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Abstract

Acute exposure to hypobaric hypoxia at high altitude is reported to cause sympathetic dominance that may contribute to
the pathophysiology of high altitude illnesses. The effect of prolonged stay at high altitude on autonomic functions,
however, remains to be explored. Thus, the present study aimed at investigating the effect of high altitude on autonomic
neural control of cardiovascular responses by monitoring heart rate variability (HRV) during chronic hypobaric hypoxia.
Baseline electrocardiography (ECG) data was acquired from the volunteers at mean sea level (MSL) (,250 m) in Rajasthan.
Following induction of the study population to high altitude (4500–4800 m) in Ladakh region, ECG data was acquired from
the volunteers after 6 months (ALL 6) and 18 months of induction (ALL 18). Out of 159 volunteers who underwent complete
investigation during acquisition of baseline data, we have only included the data of 104 volunteers who constantly stayed at
high altitude for 18 months to complete the final follow up after 18 months. HRV parameters, physiological indices and
biochemical changes in serum were investigated. Our results show sympathetic hyperactivation along with compromise in
parasympathetic activity in ALL 6 and ALL 18 when compared to baseline data. Reduction of sympathetic activity and
increased parasympathetic response was however observed in ALL 18 when compared to ALL 6. Our findings suggest that
autonomic response is regulated by two distinct mechanisms in the ALL 6 and ALL 18. While the autonomic alterations in
the ALL 6 group could be attributed to increased sympathetic activity resulting from increased plasma catecholamine
concentration, the sympathetic activity in ALL 18 group is associated with increased concentration of serum coronary risk
factors and elevated homocysteine. These findings have important clinical implications in assessment of susceptibility to
cardio-vascular risks in acclimatized lowlanders staying for prolonged duration at high altitude.
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Introduction

The autonomic nervous system (ANS) plays an important role

in the regulation of a number of physiological processes during

normal and pathophysiological conditions. Alteration in the ANS

responses has been associated with the progression of cardiovas-

cular diseases [1]. The ANS is influenced by both extrinsic factors

like environment, stress etc as well as intrinsic factors that include

hormonal changes [2]. Alteration in autonomic response is

generally manifested through alterations in heart rate variability

(HRV) [3,4]. Several investigators have used HRV analysis to

assess autonomic functions in field study set ups owing to its

advantages like portability, non-invasiveness, faster data acquisi-

tion, cost-effectiveness and reliability [5–8]. Environmental stress

like acute exposure to hypoxia at high altitude is reported to

diminish linear HRV and increased nonlinear HRV thereby

resulting in alterations in autonomic functions of the nervous

system [9]. Though there is reduction in both high and low

frequency band power at high altitude, the low to high frequency

power ratio increases [10–12].

The effect of rapid ascent to high altitude on autonomic

cardiovascular modulation and its relationship with spectral

components of HRV during AMS has been previously document-

ed [13,14]. Studies by Bernardi et al. (2007) have shown

exaggerated sympathetic activation in subjects with AMS while

sympathetic activation was reduced in Himalayan high altitude

natives [15]. Even after long-term acclimatization at sea level,

high-altitude natives showed lower sympathetic activation, indi-

cating a persisting high altitude adaptation [16]. Comparative

evaluation of the influence of autonomic nervous system on heart

and peripheral circulation in native high-altitude residents and

sea-level residents at high altitude showed that even after

acclimatization for one week, lowlanders showed sympathetic

activation and skin vasoconstriction, while native highlanders

residents did not show reduced vagal tone when compared to sea-

level residents [17]. Intermittent exposure to hypoxia in athletes

unacclimatized to high altitude on the other hand resulted in
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increased LF/HF ratio which is a determinant of sympatho-vagal

balance and signifies sympathetic over-activity [18]. Previous

studies have also demonstrated sympathetic dominance in resting

subjects staying for a period of one month at extreme altitude of

5050 m [19]. Power spectral analysis showed reduced HRV with a

virtual increase in the low frequency (LF) component during

exposure to high altitude [16,20], signifying an increased

sympathetic modulation of the sinus node in response to hypobaric

hypoxia. Over activation of the sympathetic neural system has

been reported in non-natives following exposure to hypobaric

hypoxia at high altitude [21]. In addition, there are other studies

that have shown persistent increase in sympathetic nerve activity

and chemosensitivity even after short duration of exposure to

normobaric hypoxia [22,23]. A recent study by Prabhakaran and

Tripathi (2011) showed autonomic modulation on acute exposure

to hyperoxic hypobaria in simulated altitude of 4574 m [24].

However, most of these studies were performed to evaluate the

consequence of acute and intermittent hypoxia on the autonomic

nervous system and the effect of prolonged stay at high altitude on

cardiovascular autonomic system remains ambiguous.

According to the report of World Health Organization (WHO),

approximately 35 million people travel to altitudes above 3000 m

each year [25]. A large number of lowlander population stay for

long durations at high altitude due to occupational requirements

and call of duty. Despite considerable research on the adverse

effects of high altitude on human health, information on effect of

prolonged stay at high altitude on the physiological functions of

lowlanders is relatively sparse. The present study therefore aimed

at investigating the differential temporal regulation of autonomic

responses in acclimatized lowlanders (sea level populations staying

at high altitude after acclimalization) on prolonged stay at high

altitude. The alterations in autonomic response in acclimatized

lowlanders on different durations of stay at high altitude were

evaluated through longitudinal follow up on a relatively large

cohort. With an objective to determine the metabolic correlates for

the sympatho-vagal response at high altitude, we estimated serum

concentration of coronary risk factors including cholesterol,

triglycerides, high density lipoprotein (HDL), low density lipopro-

tein (LDL) and very low density lipoprotein (VLDL). The possible

influence of secondary hypertension due to kidney malfunction

that could influence the autonomic response was also investigated

by estimating creatinine and blood urea nitrogen [26]. Liver

function tests comprising of alanine aminotransferease (ALT) and

aspartate aminotransferase (AST) as well as serum folic acid,

vitamin B12 and homocysteine levels were also estimated [27–30].

Concentration of serum angiotensin converting enzyme (ACE)

and angiotensin II (Ang II) and plasma catecholamines viz.

norepinephrine and epinephrine was also determined [31,32].

Materials and Methods

Ethical clearance
The experimental protocol was approved by the ethics

committee on human investigation of Defence Institute of High

Altitude Research (DIHAR), Defence Research and Development

Organisation (DRDO), Leh-Ladakh, India in accordance to

Indian Council of Medical Research (ICMR) guidelines, and

informed written consent was obtained from all the volunteers

prior to enrollment.

Study protocol and volunteers
The study was conducted in actual field conditions in Ladakh

region, during August 2009-March 2012. Volunteers who had

stayed for more than 24 months at sea level were enrolled at

Lalgarh Jattan, Rajasthan (,250 m MSL) in May-July 2010. The

volunteers were explained about the study purpose, protocol and

expected outcomes and informed consent was obtained. Prelim-

inary screening was performed based on eligibility criterion L1

comprising of age, gender, education, monthly income and

physical and physiological ailments. A medical questionnaire

comprising questions related to occurrence of chronic diseases,

physical and physiological ailments, heart problems, stroke,

epilepsy, head injury, drug abuse, psychological disorders and

general health status was administered to all the volunteers.

Volunteers were then screened for compliance to eligibility criteria

L2 comprising of core behavioral measures (CBM) like core

alcohol consumption (section A), core tobacco use (section C), core

diet (section D) and core physical activity (section P) in accordance

with WHO guidelines [33] and with Beck Depression Inventory

(BDI) score [34] to investigate the presence of hitherto undetected

depression (Table 1). The information was verified from a close

acquaintance of the volunteer. Lake Louis Score for acute

mountain sickness (AMS) was administered to the participants at

high altitude to negate possible occurrence of AMS symptoms.

Out of 229 volunteers between age group 23–35 of Indo-

European origin who enrolled for the study, 159 volunteers

qualified both L1 and L2 criterion and underwent complete

investigation during acquisition of baseline data at MSL (,250 m)

in Rajasthan region. Following induction of the study population

to high altitude (4500–4800 m) in Ladakh region of India, only

118 volunteers could be followed up after 6 months (ALL 6) and

finally 104 volunteers who constantly stayed at high altitude for 18

months qualified for the final follow up after 18 months (ALL 18),

the remaining being drop outs or de-inductees (Fig. 1). In both

phases, volunteers at high altitude were considered to be

acclimatized when Lake Louise scores were ,2 [35]. The physical

activity was maintained at a constant level for all the volunteers

throughout the duration of the study to negate the influence of

physical activity of cardiac autonomic responses.

Physiological measurements
Systolic and diastolic blood pressure (SBP and DBP), pulse rate

(PR) and hemoglobin oxygen saturation (SpO2) were obtained in

sitting position after 5 minutes rest prior to the investigation.

Height was measured using a portable anthropometer. Body

weight was measured using a portable digital scale (Omron Digital

Weight Scale HN-286, Omron Healthcare Co., Kyoto, Japan).

Body mass index (BMI) was calculated and expressed as kg/m2.

ECG data acquisition and analysis
For recordings on ECG and respiration rate, volunteers were

made to relax in sitting position for 15 minutes for habituation to

the instrument and test environment. Recordings were acquired

using BioHarness Physiology Monitoring System (Zephyr BioHar-

ness data acquisition system with 3-lead configuration, BIOPAC

Systems, Inc., 42 Aero Camio, Goleta, CA, USA) with MP 150

hardware and AcqKnowledge 3.9.1030 software. Raw data was

acquired for 10 min with 250 Hz sample rate and post acquisition

data processing was performed using AcqKnowledge 4.0.0

software. Artifacts, cumulative RR periods, and extra systoles

were manually processed by calculation of interpolated or

extrapolated values. The HRV indices with power spectral

analyses were calculated by HRV analysis software 1.1 from the

surface electrocardiogram [36]. The time-domain parameters viz.

mean HR, mean RR, SDNN, RMSSD, NN50 and pNN50 were

calculated directly from the raw RR interval time series. RR

triangular index and TINN were calculated as geometric measures

of HRV. SD1 was measured as the non-linear parameter of

Autonomic Responses in High Altitude

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e84274



short-term HRV from Poincaré plot. In frequency-domain

analysis power spectral density (PSD) of RR series was calculated

by nonparametric Fast Fourier Transform (FFT) method. The

parameters for frequency-domain included powers of LF, HF and

TP in absolute values, normalized power of LF and HF bands, and

the LF to HF ratio.

Biochemical estimations
Serum and plasma were obtained from fasting blood samples

collected from the volunteers in morning hours under aseptic

conditions. Cholesterol, triglycerides, high density lipoprotein

(HDL), low density lipoprotein (LDL), cholesterol/HDL, LDL/

HDL and very low density lipoprotein (VLDL) were measured by

CHOD-POD, GPO-POD and direct enzyme clearance methods

[37–40] to assess coronary risk profile. Hemoglobin (Hb) was

estimated by converting all forms of hemoglobin to colored

cyanomethemoglobin and measured by a colorimeter while

hematocrit (Hct) was measured using hematocrit reader according

to previously described protocol [41]. Homocysteine, folic acid

and vitamin B12 were measured by chemiluminesence method

[42–44]. Creatinine and blood urea nitrogen (BUN) were

measured spectrophotomentrically with Jaffe’s kinetics and Urease

method respectively [45,46]. Alanine aminotransferase (ALT) and

aspartate aminotransferase (AST) were measured spectrophoto-

metrically [47]. Serum angiotensin converting enzyme (ACE)

concentration was estimated by Boster’s human ACE ELISA kit

(Wuhan Boster Biological Technology Ltd., Wuhan, China).

Serum angiotensin II concentration was estimated spectrophoto-

metrically using RayBioH angiotensin II Enzyme Immunoassay

(EIA) kit (Ray Biotech, Inc., Norcross, GA, USA). Plasma

epinephrine and norepinephrine concentration were estimated

Table 1. Baseline characteristics of volunteers included in the study.

Level 1 (L1) Criteria

Parameter Criteria

1 Age and anthropometric measures

Age (years) 23–35

Gender Male

Education (years) 1262*

Monthly earnings (INR) 1800062500*

2 Medical history/Health status

Any serious health illnesses NA

Head injury resulting in loss of consciousness NA

Any form of seizures, delirium tremens or convulsions NA

Heart attack or any heart problem NA

Cancer NA

Allergies to medications, foods, animals, chemicals, or other agent NA

Lung diseases such as asthma, emphysema, or chronic bronchitis NA

Surgeries or hospitalizations NA

Hypertension NA

Diabetes NA

Viral Hepatitis NA

Dementia/Memory Impairment NA

Stroke/Infarction/Cerebral Hemorrhage NA

Kidney Disease NA

GERD symptoms NA

Chest Pain NA

Congenital Heart Disease NA

Neurological Problem/Epilepsy NA

Familial Disorders NA

Level 2 (L2) Criteria (Core Behavioral Measures)

Parameter Criteria

1 Alcoholism Non-alcoholics

2 Smoking of tobacco products Non-smokers

3 Diet Vegetarian and non-vegetarian

4 Physical activity Mild to moderate

BDI Score 4.8563.96*

*Plus-minus values are mean 6 SD; NA indicates not applicable.
doi:10.1371/journal.pone.0084274.t001
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by ELISA kit according to the instructions of the manufacturer

(Abnova, Neihu District, Taipei City, Taiwan).

Statistical analysis
Data acquired from only those individuals who participated

throughout the study was considered for statistical analysis. Mean

6 SEM was calculated for each group. Statistical analysis was

performed using ANOVA with Duncun’s Post Hoc test for

comparisons between groups using SPSS 17.0 Statistics software

(SPSS, Chicago, IL, USA). Relations between variables were

analyzed by calculating the Pearson product-moment correlation

coefficients. P-values,0.05 (two tailed) were considered to be

significant. All the raw data was archived in the laboratory and a

copy of the same was submitted to central records keeping centre

of DIHAR.

Results

Physiological measures
SBP and DBP values were within the normal physiological

range during the baseline and follow ups. Pulse rate was

significantly higher in ALL 6 and ALL 18 when compared to

the baseline values. The SpO2 at ALL 6 and ALL 18 significantly

reduced when compared with the baseline data. ALL 6 showed

increased pulse rate and reduced SpO2 when compared to ALL

18. BMI remained within the normal physiological range during

baseline and follow ups (Table 2).

Autonomic responses
ECG data analysis showed progressive shortening of overall

HRV indicators viz. mean RR, SDNN, RRTI, TINN and TP in

ALL 6 and ALL 18 when compared to the baseline study group.

The indicators of sympathetic activity viz. mean HR and LF (nu)

showed significantly higher values in ALL 6 and ALL 18 when

compared with the baseline data. The parasympathetic activity

predictors, such as RMSSD, NN50, pNN50, SD1, HF power and

HF (nu) also significantly decreased in the ALL 6 and ALL 18 in

comparison to the baseline values. The LF/HF ratio (sympatho-

vagal balance) increased significantly in the ALL 6 and ALL 18

when compared with the baseline data. Respiration rate was also

found to be increased significantly in the ALL 6 and ALL 18 in

comparison with baseline. Sympathetic activity was maximum in

ALL 6 along with lowest overall HRV and significant reduction

in parasympathetic response when compared to baseline as well as

ALL 18 (Table 3).

Biochemical and molecular changes in the serum
Hemoglobin and hematocrit increased significantly in ALL 6

and ALL 18 when compared with baseline values. ALL 18 showed

highest hemoglobin and hematocrit concentration during the

follow up study. BUN, creatinine, ALT and AST values remained

within the normal reference range during the baseline and follow

ups (Table 4).

Results of serum coronary risk factor profiling have been

described in Table 5. Serum cholesterol, triglycerides, HDL,

VLDL, vitamin B12 and folic acid concentration were within the

Figure 1. Study profile: Flow chart of the volunteers depicting recruitment, assessment and retention in the study.
doi:10.1371/journal.pone.0084274.g001
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normal reference range. However, serum LDL, cholesterol/HDL

and LDL/HDL concentration increased significantly beyond the

reference range in ALL 18 and was higher in comparison to

baseline and ALL 6 values. Serum homocysteine concentration

was also significantly higher than the reference range in ALL 6

and ALL 18 (Table 5, Fig. 2). Serum homocysteine concentration

was significantly higher in the ALL 18 population in comparison

to ALL 6.

No significant change was observed in serum ACE and

angiotensin II concentration during the follow ups (Fig. 3). Plasma

norepinephrine and epinephrine concentration increased signifi-

cantly in the ALL 6 population in comparison with baseline and

ALL 18 population (Fig. 4).

Discussion

The reduced partial pressure of oxygen on ascent to high

altitude leads to decreased tissue oxygenation, an inimitable

condition called hypobaric hypoxia, which culminates in a number

of pathophysiological complications [48–52]. The function of ANS

also gets adversely affected in hypobaric hypoxia at high altitude

[12,16,17,53–56]. Though acute high altitude exposure is reported

to cause alterations in the cardiovascular system [57–59], the

physiological response to prolonged hypobaric hypoxia has been

less studied. In the present longitudinal study, increased pulse rate

and reduced SpO2 was observed in the ALL 6 and ALL 18 groups

in comparison with the baseline. Previous studies to determine the

relationship between SpO2 and arterial blood pressure in healthy

humans have attributed the decrease in SpO2 to increased blood

pressure in persons with oxygen desaturation at high altitudes

[60,61]. Studies by Naeiji et al. (2010) have also shown increased

heart rate even after acclimatization at high altitude [62].

Exposure to hypobaric hypoxia at high altitude leads to hypoxic

pulmonary vasoconstriction that is responsible for the rise in

pulmonary artery pressure [63]. Besides that, ascent to high

altitude is also associated with reduction of pulmonary ventilatory

function [64]. Our findings on increased pulse rate along with

decreased SpO2 on prolonged stay at high altitude find support

from previous reports on the rise in arterial blood pressure,

increased pulse rate and lowering of SpO2 in subjects after

acclimatization to hypobaric hypoxia at high altitude [65–73].

In recent years, HRV is being widely used for the assessment of

ANS responses under diverse physiological and pathological

conditions and has an array of clinical applications [74]. The

heart rate variability method is amicable to field-type studies and

has certain advantages viz. simplicity, portability, non-invasiveness,

cost-effectiveness and reliability. Earlier studies clearly depict that

measurement of HRV is a potent indicator of autonomic

modulations at high altitude [9,13,14,16,19,20]. In this current

investigation, reduced HRV was observed during both the follow

ups (ALL 6 and ALL 18) when compared to the baseline. Mean

RR, SDNN, RRTI, TINN and TP that display the overall HRV

were reduced significantly in the lowlanders at high altitude.

RMSSD, NN50, pNN50, SD1, HF (ms2) and HF (nu) that account

for the parasympathetic response of an individual, were also

reduced significantly in the follow up groups at high altitude. The

sympathetic activity measures viz. mean HR, LF (nu), and LF/HF

ratio which signify the sympatho-vagal balance at the sinus node,

increased in acclimatized lowlanders at high altitude in compar-

ison with the baseline. These findings are an extension of previous

reports on sympathetic dominance and reduction of parasympa-

thetic activity following stay at high altitude for few days to few

weeks [12,14–16,55,75–83]. Studies by Bernardi et al. (1998), have

shown decreased RR intervals and increased systolic blood

pressure in sea level natives even after 7 days of stay at an

altitude of 4970 m [16]. Similar studies conducted by Kanai et al.

2001, on untrained sojourners also showed a decrease in LF and

HF even at altitudes of 3700 m [12]. Malhotra et al. (1976), during

their investigations on effect of stay at high altitude for more than

one year on the autonomic responses noted preponderance of the

sympathetic activity even at an altitude of 3500 m [84]. The effect

of such longer duration of stay at extreme altitudes above 4500 m,

however, remained to be investigated. A unique study by Farinelli

et al. (1994), on the effect of postural change on the heart rate, LF

and HF of acclimatized lowlanders staying at extreme altitudes of

5050 m for one month showed decreased maximal heart rate and

reduced sensitivity of the heart to adrenergic drive [75]. However,

the limited number of 5 human subjects warrants a similar study in

larger populations. Determination of autonomic activity by

measuring muscle nerve sympathetic activity (MNSA) on non

natives during exposure to hypobaric hypoxia showed overactivity

of the sympathetic neural system [21]. Persistent increase in

sympathetic nerve activity and chemosensitivity has also been

reported, even after short duration exposure to normobaric

hypoxia [22,23].

We here report that, prolonged stay at extreme altitudes

(.4500 m above sea level) for 6 months and 18 months results in a

persistent sympathetic dominance when compared to the sea level

populations. The large population size of the study provides

strength to our findings on the altered autonomic response on

shorter (6 months) and prolonged (18 months) stay at high altitude.

Since we observed decrease in SpO2 of acclimatized lowlanders

which showed no signs of improvement despite prolonged stay of

18 months, the increased sympathetic tone in the acclimatized

lowlanders could therefore be a compensatory mechanism to

ensure increased blood circulation to the peripherals under

conditions of low oxygen saturation.

In addition to the autonomic changes, the hemoglobin and

hematocrit concentration in the follow up groups were also found

to increase significantly in comparison with the baseline. The

increase in hemoglobin could be an adaptive physiological

response to partially restore the arterial oxygen content which is

crucial for altitude adaptation and results due to stimulated

erythropoiesis [85–90]. The reduced heart rate in the ALL 18

population on prolonged duration of stay in high altitude that was

observed during the present study could be due to an inverse

relationship of hemoglobin and hematocrit with heart rate.

In the present study we observed an increase in serum LDL,

cholesterol/HDL and LDL/HDL concentrations in ALL 18 along

with significant reduction in HDL concentration. This is in

Table 2. Physiological measures of the study groups
(n = 104).

Normal
range Baseline ALL 6 ALL 18

SBP (mm Hg) 110–130 120.8660.58 123.1860.72 123.0560.80

DBP (mm Hg) 75–85 80.0260.34 82.7260.70 81.9960.83

Pulse Rate (BPM) 70–80 71.7660.51 85.1761.12* 80.2261.20*#

SpO2 (%) 95–98 96.4460.09 89.1860.20* 91.6960.35*#

BMI 18.50–24.90 21.7860.12 21.8460.14 22.0260.24

Values indicated are means 6 SEM.
P,0.05: * compared with Baseline; # compared with ALL 6.
SBP: systolic blood pressure; DBP: diastolic blood pressure; SpO2: hemoglobin
oxygen saturation; BMI: body mass index.
doi:10.1371/journal.pone.0084274.t002
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contradiction to previous reports on lipid profile of healthy human

subjects at moderate altitudes (1000–3500 m) which revealed that

there was no risk of developing cardiovascular diseases due to

dyslipidemia, reduced plasma total cholesterol, reduced LDL-c

and increased level of HDL-c at moderate altitude [91–94].

Investigations on the effect of high altitude exposure on plasma

lipids in a group of mountaineers showed reduction in LDL-c that

was interpreted as an adaptive response to acute hypoxic exposure

[95]. The discrepancy in the findings could be due to a higher

altitude in which the study was conducted and long duration of

stay at high altitude during the present study. Our findings find

support from reports on increase of serum cholesterol, triglycerides

and reduction of HDL-c at high altitude by Smith et al. (2011) and

other researchers [96–98].

Besides increased susceptibility to hyperlipidemia induced

cardiovascular diseases our findings also show significant increase

in serum homocysteine concentration in the ALL 6 and ALL 18

when compared to baseline. Homocysteine concentration in the

serum is influenced by genetic, nutritional, physiological and

environmental factors [99–101]. Binding of nitric oxide (NO) with

vitamin B12 and its precursors resulting in inhibition of methionine

synthase activity could be a plausible reason for the increase in

homocysteine that was observed in ALL.6 and ALL.18 groups

during the present study [102,103]. Our findings find support

from previous reports on upregulation of nitric oxide synthase

(NOS) and increase in NO following high altitude exposure

[104,105]. Our findings are of clinical relevance considering the

fact that hyperhomocysteinemia is accepted to be an independent

predictor of cardiovascular diseases [106]. Similar studies by

Ashraf et al. (2006) have also revealed that high altitude stay could

result into hyperhomocysteinemia as a risk factor for arterial and

venous thrombosis. However, we observed that hyperhomocystei-

Table 3. Heart rate variability indices of the study groups (n = 104).

Baseline ALL 6 ALL 18

Overall HRV measures

Mean RR (s) 0.79260.010 0.67160.010* 0.71860.008*#

SDNN (s) 0.04960.002 0.03260.001* 0.04260.001*#

RR TI 0.12360.004 0.05960.003* 0.08760.001*#

TINN (ms) 351.63615.92 202.5868.14* 292.7666*#

TP ms2 1566.58694.60 748.42643.62* 996.05629.13*#

Sympathetic activity measures

Mean HR (1/min) 77.4460.88 90.2460.98* 85.6560.98*#

LF power ms2 671.68634.28 412.18623.11* 530.36616.81*#

LF (nu) 59.0660.98 80.1260.76* 69.3961.19*#

Parasympathetic activity measures

RMSSD (ms) 39.0162.74 21.1060.89* 32.2460.56*#

NN50 (count) 106.1568.72 30.1263.84* 71.6162.98*#

pNN50 (%) 17.7261.50 5.8060.44* 11.1560.90*#

SD1 (ms) 34.8261.95 15.7060.72* 24.9960.57*#

HF power ms2 468.88636.92 185.82615.74* 289.1268.73*#

HF (nu) 34.5160.98 16.4060.91* 24.5960.66*#

Sympatho-vagal balance measure

LF/HF 2.2160.08 3.6260.18* 3.0760.11*#

Respiration rate 11.7060.07 13.1760.10* 13.2260.11*

Values indicated are means 6 SEM.
P,0.05: * compared with Baseline; # compared with ALL 6.
Mean RR: mean RR interval; SDNN: standard deviation of RR intervals; RMSSD: root mean square of the differences between consecutive RR intervals; NN50: number of
consecutive RR intervals differing more than 50 ms; pNN50: percentage value of NN50 intervals; RRTI: RR triangular index; TINN: triangular index of normal to normal
intervals; VLF: very low frequency; LF: low frequency; HF: high frequency.
doi:10.1371/journal.pone.0084274.t003

Table 4. Hemoglobin, hematocrit, kidney and liver function
profiling of the study groups (n = 104).

Reference
range Baseline ALL 6 ALL 18

Hb (g/dL) 13.80–17.20 15.2860.07 17.7860.06* 18.4760.11*#

Hct (%) 43–52 46.8860.17 53.5660.22* 55.3460.29*#

BUN(ng/ml) 6–20 9.2260.24 9.3860.23 9.4260.25

Creatinine (ng/ml) 0.90–1.30 0.91060.012 0.92860.014 0.93060.015

ALT (ng/ml) 30–65 43.1260.81 44.1961.02 43.4661.39

AST (ng/ml) 15–37 29.2260.28 29.5060.40 29.9061.25

Values indicated are means 6 SEM.
P,0.05: * compared with Baseline; # compared with ALL 6.
Hb: Hemoglobin; Hct: Hematocrit; BUN: blood urea nitrogen; HDL: high density
lipoprotein; LDL: low density lipoprotein; VLDL: very low density lipoprotein;
ALT: alanine aminotransferase; AST: aspertate aminotransferase.
doi:10.1371/journal.pone.0084274.t004

Autonomic Responses in High Altitude

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e84274



Figure 2. Graphic representation of serum coronary risk factor profile in baseline and follow up groups. The limits of the boxes
represent the middle 50% of the data values; the extent of the lines encompass the interquartile range with extreme outlying data points shown as
such. The central line within each box represents the median. a. Serum LDL concentration is significantly elevated in ALL 18 (P,0.05) vs Baseline. b.
Serum cholesterol/HDL ratio is significantly elevated in ALL 18 (P,0.05) vs Baseline. c. Serum LDL/HDL ratio is significantly elevated in ALL 18
(P,0.05) vs Baseline. d. Serum homocysteine concentration is significantly elevated in ALL 18 (P,0.05) vs Baseline.
doi:10.1371/journal.pone.0084274.g002

Table 5. Serum coronary risk factor profiling of the study groups (n = 104).

Reference range Baseline ALL 6 ALL 18

Cholesterol (mg/dl) ,200 124.3860.88 139.8462.30 151.5264.16

Triglycerides (mg/dl) ,150 81.2261.80 98.5462.85 129.4667.36

HDL (mg/dl) 40–60 45.8760.64 39.0760.88 35.3060.44

LDL (mg/dl) ,100 78.7360.85 89.3062.16 104.4562.40*#

Cholesterol/HDL 3.30–4.40 2.9860.03 3.6460.07 4.4760.08*#

LDL/HDL 0.50–3.0 1.9260.03 2.3760.07 3.2760.08*#

VLDL (mg/dl) #30 15.9860.42 19.1260.86 26.5061.17

Homocysteine (mmol/ml) 3.70–13.90 9.1260.07 17.4860.09* 22.9761.18*#

Vitamin B12 (pg/mI) 211–911 262.8263,78 224.8163.86 213.7065.37

Folic Acid (ng/ml) .5.38 7.9260.14 6.2260.15 5.7760.19

Values indicated are means 6 SEM.
P,0.05: * compared with Baseline; # compared with ALL 6.
Hb: hemoglobin; Hct: hematocrit; BUN: blood urea nitrogen; HDL: high density lipoprotein; LDL: low density lipoprotein; VLDL: very low density lipoprotein; ALT: alanine
aminotransferase; AST: aspertate aminotransferase.
doi:10.1371/journal.pone.0084274.t005
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nemia at high altitude was independent of vitamin B12 and folic

acid [107]. Previous studies by Tayama et al. (2006) have

associated hyperhomocysteinemia to systemic arterial stiffness

and greater blood pressure response to stress in hypertensive

patients [108]. Increased oxidative stress has been previously

demonstrated to play a pathophysiological role in the deleterious

endothelial effects of homocysteine by promoting vasoconstriction

and impairing acetylcholine mediated endothelium-dependent

vasodilatation in resistance vessels [109].

The heart rate is controlled by the balance between sympathetic

and parasympathetic nervous system activity, and the reduced

parasympathetic activity is thought to be responsible for the

elevation in heart rate during acute hypoxia [110]. With several

investigators reporting increase in parasympathetic activity [111]

while others reporting reduction in parasympathetic response

[112] and certain reports showing that parasympathetic activity

remains unaffected [113], the role of the parasympathetic activity

in acute hypoxia is still a subject of debate. Koller et al. (1988)

showed that both increased parasympathetic withdrawal and

sympathetic stimulation is responsible for the resting heart rate

elevation in healthy subjects exposed to a simulated altitude of

6000 m during acute hypoxic exposure [114]. The plasma

catecholamine in particular has been reported to regulate the

autonomic function. Prominent change in catecholamine concen-

tration has been observed by several researchers following stay at

high altitude. Increase in concentration of norepinephrine and

epinephrine has been shown after 3–9 weeks of chronic high

altitude exposure [115–117]. We also observed increased concen-

tration of plasma norepinephrine and epinephrine in the ALL 6

population in comparison with the baseline and ALL 18. The

increased sympathetic activity in association with reduced HRV in

ALL 6 population could therefore be attributed to the increased

plasma catecholamine concentration. However, after prolonged

high altitude exposure of 18 months, the concentration of plasma

catecholamine reduced to baseline level. On the contrary our

results showed increased concentration of serum homocysteine

and other coronary risk factors in ALL 18 when compared with

baseline and ALL 6. Hyperhomocysteinemia is known to be an

independent risk factor for systemic arterial stiffness and high

blood pressure during stress [108]. Homocysteine could promote

vasoconstriction and cause impairment of endothelium-dependent

vasodilatation in blood vessels [109]. In the presence of normal

catecholamine concentration, the reduced HRV after prolonged

high altitude exposure for 18 months could be attributed to the

increased concentration of serum coronary risk factors and

elevated homocysteine. This hypothesis finds support from

findings by Acampa et al., 2011 showing that hyperhomocytene-

mia is associated with an alteration in the electrical atrial

conduction, possibly contributing, at least in part, to the increased

risk of cardiac arrhythmias in the denervated hearts of orthotopic

Figure 3. Concentration of a. Serum ACE (ng/ml) and b. Serum
angiotensin II (pg/ml) in baseline and follow ups.
doi:10.1371/journal.pone.0084274.g003

Figure 4. Plasma norepinephrine and epinephrine concentration (pg/ml) in baseline and follow ups. Plasma norepinephrine and
epinephrine concentration are significantly elevated in ALL 6 vs Baseline and ALL 18. P,0.05: * compared with Baseline; # compared with ALL 18.
doi:10.1371/journal.pone.0084274.g004
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heart transplantation (OHT) patients [118]. However, in light of

previous findings on negligible role of homocysteine in influencing

sympathetic activity [119], further research is required to

understand the factors that mediate sympathetic dominance on

prolonged stay for .18 months at high altitude.

Conclusion

Based on the findings of the present study, it may be interpreted

that the autonomic response is greatly affected following high

altitude exposure both for shorter (6 months) as well as prolonged

(18 months) durations. However, the autonomic response appears

to be regulated by two distinct mechanisms in the ALL 6 and ALL

18. While the autonomic alteration in the ALL 6 group is an

outcome of increased sympathetic activity resulting from the

increased plasma catecholamine concentration, the alteration of

autonomic response in ALL 18 group could be associated with

increased concentration of serum coronary risk factors and

elevated homocysteine. These findings may also have important

clinical implications in assessment of susceptibility to cardio-

vascular risks in acclimatized lowlanders staying for longer

durations at high altitude.
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