developed a computational framework to accomplish this by combining human lncRNA expression profiles, gene
expression profiles, and human disease-associated gene data. Applying this framework to available human long intergenic
noncoding RNAs (lincRNAs) expression data, we showed that the framework has reliable accuracy. As a result, for non-
tissue-specific lincRNAs, the AUC of our algorithm is 0.7645, and the prediction accuracy is about 89%. This study will be
helpful for identifying novel lncRNAs for human diseases, which will help in understanding the roles of lncRNAs in human
diseases and facilitate treatment. The corresponding codes for our method and the predicted results are all available at
http://asdcd.amss.ac.cn/MingXiLiu/lncRNA-disease.html.
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Introduction

In recent years, accumulated studies have shown that protein-

coding genes account for a very small part of the mammalian

whole genome, approximately 2% [1–8]. This fact challenges the

traditional view that RNA is just an intermediary between gene

and protein. Moreover, it has become increasingly apparent that

the non-protein-coding portion of the genome has essential and

crucial regulatory functions, even though it does not encode

proteins [9]. Notably, compared with short noncoding RNAs

(ncRNAs), such as microRNAs (miRNAs) or piwi-interactingRNA

(piRNAs), a number of lncRNAs make up the largest proportion of

ncRNAs. Usually, lncRNA is defined as an RNA molecule longer

than 200 nucleotides that cannot translate to a protein [10,11].

With the development of both experimental technology and

computational methods, an increasing number of lncRNAs have

been identified in the human transcriptome [12]. Furthermore,

lncRNAs have been shown to play key roles in various biological

processes, such as imprinting control, epigenetic regulation, cell

cycle control, nuclear and cytoplasmic trafficking, differentiation,

immune responses and chromosome dynamics [11,13,14]. There-

fore, it is not surprising that dysregulations and mutations of

lncRNAs have been implicated in a variety of human diseases. So

far, more than 150 human diseases are associated with lncRNAs,

according to the LncRNADisease database [15], such as breast

cancer [16,17], leukemia [18,19], colon cancer [20], prostate

cancer [21], Alzheimer’s disease [22], and psoriasis [23].

More and more evidences show that lncRNAs could be both a

potential biomarker of human disease and a potential drug target

in drug discovery and clinical treatment. For this reason,

identification of potential lncRNA-associated diseases is of great

importance and urgently needed. However, compared with

research dedicated to disease-related gene identification [24–29]

and disease-related miRNA prediction [30–33], comparatively

little is currently known about lncRNAs, especially lncRNA-

associated diseases. Therefore, developing a novel computational

method in the absence of known lncRNA-associated diseases

would be very desirable. Fortunately, research on disease-

associated genes has generated a large amount of information

that virtually guarantees relatively high accuracy when coupled

with the development of experimental and computational

methods. To solve the above problem, we first constructed the

relationship between lncRNAs and genes based on their expres-

sion profiles and then identified potential relationships between

lncRNAs and diseases utilizing known disease-associated genes.

To evaluate the performance of our method, we implemented

case studies and cross validation based on known experimentally

verified lncRNA-disease associations from the LncRNADisease

database [15]. Consequently, we obtained reliable predictive

accuracy. Case studies for tissue-specific lincRNAs show good

performance, in which nineteen of 100 most probable lincRNA-

disease associations were verified by related research conclusions.

For non-tissue-specific lincRNAs, the AUC of our algorithm is

0.7645, and the prediction accuracy is about 89%.
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Materials and Methods

Materials
In this paper, we integrated the following three kinds of datasets

to construct the computational framework aiming to infer the

diseases associated with human lncRNAs: lncRNA expression

profiles, gene expression profiles, and human gene-disease

associations, respectively. Here a brief description was given.

1) Long intergenic noncoding RNA expression profiles

Generally speaking, lncRNAs can be classified based on their

position relative to protein-coding genes, including intergenic,

intragenic and antisense, respectively [7,10]. Based on our

computational framework, we would utilize the expression levels

of lncRNAs in several human tissue or cell types. However, at

present, comprehensive expression data of lncRNAs is still

unavailable. Long intergenic noncoding RNAs (lincRNAs) is a

newly discovered and important type of lncRNAs, which accounts

for a large fraction of the whole lncRNA set [34]. Fortunately, the

expression profiles of lincRNAs could be obtained. Thus, in this

paper, we used existing data of lincRNAs to implement the whole

computational framework. Although we utilized expression data of

lincRNAs, our computational framework could be applied to all

classes of lncRNAs. First, we downloaded expression profiles of

human lincRNAs in 22 human tissue or cell types from the UCSC

Table Browser [35,36], which provides the latest expression data

generated through RNA-Seq technology (GRCh37/hg19; http://

genome.ucsc.edu/). For a given lincRNA in a given human tissue

or cell type, comprehensive information, such as its name,

chromosome location, starting point in chromosome, end point

in chromosome and the score corresponding to its expression level,

is listed in detail. These data were then integrated, finally arriving

at expression profiles of 21626 human lincRNAs in 22 human

tissue or cell types (Table S1).

2) Gene expression profiles

To construct the relationships between human lincRNAs and

human genes, we downloaded expression profiles of 17080 genes

in 73 human tissue or cell types, based on the research of Su et al.

[37]. This data of 17080 genes has already been rigorously

processed and released during their work, where there is an Entrez

gene ID corresponding to each gene [37].

3) Human gene-disease associations

We extracted human gene-disease associations from the Dis-

GeNET database [38]. DisGeNET is a new gene-disease database

which integrates gene-associated diseases from several public,

expert, and curated data sources, as well as text mining-derived

associations. This database contains relationships between human

genes and several different kinds of human diseases, including

Mendelian, complex and environmental diseases [38,39]. Its data

sources contain several widely used databases, such as Uniprot [40],

CTD [41], GAD [42], MGD [43] and LHGDN (http://

linkedlifedata.com/sources). The number of separate gene-associ-

ated diseases for each data source was shown in Table 1. Moreover,

CTD contains the vast majority of gene-associated diseases in

OMIM [44], which is another classical and commonly used highly

credible data source. Obviously, the gene-associated disease data

proposed by this database are very comprehensive for our further

study. The present version of DisGeNET records 100729

associations between 9313 genes and 5286 diseases. In our work,

we only collected expression profiles for 17080 genes. Using this as

our baseline number, we finally selected 51762 associations between

7303 genes and 5150 diseases (Table S5). Thus, for each human

disease, we obtained a set of genes which had been experimentally

validated to be associated with a given disease.

Methods

1) Basis of the computational framework

Based on the data collected, including the expression of human

lncRNAs, human gene expression, and gene-associated diseases,

we constructed a computational framework to infer diseases

associated with human lncRNAs. The following logic supports this

framework, as shown in Figure 1. If a given lncRNA could be

specifically linked with some human tissues, then we could, in turn,

link this lncRNA to diseases known to be related to these human

tissues. However, for other non-tissue-specific lncRNAs, if we

could find the effective associations of them with human genes,

then we could utilize the known relationships between human

genes and diseases and link these lncRNAs to specific human

diseases. The workflow of our computational framework was

shown in Figure 2.

2) Prediction of human disease-associated lncRNAs

As shown in Figure 2, the whole computational framework

could be divided into four steps. First, based on the expression

levels of lncRNAs in all the corresponding human tissue or cell

types, we calculated tissue specificity scores for the expression of all

the lncRNAs. According to a certain empirical cutoff score, we

classified these lncRNAs as tissue-specific and non-tissue-specific.

We utilized the computational method proposed by Yanai et al. to

calculate a tissue specificity score for each lncRNA. The tissue

specificity score t of a given lncRNA is defined as:

Table 1. Number of genes, diseases and gene-associated diseases from five different data sources.

Number of genes Number of diseases
Number of gene-disease
associations

Uniprot 1754 2243 2525

CTD 6065 4403 16382

GAD 2461 1395 12798

MGD 1253 1016 1749

LHGDN 6140 1847 59274

doi:10.1371/journal.pone.0084408.t001

Human Disease-Associated lncRNAs Prediction
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t ~

PN

i~1

(1{xi)

N{1
,

where N is the number of tissues, and xi is the expression level

of this lncRNA in tissue i normalized by maximal expression level

in the N tissues of this lncRNA [45]. In the following steps, we

implement different computational processes for these two sets of

lncRNAs, aiming to rapidly and accurately predict the diseases

associated with them.

Second, for each tissue-specific lncRNA, we first found the

corresponding tissue in which this lncRNA had the highest

expression level. We considered this lncRNA to be expressed

specifically in this tissue; therefore, it might be associated with

diseases that are related to this specific tissue. For example, if the

tissue specificity score of a certain lncRNA is 0.9, and its highest

expression level comes from lung, we inferred that this lncRNA

could potentially be associated with lung- related diseases.

Although we could not look for a specific lung disease for each

lncRNA by this method, it is worth noting that the predicted result

has already limited the disease associated with a certain lncRNA to

an extraordinarily small area. Here, if two or more tissues

simultaneously have the highest expression level, we infer this

lncRNA to be associated with these different diseases, the number

of which is equal to the number of these tissues.

Third, for each non-tissue-specific lncRNA, we acquire a set of

genes co-expressed with this certain lncRNA through computing

corresponding Spearman rank correlation coefficients between the

integral expression level of this lncRNA and the corresponding

genes in the common human tissue or cell types, according to a

certain cutoff score.

Finally, combining the gene set co-expressed with a given

lncRNA with the gene set related to a given disease, the

hypergeometric distribution test was then utilized to find

significantly enriched diseases in the corresponding co-expressed

gene set for each lncRNA. For a certain lncRNA and a certain

disease, if 1) the number of co-expressed genes with this lncRNA is

n, 2) the number of genes related to this disease is x, 3) the number

of genes which are both co-expressed with this lncRNA and

related to this disease is y, and 4) the number of genes in the whole

Figure 1. Working principles of the computational framework. Briefly, if a given lncRNA could be specifically linked with some human tissues,
then we could, in turn, link it to diseases known to be related to these human tissues. Moreover, if we could find the effective associations of other
lncRNAs with human genes, then we could construct a human lncRNA-gene co-expressed network and human gene-disease network and then infer
the associations between lncRNAs and disease through incorporating the information provided by these two networks.
doi:10.1371/journal.pone.0084408.g001

Human Disease-Associated lncRNAs Prediction
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human gene set is 17080, then we could calculate a p-value

(P(Y§y)), standing for the probability of an event in which the

number of genes both co-expressed with this lncRNA and related

to this disease Y is larger than, or equal to, y. The corresponding

computational formula is as follows:

P(Y§y) ~ 1{
Xy{1

i~0

Ci
x
:Cn{i

17080{x

Cn
17080

(i[N),

where ‘C’ is the combinatorial number. The basic idea of the

hypergeometric distribution test was shown in Figure 3, where a

smaller p-value of hypergeometric distribution test stands for

Figure 2. The flowchart of our method. There are four steps: (1) Calculation of tissue specificity score and partitioning all the lncRNAs to those
that are tissue-specific and non-tissue-specific. (2) Prediction of potential lncRNA-associated diseases for tissue-specific lncRNAs. (3) For each non-
tissue-specific lncRNA, find the corresponding genes co-expressed with this certain lncRNA through computing Spearman’s correlation coefficients.
(4) Perform disease enrichment analysis for the set of genes co-expressed with each lncRNA and predict potential lncRNA-associated diseases for non-
tissue-specific lncRNAs.
doi:10.1371/journal.pone.0084408.g002

Human Disease-Associated lncRNAs Prediction
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higher enrichment significance. We then used this p-value to

measure the enrichment significance of a certain disease in the

gene set co-expressed with a certain lncRNA. Based on the

corresponding enrichment significance and a certain empirical

cutoff score, we could identify potential lncRNA-associated

diseases. Ultimately, after performing the above four steps, we

could infer the respective disease associated with all the known

human lncRNAs.

Results

Partition of Tissue-specific and Non-tissue-specific
lincRNAs

Based on the above-mentioned method for calculating tissue

specificity score, we obtained tissue specificity scores correspond-

ing to 21626 lincRNAs (Table S2). Then we chose 0.8 as a cutoff

to distinguish tissue-specific lincRNAs and non-tissue specific

lincRNAs. This cutoff has been used similarly in a paper published

in 2008 to classify tissue-specific miRNAs and non-tissue-specific

ones, in which study Lu et al. performed a comprehensive analysis

to the human miRNA-disease association data and dissected some

important and interesting patterns among these associations [46].

As a result, we found 13966 tissue-specific lincRNAs and 7660

non-tissue-specific lincRNAs, respectively (Table S2).

Identification of Potential Associations between Tissue-
specific lincRNAs and Disease

Utilizing the above method, we finally found 13720 lincRNAs

which have only one specifically expressed tissue, 245 lincRNAs

which have two specifically expressed tissues, and 1 lincRNA with

three specifically expressed tissues (Table S3). In total, we

identified 14213 lincRNA-associated diseases for 13966 tissue-

specific lincRNAs (Table S4).

Recognition of Co-expressed Gene Set for Each Non-
tissue-specific lincRNA based on Expression Profiles

For 7660 non-tissue-specific lincRNAs, we first eliminated 1475

lincRNAs which had expression level ‘0’ or ‘1000’ in all 22 human

tissue or cell types. Obviously, a lincRNA with an equal expression

level of ‘0’ is of no use. We considered lincRNAs with equal

expression levels of ‘1000’ in all 22 tissue or cell types to be

transcription noise, according to the usual practice in analyzing

microarray data. Finally, we got 6185 non-tissue-specific lincR-

NAs to implement subsequent computational processes.

After that, we calculated Spearman rank correlation coefficient

between each non-tissue-specific lincRNA and each gene, based

on their expression profiles in 15 common human tissue or cell

types. Then we chose 0.7 as a cutoff score aiming to find co-

expressed lncRNA-gene pairs. If the Spearman rank correlation

coefficient of a pair of lincRNA and gene is larger than or equal to

0.7, we considered them as co-expression. Actually, construction of

co-expression networks between genes or RNAs has been

implemented by many researchers [47–50]. For example, Jordan

et al. studied node degree distributions and graphic representa-

tions of the corresponding network topologies on different cutoff

values, discovering that correlation coefficient 0.7 is an appropri-

ate cutoff [49]. Based on the same principle that Spearman

correlation coefficient larger than 0.7, Kuchen et al. 2010 studied

co-expression relationship between spliced primary transcripts and

mature miRNAs, obtained some conclusions about transcriptional

regulation of miRNAs [47]. Some other researchers also achieved

meaningful and convictive results utilizing this cutoff value

[48,50]. Thus, according to the experience, we chose 0.7 as a

cutoff to construct the corresponding lncRNA-gene co-expression

network. By doing so, we obtained a gene set for each lincRNA,

containing all the genes co-expressed with this certain lincRNA. As

a result, we obtained 602323 co-expressed pairs between 6130

lincRNAs and 15903 genes, with their corresponding Spearman

rank correlation coefficients and corresponding p-values.

Identification of Associations between Non-tissue-
specific lincRNAs and Disease

Combining the information about the gene set associated with

each human disease, we implemented disease enrichment analysis

for the set of genes co-expressed with each non-tissue-specific

lincRNA, as described in the Methods. Since our method analyzes

multiple disease-related gene sets for the same gene set co-

expressed with a certain lincRNA, two classical methods for

multiple comparison correction, Bonferroni and FDR, were

successively implemented to correct the original p-values. For

the final FDR values, we chose 0.05 as a cutoff to select

significantly enriched lncRNA-associated diseases. That is, we

removed lncRNA-associated diseases with corresponding FDR

values larger than 0.05. Thus, we finally obtained 2272 potential

lincRNA-associated diseases and their corresponding FDR values.

Finally, we reordered these 2272 associations in ascending order

according to their FDR values (Table S6). Taking one non-tissue-

specific lincRNA, ‘TCONS_12_00025959’, as an example, it was

inferred to be associated with Cutaneous T cell lymphoma

(CTCL). CTCL is a class of non-Hodgkin’s lymphoma, which is

one type of cancer of the immune system. In addition, in each

entry of predicted lincRNA-associated diseases, several crucial

data are also provided, such as the number of genes that co-

expressed with this lincRNA, the number of genes associated with

the disease, the number of genes co-expressed with this lincRNA

and associated with the disease, and the FDR value. Thus, by

combining the known corresponding information about co-

expressed lincRNA-gene pairs and gene-disease association pairs

(Table S5), researchers could execute several further studies in the

future.

The statistical computation in our work was performed in the

numerical computing platform ‘MATLAB’ and the statistical

platform ‘R’ (Version 2.15.2).

Figure 3. Disease enrichment analysis for the set of genes co-
expressed with each non-tissue-specific lncRNA. The blue
rectangle represents the whole human gene set, and the corresponding
number is 17080. The red circle represents the set of genes co-
expressed with a certain lncRNA, and the corresponding number is n.
The green circle represents the set of genes related to a certain disease,
and the corresponding number is x. The intersection of these two
circles stands for the genes co-expressed with a certain lncRNA and
related to a certain disease, and the corresponding number is y.
doi:10.1371/journal.pone.0084408.g003

Human Disease-Associated lncRNAs Prediction
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Performance Evaluation and Result Validation
In order to evaluate our computational framework and validate

the predicted results, we chose the LncRNADisease database for

reference. This database not only uniquely curates the experi-

mentally supported lncRNA-associated disease data and lncRNAs

interaction data at various levels, but also offers a platform that

integrates tools for predicting novel lncRNA-associated diseases

[15]. At present, LncRNADisease integrates 320 lncRNA-associ-

ated diseases between 208 lncRNAs and 166 diseases retrieved

from about 500 publications.

We identified some potential relationships between tissue-

specific lincRNAs and diseases. However, cross validation could

not be implemented on these relationships because we could only

predict the potential relationship between tissue-specific lincRNAs

and a class of tissue-related diseases other than a specific disease.

As a result, we implemented case studies to evaluate the

performance of our algorithm. For the top 100 predicted

lincRNA-disease associations, we attempted to find evidence

through related databases and research articles. Consequently,

nineteen of the top 100 associations were verified (Table S7).

Especially, four of the top ten predicted lincRNA-disease

associations were successfully validated (Table 2). Since lincRNAs

and, especially, lincRNA-associated diseases are understudied, this

validation result shows good performance of our algorithm.

According to the predictive result for tissue-specific lincRNAs,

the combinations of lincRNA ‘TCONS_00000720’ and ovarian

diseases and lincRNA ‘TCONS_00000721’ and ovarian diseases

are separately the first and second most probable associations. The

corresponding gene name for these two lincRNAs is ‘EXD3’. In

2011, Yoshihara et al. identified 31 BRCA1-unique CNV regions

covering 241 overlapping genes in the samples of BRCA1-

associated ovarian cancer patients. The gene ‘EXD3’ is within

these 241 overlapping genes, which are associated with some

molecular and cellular functions related to ovarian cancer, such as

carcinogenesis, cell cycle regulation and apoptosis [51]. The

relationship between two lincRNAs, ‘TCONS_00001488’ and

‘TCONS_00000895’, and testicular diseases has also been

verified. The corresponding gene name for these two lincRNAs

is ‘ZNF502’ and ‘DCAF16’, respectively. An experimental result

recorded in the Gene Expression Atlas database showed differen-

tial expression of these two genes in cryptorchidism, which is a

common testicular disorder [52].

To test the ability of our algorithm to infer potential non-tissue-

specific lincRNA-associated diseases, leave-one-out cross valida-

tion was implemented on known experimentally verified lncRNA-

associated diseases from the LncRNADisease database. Before

implementing cross validation, lists of both predictive results and

known lncRNA-disease associations were processed in order to

confirm that all the lncRNAs and diseases were separately located

in the same set. Then we obtained 124 lncRNAs and 19 diseases in

total, out of which we finally arrived at 261 known experimentally

verified lncRNA-associated diseases and 1338 predictive lncRNA-

associated diseases. Subsequently, each known experimentally

verified lncRNA-associated disease was left out as test association,

while the remaining 260 known lncRNA-associated diseases were

taken as seed associations. For each known lncRNA-associated

disease, which was left out before, we implemented our algorithm

and assessed how well this association ranked in the predictive

results. If the rank of this association exceeded a certain given

threshold, then the algorithm was considered to have successfully

predicted this test lncRNA-associated disease. Finally, the receiver-

operating characteristics (ROC) curve was plotted, and the area

under the corresponding ROC curve (AUC) was calculated. ROC

curve plots true positive rate (sensitivity) versus false positive rate

(1-specificity) at different cutoffs. AUC is the area under ROC

curve, and AUC = 1 shows perfect performance and 0.5 indicates

random performance. As a result, the AUC of our algorithm was

0.7645 (Figure 4). Since our algorithm does not use known

lncRNA-associated diseases to make predictions, predictive results

exceeding 261 experiments are actually all the same. Thus, the

above cross-validation result indicates that our algorithm can

recover known experimentally verified lncRNA-associated diseases

and, hence, has the potential to identify novel potential lncRNA-

associated diseases for non-tissue-specific lncRNAs.

After the leave-one-out cross validation, we then utilized known

experimentally verified lncRNA-associated diseases from the

LncRNADisease database to validate the predictive results for

non-tissue-specific lincRNAs. It should be noted that all the

lncRNA-associated diseases we predicted were for lincRNAs,

which only represent a part of the whole lncRNAs set. However,

entries in LncRNADisease database do not call special attention to

lincRNAs, but rather, different kinds of lncRNAs. Therefore, we

could only validate part of our predicted results in which the

corresponding lincRNAs have now been curated in LncRNADi-

sease database. By doing this, we obtained a subgroup of all the

predicted lincRNA-associated diseases for cross validation, which

contained 36 associations. As a result, accuracy of prediction

showed validation of 32 associations in a total 36 verifiable

Table 2. Case studies to evaluate the performance of our algorithm for tissue-specific lincRNAs. Four of the top ten associations
were verified.

LincRNA Disease Evidence

TCONS_00000720 Ovary-related diseases Yoshihara et al., 2011

TCONS_00000721 Ovary-related diseases Yoshihara et al., 2011

TCONS_l2_00001979 Liver-related diseases

TCONS_00000360 White blood cell-related diseases

TCONS_00001767 HLF_r1-related diseases

TCONS_l2_00002779 Testes-related diseases

TCONS_00000822 Testes-related diseases

TCONS_00000077 Brain-related diseases

TCONS_00000895 Testes-related diseases Gene Expression Atlas Database

TCONS_00001488 Testes-related diseases Gene Expression Atlas Database

doi:10.1371/journal.pone.0084408.t002

Human Disease-Associated lncRNAs Prediction
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associations (about 89%) for non-tissue-specific lincRNAs

(Table 3).

Discussion

As the results show, our method could represent a novel,

important and useful resource for lncRNA-associated disease

prediction. The innovation of our computational framework could

be summarized as follows. First, to the best of our knowledge, it is

the first computational method not based on known lncRNA-

associated diseases to extensively infer potential human lncRNA-

associated diseases, thereby providing a useful supplement to

traditional experimental methods. Second, it does not need known

experimentally verified lncRNA-associated diseases to identify

potential ones, which is particularly important inasmuch as few

experimentally verified lncRNA-associated diseases are now

known. Third, we established lncRNA-gene co-expressed associ-

ations through integrating lncRNAs and gene expression profiles.

As a result, we have constructed a computational framework

which combines some useful and popular computational methods

in the field of gene research with research of lncRNAs, a multiple

network platform on which to build more specific computational

methods in the future. We utilized a large amount of comprehen-

sive and accurate experimentally verified gene-associated diseases

to successfully obtain the potential lncRNA-associated diseases.

It should be noted that our computational framework has two

limitations. First, for tissue-specific lncRNAs, our computational

framework can only predict their associations with some tissue-

related diseases other than more specific disease names. Second,

for some human diseases which have few or no related gene

records, our method cannot predict their potential associated

lncRNAs.

In addition, due to the restriction of available data, the

implementation of our computational framework also has some

limitations. On the one hand, in this work, we can now only

predict potential associations between lincRNAs and diseases as a

result of the lack of corresponding lncRNA expression profiles.

However, based on our computational framework, more compre-

hensive results of all classes of lncRNAs could be easily generated

as soon as other expression data can be obtained. On the other

hand, for lincRNAs, we did not remove redundant ones by

comparing their sequence similarity, which might lead to some

bias in the final results. However, at present, comprehensive

information about lncRNAs is still unavailable. Thus, it is really

difficult to obtain sequence information for all the lincRNAs used

in our computational process from the current known databases.

This limitation could also be avoided as long as comprehensive

information about lncRNAs could be obtained.

Conclusions

Identifying novel potential lncRNA-associated diseases is

emerging in bioinformatics as a tool for improving the under-

standing of disease pathogenesis at the lncRNA level which, in

turn, will improve the prognosis, diagnosis, treatment and

prevention of human disease. In this work, we proposed the first

computational method not based on known lncRNA-associated

diseases to identify potential human lncRNA-associated diseases.

We first divided all the lincRNAs into two parts: tissue-specific

and non-tissue-specific. We quickly and accurately predicted

Figure 4. The ROC curve for leave-one-out cross validation and the AUC of our algorithm is 0.7645.
doi:10.1371/journal.pone.0084408.g004
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tissue-specific lincRNAs associated with certain tissue-related

diseases according to certain criteria. For non-tissue-specific

lincRNAs, we first combined lincRNA expression profiles with

gene expression profiles to obtain lincRNA-gene co-expressed

associations. Then, we implemented a hypergeometric distribution

test based on known experimentally verified gene-disease associ-

ations to measure the closeness between lincRNAs and diseases.

Finally, we evaluated our algorithm and validated our result

through case studies and leave-one-out cross validation utilizing

the curated LncRNADisease database. The result shows that our

method has reliably accurate prediction. Moreover, it is antici-

pated that with more and more available information about

lncRNAs, our computational framework will surely be a useful

resource for research on the relationships between lncRNAs and

human diseases.

Supporting Information

Table S1 Expression profiles of 21626 lincRNAs in 22
human tissue or cell types. In this table, each row stands for a

lincRNA. For a certain lincRNA, several kinds of information

have been collected, such as the number of chromosomes in which

it locates, its starting position and terminal position in a certain

Table 3. Validation of predicted lincRNA-associated diseases for non-tissue-specific lincRNAs, in which 32 of 36 associations have
been confirmed by known experimentally verified data in the LncRNADisease database.

LincRNA Disease Evidence

TCONS_00017432 Lymphoa, T-Cell, Cutaneous

TCONS_00015353 Lymphoa, T-Cell, Cutaneous LncRNADisease verified

TCONS_00015354 Lymphoa, T-Cell, Cutaneous LncRNADisease verified

TCONS_00014856 Lymphoa, T-Cell, Cutaneous LncRNADisease verified

TCONS_00015366 Lymphoa, T-Cell, Cutaneous LncRNADisease verified

TCONS_00015365 Lymphoa, T-Cell, Cutaneous LncRNADisease verified

TCONS_00015363 Lymphoa, T-Cell, Cutaneous LncRNADisease verified

TCONS_00015364 Lymphoa, T-Cell, Cutaneous LncRNADisease verified

TCONS_00015361 Lymphoa, T-Cell, Cutaneous LncRNADisease verified

TCONS_00015362 Lymphoa, T-Cell, Cutaneous LncRNADisease verified

TCONS_00015360 Lymphoa, T-Cell, Cutaneous LncRNADisease verified

TCONS_00015359 Lymphoa, T-Cell, Cutaneous LncRNADisease verified

TCONS_00014855 Lymphoa, T-Cell, Cutaneous LncRNADisease verified

TCONS_00014854 Lymphoa, T-Cell, Cutaneous LncRNADisease verified

TCONS_00017432 Leukemia

TCONS_00015353 Leukemia LncRNADisease verified

TCONS_00015354 Leukemia LncRNADisease verified

TCONS_00014856 Leukemia LncRNADisease verified

TCONS_00015366 Leukemia LncRNADisease verified

TCONS_00015365 Leukemia LncRNADisease verified

TCONS_00015363 Leukemia LncRNADisease verified

TCONS_00015364 Leukemia LncRNADisease verified

TCONS_00015361 Leukemia LncRNADisease verified

TCONS_00015362 Leukemia LncRNADisease verified

TCONS_00015360 Leukemia LncRNADisease verified

TCONS_00015359 Leukemia LncRNADisease verified

TCONS_00014855 Leukemia LncRNADisease verified

TCONS_00014854 Leukemia LncRNADisease verified

TCONS_00063838_KCNQ1OT1 Arthritis, Rheumatoid

TCONS_00017432 Breast Neoplasms LncRNADisease verified

TCONS_00063838_KCNQ1OT1 Lupus Erythematosus, Systemic

TCONS_00017432 Carcinoma LncRNADisease verified

TCONS_00015353 Breast Neoplasms LncRNADisease verified

TCONS_00015354 Breast Neoplasms LncRNADisease verified

TCONS_00015353 Carcinoma LncRNADisease verified

TCONS_00015354 Carcinoma LncRNADisease verified

The lincRNA-associated diseases in this table are sorted in ascending order of the corresponding adjusted p-value of the hypergeometric distribution test.
doi:10.1371/journal.pone.0084408.t003
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chromosome, its name, and its expression levels in 22 human

tissue or cell types.

(XLS)

Table S2 Tissue specificity scores corresponding to
21626 lincRNAs. Based on a cutoff score of 0.8, these lincRNAs

have been partitioned into 13966 tissue-specific and 7660 non-

tissue-specific lincRNAs.

(XLS)

Table S3 245 lincRNAs which have two specifically
expressed tissues and 1 lincRNA which has three
specifically expressed tissues.
(XLS)

Table S4 14213 predicted potential lincRNA-associated
diseases for 13966 tissue-specific lincRNAs.
(XLS)

Table S5 51762 associations between 7303 genes and
5150 diseases retrieved from the DisGeNET database.

(XLS)

Table S6 2272 predicted potential lincRNA-associated
diseases for 6185 non-tissue-specific lincRNAs.

(XLS)

Table S7 Case studies to evaluate the performance of
our algorithm for tissue-specific lincRNAs. Nineteen of the

top 100 associations were verified.

(XLSX)
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