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Abstract

Tagging items with descriptive annotations or keywords is a very natural way to compress and highlight information about
the properties of the given entity. Over the years several methods have been proposed for extracting a hierarchy between
the tags for systems with a "flat", egalitarian organization of the tags, which is very common when the tags correspond to
free words given by numerous independent people. Here we present a complete framework for automated tag hierarchy
extraction based on tag occurrence statistics. Along with proposing new algorithms, we are also introducing different
quality measures enabling the detailed comparison of competing approaches from different aspects. Furthermore, we set
up a synthetic, computer generated benchmark providing a versatile tool for testing, with a couple of tunable parameters
capable of generating a wide range of test beds. Beside the computer generated input we also use real data in our studies,
including a biological example with a pre-defined hierarchy between the tags. The encouraging similarity between the pre-
defined and reconstructed hierarchy, as well as the seemingly meaningful hierarchies obtained for other real systems
indicate that tag hierarchy extraction is a very promising direction for further research with a great potential for practical
applications. Tags have become very prevalent nowadays in various online platforms ranging from blogs through scientific
publications to protein databases. Furthermore, tagging systems dedicated for voluntary tagging of photos, films, books,
etc. with free words are also becoming popular. The emerging large collections of tags associated with different objects are
often referred to as folksonomies, highlighting their collaborative origin and the ‘‘flat’’ organization of the tags opposed to
traditional hierarchical categorization. Adding a tag hierarchy corresponding to a given folksonomy can very effectively help
narrowing or broadening the scope of search. Moreover, recommendation systems could also benefit from a tag hierarchy.
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Introduction

The appearance of tags in various online contents have become

very common, e.g., tags indicate the topic of news-portal feeds and

blog post, the genre of films or music records on file sharing

portals, or the kind of goods offered in Web stores. By

summarizing the most important properties of an entity in only

a few words we ‘‘compress’’ information and provide a rough

description of the given entity which can be processed very rapidly,

(e.g., the user can decide whether the given post is of interest or not

without actually reading it). The usage of tags, keywords,

categories, etc., for helping the search and browsing amongst a

large number of objects is a general idea that has been around for

a long time in, e.g., scientific publications, library classification

systems and biological classification. However, in the former

examples the tagging (categorization) of the involved entities is

hierarchical, with a set of narrower or broader categories building

up a tree-like structure composed of ‘‘is a subcategory of’’ type

relations. In contrast, the nature of tags appearing in online

systems is rather different: they can usually correspond to any free

word relevant to the tagged item, and they are almost never

organized into a pre-defined hierarchy of categories and sub-

categories [1–3]. Moreover, in some cases they originate from

extensive collaboration as, e.g., in tagging systems like Flickr,

CiteUlike or Delicious [4–6], where unlimited number of users can

tag photos, Web pages, etc., with free words. The arising set of free

tags and associated objects are usually referred to as folksonomies,

for emphasizing their collaborative nature. Since each tagging

action is forming a new user-tag-object triple in these systems, their

natural representation is given by tri-partite graphs, or in a more

general framework by hypergraphs [5,7–9], where the hyperedges

connect more than two nodes together.

One of the very interesting challenges related to systems with

free tagging is extracting a hierarchy between the appearing tags.

Although most tagging systems are intrinsically egalitarian, the

way users think about objects presumably has some built in

hierarchy, e.g., ‘‘poodle’’ is usually considered as a special case of

‘‘dog’’. By revealing this sort of hierarchy from, e.g., tag co-

occurrence statistics, we can significantly help broadening or

narrowing the scope of search in the system, give recommendation

about yet unvisited objects to the user [11,12], or help the

categorization of newly appearing objects. Beside the high

relevance for practical applications, this problem is interesting

also from the theoretical point of view, as marked by several

alternative approaches proposed in the recent years. P. Heymann

and H. Garcia-Molina introduced a tag hierarchy extracting

algorithm based on analyzing node centralities in a co-occurrence

network between the tags [13], where connections between tags

indicate the appearance of the tags on the same objects

simultaneously and link weights correspond to the frequency of
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co-occurrences. Another interesting approach was outlined by A.

Plangprasopchok and K. Lerman [14,15], which can be applied to

systems where users may define a shallow hierarchy for their own

tags, and by agglomerating these shallow hierarchies we gain a

global hierarchy between the tags. Further notable algorithms

were given by P. Schmitz [16], using a probabilistic model and C.

Van Damme et al. [17], integrating information from as many

sources as possible.

In this paper we introduce a detailed framework for tag

hierarchy extraction. Our intended main contributions to this field

here are represented by the development of a synthetic, computer

generated benchmark system, and the introduction of quality

measures for extracted hierarchies. The basic idea of the

benchmark system is to simulate the tagging of virtual objects

with tags based on a pre-defined input hierarchy between the tags.

When applying a hierarchy extraction algorithm to the generated

data, the obtained tag hierarchy can be compared to the original

tag hierarchy used in the simulation. By changing the parameters

of the simulations we can test various properties of the tag

hierarchy extracting algorithm in a controlled way. The different

quality measures we introduce can be used to evaluate the results

of a tag hierarchy extracting algorithm when the exact hierarchy

between the tags is also known, (as, e.g., in case of the synthetic

benchmark). Furthermore, we also develop new hierarchy

extraction methods, which are competitive with the state of the

art current methods.

These methods are tested on both the synthetic benchmark and

on a couple of real systems as well. One of our data set contains

proteins tagged with protein functions, where the extracted tag

hierarchy can be compared to the protein function hierarchy of

the Genome Ontology. The other real systems included in our

study are given by tagged photos from the photo sharing platform

Flickr and tagged movies from the Internet Movie Database

(IMDb). In these cases, pre-defined ‘‘exact’’ tag hierarchies are not

given, therefore, the outcomes of our hierarchy extraction

algorithm can be evaluated only by visual inspection of smaller

subgraphs in the obtained hierarchies. Luckily, as the tags

correspond to English words in these systems, we can still get a

good impression whether the obtained hierarchies are meaningful

or not.

Our tag hierarchy extraction methods are rooted in complex

network theory. In the last 15 years the network approach has

become an ubiquitous tool for analyzing complex systems [18,19].

Networks corresponding to realistic systems can be highly non-

trivial, characterized by a low average distance combined with a

high average clustering coefficient [20], anomalous degree

distributions [21,22] and an intricate modular structure [23–25].

The appearance of node tags is very common in e.g., biological

networks,[26–31], where they usually refer to the biological

function of the units represented by the nodes (proteins, genes,

etc.). Node features are also fundamental ingredients in the so-

called co-evolving network models, where the evolution of the

network topology affects the node properties and vice versa [32–

37]. Meanwhile, hierarchical organization is yet another very

relevant concept in network theory [38–44]. As networks provide a

sort of ‘‘backbone’’ description for systems in biology, physics,

chemistry, sociology, etc., whenever the related system is

hierarchical, naturally, the given network is likely to preserve this

aspect to some degree. This is supported by several recent studies,

focusing on the dominant-subordinate hierarchy among crayfish

[45], the leader-follower network of pigeon flocks [46], the rhesus

macaque kingdoms [47], the structure of the transcriptional

regulatory network of Escherichia coli [48], and on a wide range of

social [49–51] and technological networks [41].

The two network based tag hierarchy extraction methods

presented in this paper are both relying on the weighted network

between the tags based on co-occurrence statistics. For the

majority of the tags, the direct ancestor in the hierarchy is actually

chosen from its neighbors in the network according to various

delicate measures.

Results

Algorithms
The reason for including both algorithm A and algorithm B in

the paper is that algorithm A ‘‘wins’’ on the protein function data

set, while algorithm B is better on the computer generated

benchmarks and also seems to produce even more meaningful

results in case of Flickr and IMDb. We made free implementation

of both methods available at (http://hiertags.elte.hu).

Algorithm A. The first stage corresponds to defining weight-

ed links between the tags. Probably the most natural choice is

given by the number of co-occurrences, (the number of objects

tagged simultaneously by the given two tags). Since we are aiming

at a directed network, (in which links are pointing from tags higher

in the hierarchy towards descendants lower in the hierarchy), in

this initial stage we actually assume two separate links pointing in

the opposite direction for every pair of co-occurring tags, (with

both links having the same weight).

In the next step we prune the network by throwing away a part

of the links. Instead applying a global threshold, for each tag i we

remove incoming links with a weight smaller than v fraction of the

weight of the strongest incoming link on i. According to our tests

on the protein function data set, the quality of the results was only

slightly effected by changing v. (Our quality measures and the

description of the data sets are given in forthcoming sections).

Nevertheless, an optimal plateau was observed in the quality as a

function of v between v~0:3 and v~0:55, as discussed in details

Sect.S1.1.2 in File S1. Thus, in the rest of the paper we show

results obtained at v~0:4.

After the complete link removal process has been finished, the

direct ancestor of tag i is chosen from the remaining in-neighbors

as follows. We calculate the z-score for the co-occurrence with

each in-neighbor individually, given by the difference between the

number of observed co-occurrences and the number of expected

co-occurrences at random, scaled by the standard deviation,

(based on the tag frequencies, more details on the z-score are given

in Methods). The in-neighbor j with the highest z-score is usually

identified as the direct ancestor, and all other incoming links are

deleted on i. However, there is a very important exception to this

rule: in case the i?j link ‘‘survived’’ when thresholding the

incoming links on j. This means that i happens to be also a

candidate for the ancestor of j, and actually the two tags are more

likely to be siblings. In this scenario we go down the list of

remaining in-neighbors of i in the order of the z-score, until we

find a candidate l for which the link i?l was already deleted, and

identify l as the ancestor of i. In case no such in-neighbor can be

found, i becomes a local root, with temporally no incoming links.

In the last phase of the algorithm we first choose a global root

from the local ones according to the maximum entropy of their

incoming link weight distribution: if the incoming link weights on i
are given by wij with

P
j wij~W , then entropy can be written as

{
P

j

wij

W
ln

wij

W
. The reasoning behind this choice is that a large

entropy usually corresponds to a large number of direct

descendants with more or less uniform weight distribution. After

the global root has been chosen, we go through the list of local

roots in the order of their entropy, and link them under their
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partner with which they co-occur most frequently. (To avoid the

formation of loops, we choose only from co-occurring partners

located in another subtree).

The result of the algorithm is a directed tree, since we assign one

direct ancestor to every tag during the process, (except the global

root), and we do not allow loops. The complexity of the algorithm

can be estimated as O(Q)zO(M log M), where Q denotes the

number of objects, and M stands for the number of links in the co-

occurrence network between the tags. (The details and the pseudo

code of the algorithm are given in Sect.S1.1.1 in the File S1).

Algorithm B. In case of algorithm B the weight of the links in

the network between the tags is the same as in algorithm A,

namely the number of objects the tags co-occurred on. However,

instead of parallel directed links pointing in the opposite direction,

here we consider only single undirected links. Similarly to

algorithm A, in the second phase we remove a part of the links

from the network. However, in this case we use the z-score

between connected pairs as a threshold, i.e., if the z-score is below

10, the given link is thrown away. (The optimal value for the z-

score threshold was set based on experiments on our synthetic

benchmark, as detailed in Sect.S1.2.2 in File S1.) There is one

exception to the above rule of thresholding: if a tag appears on

more than half of the objects of the other tag, then the

corresponding link is kept even if the z-score is low.

Next, the eigenvector centrality is calculated for the tags based

on the weighted undirected network remaining after the thresh-

olding, and the tags are sorted according to their centrality value.

The hierarchy is built from bottom up: starting from the tag with

the lowest eigenvector centrality we choose the direct ancestor of

the given tag from its remaining neighbors according to a couple

of simple rules. First of all, the ancestor must have a higher

centrality. The reasoning behind this is that the eigenvector

centrality is analogous to PageRank. Thus, the centrality of a tag is

high if it is connected to many other high centrality tags, and

therefore, higher centrality values are likely to appear on more

frequent and more general tags.

In case the tag i has more than one remaining neighbor with a

higher centrality value, we choose the candidate which is the most

related to i and the set of tags already classified as a descendant of

i. This is implemented by aggregating the z-score between the

given candidate and the tags in the branch starting from i,
(including i as well), and selecting according to the highest

aggregated z-score value. We note that this is a unique feature of

the algorithm: by aggregating over the descendants of i we are

using more information compared to simple similarity measures,

and hence, are more likely to choose the most related candidate as

the parent of i.

Since we iterate over the tags in reverse order according to their

centrality value, and ancestors have always higher centralities

compared to their descendants, no loops are formed during the

procedure. The complexity of the method can be estimated as

O(Q)zO(N: ln N), where Q stands for the number of objects and

N denotes the number of different tags. (The details and the

pseudo code of the algorithm are given in Sect.S1.2.1 in the File

S1).

Measuring the quality of the extracted tag hierarchy
Simple quality measures. Before actually discussing the

results given by tag hierarchy extracting methods in different

systems, we need to specify a couple of measures for quantifying

the quality of the obtained hierarchies. The natural representation

of a hierarchy is given by a directed acyclic graph (DAG), in which

links are pointing from nodes at higher level in the hierarchy

towards related other nodes lower in the hierarchy. If the exact tag

hierarchy is known, the problem is mapped onto measuring the

similarity between the DAG obtained from the tag hierarchy

extraction method, the ‘‘reconstructed’’ graph, Gr and the exact

DAG, Ge.

A simple and natural idea is taking the ratio of exactly matching

links in Gr, denoted by rE, as a primary indicator. In case Gr has

only a single connected component, rE is simply given by the

number of links also present in Ge, divided by the total number of

links in Gr, denoted by Mr. However, if Gr contains only a few

links with a vast number of isolated nodes, this sort of

normalization can lead to a unrealistically high rE value, in case

the links happen to be exactly matching. Thus, in the general case

we normalize the number of exactly matching links by

max (N{1,Mr), where N{1 corresponds to the number of links

needed for creating a tree between the N tags.

In a more tolerant approach we may also accept links between

more distant ancestor descendant pairs according to the exact

hierarchy, (e.g., links pointing from ‘‘grandparents’’ to ‘‘grand-

children’’). Beside the ratio of acceptable links, rA, we can measure

the ratio of links between unrelated tags, rU as well, (these are pairs

which are not connected by any directed path in Ge), and also the

ratio of ‘‘inverted’’ links, rI, pointing in the opposite direction

compared to Ge, or connecting more distant ancestor descendant

pairs in the wrong direction. Furthermore, when MrvN{1, the

ratio of missing links from Gr, denoted by rM, is another important

indicator of the effectiveness of the algorithm. (If Gr is composed of

only a single component, rM is 0 by definition.) Similarly to rE, all

quality indicators introduced so far are normalized by

max (N{1,Mr). These measures are not completely independent

of each other, i.e., the ratio of acceptable links is always larger than

or equal to the ratio of exactly matching links, rA§rE, and also

rAzrIzrUzrM~1.

Normalized mutual information between hierarchies. A

somewhat more elaborate approach to measuring the quality of

the reconstructed hierarchy can be given by the normalized

mutual information, (NMI), introduced originally in information

theory for measuring the mutual dependence of two random

variables [52,53]. (The definition of the NMI in general is given in

Methods). A very important application of the NMI is related to

the problem of comparing different partitioning of the same graph

into communities [54,55]. The advantage of the NMI approach

when comparing hierarchies is that the resulting similarity

measure is sensitive not only to the amount of non-matching

links, but also to the position of these links in the hierarchies. In

other words, the change in the similarity is different for rewiring a

link pointing to a leaf and for rewiring a link higher in the

hierarchy.

When judging the similarity between two hierarchies, a natural

idea is to compare the sets of descendants for each tag in the

corresponding DAGs. E.g., if the set of descendants of tag i is De(i)
in the exact hierarchy and Dr(i) in the reconstructed one, then the

number of tags in the intersection of these two sets is given by

De(i)\Dr(i)j j. Roughly speaking, the higher the value of this

quantity over all tags, the higher is the similarity between the two

hierarchies. To build a similarity measure from this concept in the

spirit of the NMI, first we define pe(i)~ De(i)j j=(N{1) as the

probability for picking a tag from the descendants of i at random

in the exact hierarchy, where N denotes the total number of tags

in Ge. (Since the tag i is not included in De(i), the possible

maximum value for De(i)j j is N{1). Similarly, the probability for

choosing a tag from the descendants of i at random in Gr is given

by pr(i)~ Dr(i)j j=(N{1), while the probability for picking a tag

from the intersection between the descendants of i in the two

hierarchies can be written as pr,e(i)~ De(i)\Dr(i)j j=(N{1).

Extracting Tag Hierarchies
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Based on this, the NMI between the exact- and reconstructed

hierarchies can be formulated as

Ie,r~{

2
PN
i~1

pe,r(i) ln
pe,r(i)

pe(i)pr(i)

� �

PN
i~1

pe(i) ln pe(i)z
PN
i~1

pr(i) ln pr(i)

~

2
PN
i~1

De(i)\Dr(i)j j ln De(i)\Dr(i)j j(N{1)
De(i)j j: Dr(i)j j

� �

PN
i~1

De(i)j j ln De(i)j j
N{1

� �
z
PN
i~1

Dr(i)j j ln Dr(i)j j
N{1

� � :

ð1Þ

This measure is 1 if and only Ge and Gr are identical, and is 0 if

the intersections between the corresponding branches in the two

hierarchies is of the same magnitude as we would expect at

random, or in other words, if Ge and Gr are independent. The

similarity defined in the above way is very closely related to the

NMI used in community detection [54,55], the analogy between

the two quantities can be made explicit by an appropriate

mapping from the hierarchy between the tags to a partitioning of

the tags, (further details are given in Sect.S2.1 in File S1).

We examined the behavior of the NMI given in (1) by taking a

binary tree of 1,023 nodes, Gb, and comparing it to its randomized

counterpart, Grand , obtained by rewiring a fraction of f links to a

random location. In Fig.1. we show the measured NMI as a

function of f . If we start the rewiring with links pointing to leafs,

and continue according to the reverse order in the hierarchy, the

NMI shows a close to linear decay as a function of f almost in the

entire ½0,1� interval (purple circles). However, if links are chosen in

random order, Ib,rand is decreasing much faster in the small f

region, with an overall non-linear f dependency (blue squares). An

even steeper decay can be observed when links are chosen in the

order of their position in the hierarchy (green triangles).

Nevertheless, Ib,rand?0 when f?1 in all cases, thus, the similarity

defined in this way is vanishing for a pair of independent DAGs.

Meanwhile, the significant difference between the three curves

displayed in Fig.1c shows that the NMI is sensitive also to the

position of the rewired links in the hierarchy: rewiring the top

levels of the hierarchy is accompanied by a drastic drop in the

similarity, while changes at the bottom of the hierarchy cause only

a minor decrease, which is linear in the fraction of rewired links.

This non-trivial feature of the NMI allows the introduction of

another interesting quality measure for a reconstructed hierarchy.

Supposing a similar randomization procedure on Ge as shown in

Fig.1, we may ask what fraction of links has to be rewired on

average for reaching the same NMI as Gr? The formal definition of

this measure is given as follows. Let I(f ) denote the average NMI

obtained for a fraction of f randomly rewired links, where the links

are chosen in random order, I(f ):vIe,randwf . By projecting the

NMI between the exact- and reconstructed hierarchies, Ie,r, to the

f axis using this function as

f �~I{1(Ie,r), ð2Þ

we receive the fraction of randomly chosen links to be rewired in

Figure 1. Using the normalized mutual information (NMI) for measuring the similarity between hierarchies. We tested the behavior of
the NMI by applying (1) to a binary tree of 1,023 nodes, Gb, and its randomized counter part, Grand, obtained by rewiring the links at random, as
shown in the illustration at the top. The decay of the obtained NMI is shown in the bottom panel as a function of the fraction of the rewired links, f .
The three different curves correspond to rewiring the links in reverse order according to their position in the hierarchy (purple circles), rewiring in
random order (blue squares) and rewiring in the order of the position in the hierarchy (green triangles). The concept of the linearized mutual
information (LMI) for the general tag hierarchy reconstruction problem is illustrated in red: By projecting the measured Ie,r value onto the f axis via
the blue curve we obtain f � , giving the fraction of rewired links in a randomization process with the same NMI value. The LMI is equal to Ilin~1{f � ,
corresponding to the fraction of unchanged links.
doi:10.1371/journal.pone.0084133.g001
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Ge for obtaining a randomized hierarchy with the same NMI as Gr,

(see Fig.1 for illustration). Based on that we define the linearized

mutual information, (LMI) as

Ilin~1{f �~1{I{1(Ie,r): ð3Þ

This quality measure corresponds to the fraction of unchanged

links in a random link rewiring process, resulting in a hierarchy

with the same NMI as Gr. (The reason for calling it ‘‘linearized’’ is

that (3) is actually projecting Ie,r to the linear 1{f curve). By

comparing the LMI to the fraction of exactly matching links, re,

we gain further information on the nature of the reconstructed

DAG: If Ilin is significantly larger than re, the reconstructed DAG

is presumably better for the links high in the hierarchy, whereas if

Ilin is significantly lower than re, the reconstructed DAG is more

precise for links close to the leafs.

Real tagging systems
Reconstructing the hierarchy of protein functions. Although

the primary targets of tag hierarchy extraction methods are given by

tagging systems with no pre-defined hierarchy between the tags, for

testing the quality of the extracted hierarchy we need input data for

which the exact hierarchy is also given. A very important real tag

hierarchy is provided by protein functions as described in the Gene

Ontology [56], organizing function annotations into three separate

DAGs corresponding to ‘‘biological process’’, ‘‘molecular function’’

and ‘‘cellular component’’ oriented description of proteins. The

corresponding input data for a tag hierarchy extraction algorithm

would be a collection of proteins, each tagged by its function

annotations. Luckily, the Gene Ontology provides also a regularly

updated large data set enlisting proteins and their known functions

aggregated from a wide range of sources, (a more detailed description

of the data set we used is given in Materials and Methods).

In Fig.2a we show a smaller subgraph from the hierarchy

between molecular functions given in the Gene Ontology, Ge,

together with the subgraph between the same tags in the result

obtained by running our algorithm A on the tagged protein data

set, Gr, displayed in Fig.2b. The matching between the two

subgraphs is very good: the majority of the connections are either

exactly the same (shown in green), or acceptable (shown in

orange), by-passing levels in the hierarchy and e.g., connecting

‘‘grandchildren’’ to ‘‘grandparents’’. The appearing few unrelat-

ed– and missing links are colored red and gray, respectively.

The quality measures obtained for the complete reconstructed

hierarchy are given in table 1. For comparison we also evaluated

the same measures for algorithm B, the algorithm by P. Heymann

and H. Garcia-Molina, and the algorithm by P. Schmitz.

According to the results all 4 methods perform rather well,

however, our algorithm seems to achieve the best scores. Although

the ratio of exactly matching links is rE~21%, (which is not very

high), the ratio of acceptable links is reaching rA~66%, which is

very promising. The NMI given by (1) is Ie,r~35%, however, the

LMI according to (3) is Ilin~78%. (The corresponding plot

showing the decay of the NMI between the Gene Ontology

hierarchy and its randomized counterpart is given in Sect.S2.2 in

File S1). Thus, the similarity between our reconstructed hierarchy

and the hierarcy from the Gene Ontology is so high that if we

would randomize the Gene Ontology, (by rewirnig the links in

random order), the same NMI value would be reached already

after rewiring 22% of the links. The large difference between Ilin

and rE in favour of Ilin indicates that our algorithm is better at

predicting links higher in the hierarchy. E.g., in a randomization

with random link rewiring order keeping only rE~21% of the

links unchanged, the NMI would be around 2% instead of the

actualy measured Ie,r~35%. The reason why Ie,r can stay

relatively high for the reconstructed hierarchy is that the majority

of the non-matching links are low in the hierarchy, therefore, have

a smaller effect on the NMI.

Hierarchy of Flickr tags. One of the most widely known

tagging systems is given by Flickr, an online photo management

and sharing application, where users can tag the uploaded photos

with free words. Since the tags are not organized into a global

hierarchy, this system provides an essential example for the

application field of tag hierarchy extracting algorithms. We have

run our algorithm B on a relatively large, filtered sample of photos,

(the details of the construction of our data set are given in

Methods). Although the ‘‘exact’’ hierarchy between the tags is not

known in this case, since the tags correspond to English words, we

can still give a qualitative evaluation of the result just by looking at

smaller subgraphs in the extracted hierarchy.

An example is given in Fig.3., showing a few descendants of the

tag ‘‘reptile’’ in our reconstruction. Most important direct

descendants are ‘‘snake’’, ‘‘lizard’’, ‘‘alligator’’ and ‘‘turtle’’. The

tags under these main categories seem to be correctly classified,

e.g., ‘‘alligator snapping turtle’’ is under ‘‘turtle’’, (instead of the

also related ‘‘alligator’’). Interestingly, Latin names (binomial

names) from the taxonomy of ‘‘reptilia’’ form a further individual

branch under ‘‘reptile’’, however, occasionally we can also see

binomial names directly connected to the corresponding English

name of the given species. More examples from our result on the

Flickr data are given in Sect.S3.1 in File S1, which taken together

with Fig.3 give an overall impression of a meaningful hierarchy,

following the ‘‘common sense’’ by and large. (Furthermore, similar

samples from the hierarchies extracted by the other methods are

also given in Sect.S3.2 in File S1.)

Hierarchy of IMDb tags. Another widely known online

database is given by the IMDb, providing detailed information

related to films, television programs and video games. One of the

features relevant from the point of view of our research is that

keywords related to the genre, content, subject, scenes, and

basically any relevant feature of the movies are also available.

These can be treated similarly to the Flickr tags, i.e., they are

corresponding to English words, which are not organized into a

hierarchy. In Fig.4. we show results obtained by running

Algorithm B on a relatively large, filtered sample of tagged

movies. (The details of the construction of the data set are given in

Methods). Similarly to the Flickr data, we display a smaller part of

the branch under the tag ‘‘murder’’ in the extracted hierarchy.

Most important direct descendants are corresponding to ‘‘death’’,

‘‘prison’’ and ‘‘investigation’’, with ‘‘blood’’, ‘‘suspect’’ and ‘‘police

detective’’ appearing on lower levels of the hierarchy. Although

the tags appearing in the different sub-branches are all related to

their parents, the quality of the Flickr hierarchy seemed a bit

better. This may be due to the fact that keywords can pertain to

any part of the movies, and hence, the tags on a single movie can

already be very diverse, providing a more difficult input data set

for tag hierarchy extraction. Nevertheless, this result reassures our

statement related to the Flickr data, namely that the hierarchies

obtained from our algorithm have a meaningful overall impres-

sion. (Similar samples from the hierarchies obtained with the other

methods are shown in Sect.S3.2 in File S1.)

Synthetic benchmark based on random walks
Defining the benchmark system. Providing adjustable

benchmarks is very important when testing and comparing

algorithms. The basic idea of a benchmark in general is given

by a system, where the ground truth about the object of search is
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also known. However, for most real systems this sort of

information is not available, therefore, synthetic benchmarks are

constructed. E.g., community finding is one of the very intensively

studied area of complex network research, with an enormous

number of different community finding algorithms available [25].

Since the ground truth communities are known only for a couple

of small networks, the testing is usually carried out on the LFR

benchmark [27], which is a purely synthetic, computer generated

Figure 2. Comparison between the exact hierarchy and the reconstructed hierarchy obtained from algorithm A. a) A subgraph in the
hierarchy of protein functions, (describing molecular functions), according to the Gene Ontology, treated as the exact hierarchy, Ge . b) The hierarchy
between the same tags obtained from running algorithm A on the tagged protein data set, (the reconstructed hierarchy, Gr). The exactly matching-
and acceptable links are colored green and orange respectively, the unrelated links are shown in red, while the missing links are colored gray. c) The
list of included protein functions in panels (a) and (b).
doi:10.1371/journal.pone.0084133.g002
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benchmark: the communities are pre-defined, and the links

building up the network are generated at random, with linking

probabilities taking into account the community structure. The

drawback of such synthetic test data is its artificial nature,

however, the benefit on the other side is the freedom of the choice

of the parameters, enabling the variance of the test conditions on a

much larger scale compared to real systems.

Here we propose a similar synthetic benchmark system for

testing tag hierarchy extraction algorithms. The basic idea is to

start from a given pre-defined hierarchy, (the ‘‘exact’’ hierarchy),

and generate collections of tags at random, (corresponding to

tagged objects in a real system), based on this hierarchy. The tag

hierarchy extraction methods to be tested can be run on these sets

of tags, and the obtained hierarchies, (the "reconstructed"

hierarchies), can be compared to the exact hierarchy used when

generating the synthetic data. When drawing an analogy between

this system and the LFR benchmark, our pre-defined hierarchy is

corresponding to the pre-defined community structure in the LFR

benchmark, while the generated collections of tags are corre-

sponding to the random networks generated according to the

communities.

To make the above idea of a synthetic tagging system work in

practice, we have to specify the method for generating the random

collections of tags based on the given pre-defined hierarchy. In

general, the basic idea is that tags more closely related to each

other according to the hierarchy should appear together with a

larger probability compared to unrelated tags. To implement this,

we have chosen a random walk approach as suggested in [58]. The

first tag in each collection is chosen at random. For the rest of the

tags in the same collection, with probability pRW we start a short

undirected random walk on the hierarchy starting from the first

tag, and choose the endpoint of the random walk, or with

probability 1{pRW we again choose at random. An illustration of

this process is given in Fig.5, (a brief pseudo-code of the data

generation algorithm is given in Algorithm S4 in File S1). The

parameters of the benchmark are the following: the pre-defined

hierarchy between the tags, the frequency of the tags when

choosing at random, the probability pRW for generating the second

and further tags by random walk, the length of the random walks,

the number of objects and finally, the distribution of the number of

tags per object. Although this is a long list of parameters, the

quality of the reconstructed hierarchy is not equally sensitive to all

of them. E.g., according to our experiments change in the topology

of the exact hierarchy, or in the length of the random walk have

only a minor effect, while the distribution of the tag frequencies

seems to play a very important role.

Results on synthetic data
In Table 2. we show the tag hierarchy extraction results

obtained on synthetic data generated by using our random walk

based benchmark system. In the data generation process the exact

hierarchy was set to a binary tree of 1,023 tags, with tag

frequencies decreasing linearly as a function of the depth in the

hierarchy. We generated an average number of 3 co-occurring

tags on altogether 2,000,000 hypothetical objects, with random

walk probability of pRW~0:5 and random walk lengths chosen

from a uniform distribution between 1 and 3. We ran the same

algorithms on the obtained data as in case of the protein data set,

and used the same measures for evaluating the quality of the

results. According to Table 2., the majority of the algorithms

perform very well, e.g., algorithm B and the algorithm by P.

Heymann & H. Garcia-Molina are producing almost perfect

reconstructions, thus, this example is an ‘‘easy’’ data set.

Interestingly, the results of the algorithm by Schmitz were very

poor on this input. Nevertheless, this method is still competitive

with the others, e.g., it showed a quite good performance on the

protein data set. However, the study of why does this algorithm

behave completely different from the others on our benchmark is

out of the scope of the present work.

The ‘‘easy’’ synthetic data discussed above can be turned into a

‘‘hard’’ one by changing the frequency distribution of the tags. In

Table 3. we show the results obtained when the tag frequencies

were independent of the level depth in the hierarchy, and had a

power-law distribution, with the other parameters of the bench-

mark left unchanged. According to the studied quality measures,

the performance of the involved methods drops down drastically

compared to Table 2. However, algorithm B provides an

exception in this case, achieving pretty good results even for this

‘‘hard’’ test data. E.g., the NMI value is still Ie,r~0:83 for our

algorithm, while for e.g., the algorithm by P. Heymann & H.

Garcia-Molina it is reduced to Ie,r~0:29. Moreover, the fraction

of exactly matching links is almost 90% for algorithm B, while it is

below 50% for the algorithm by P. Heymann & H. Garcia-

Molina. This shows that algorithm B can have a significantly

better performance compared to other algorithms, as the quality of

its output is less dependent on the correlation between tag

frequencies and level depth in the hierarchy. Another interesting

effect in Table 2. is that the results for the algorithm by Schmitz

are slightly better compared to the ‘‘easy’’ data set. As we

mentioned earlier, studies of the reasons for the outlying behavior

of this algorithm on our benchmark compared to the other

methods is left for future work.

Table 1. Quality measures for the reconstructed hierarchies in case of the protein function data set.

rE rA rI rU rM Ie,r Ilin

algorithm A 21% 66% 2% 32% 0% 35% 78%

algorithm B 20% 52% 3% 44% 1% 30% 75%

P. Heymann & H. Garcia-Molina 19% 51% 3% 46% 0% 30% 75%

P. Schmitz 18% 65% 2% 23% 10% 30% 75%

The quality of the tag hierarchy obtained for the tagged protein data set, Gr , was evaluated by comparing it to the hierarchy of protein functions in the Gene Ontology,
Ge . The quality measures presented in the different columns are the following: the ratio of exactly matching links in Gr ,denoted by rE , the ratio of acceptable links, rA ,
(connecting more distant ancestor-descendant pairs), the ratio of inverted links, rI , (pointing in the opposite direction), the ratio of unrelated links, rU , (connecting tags
on different branches in Ge), the ratio of missing links in Ge , denoted by rM , the normalized mutual information between the two hierarchies, Ie,r , and the linearized
mutual information, Ilin , corresponding to the fraction of exactly matching links remaining after a random link rewiring process stopped at NMI value given by Ie,r . The

different rows correspond to results obtained from algorithm A (1st row), algorithm B (2nd row),the method by P. Heymann & H. Garcia-Molina (3d row), and the

algorithm by P. Schmitz (4th row).
doi:10.1371/journal.pone.0084133.t001
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The effects of the modifications in the other parameters of the

benchmark are discussed in Sect.S4.2-S4.3 in File S1. Nevertheless

these results already show that the provided framework can serve

as versatile test tool for tag hierarchy extraction methods.

Methods

z-score
Both algorithms introduced in the paper depend on the z-score

related to the number of co-occurrences between a pair of tags. If

the tags are assigned to the objects completely at random, the

distribution of the number of co-occurrences for a given pair of

tags i and j follows the hypergeometric distribution: Assuming that

tag i and j appear altogether on Qi and Qj objects respectively, let

us consider the random assignment of tag i among a total number

of Q objects. This is equivalent to drawing Qi times from the

objects without replacement, where the ‘‘successful’’ draws

correspond to objects also having tag j, (and the total number of

such objects is Qj ). Based on this, the probability for observing a

given Qij number of co-occurrences between i and j is

P(Qij~k)~

Qj

k

� �
Q{Qj

Qi{k

� �

Q

Qi

� � , ð4Þ

with the expected number of co-appearances given by

vQijw~
QiQj

Q
, ð5Þ

and the variance formulated as

Figure 3. Subgraph from the hierarchy between Flickr tags. By running our algorithm B on a filtered sample from Flickr, we obtained a
hierarchy between the tags appearing on the photos in the sample. Since the total number of tags in our data reached 25,441, here we show only a
smaller subgraph from the result, corresponding to a part of the tags categorized under ‘‘reptile’’. Stubs correspond to further direct descendants not
shown in the figure, and the size of the nodes indicate the total number of descendants on a logarithmic scale, (e.g., ‘‘prairie rattlesnake’’ has none,
while ‘‘snake’’ has altogether 110.).
doi:10.1371/journal.pone.0084133.g003
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s2(Qij)~
QiQj

Q

Q{Qi

Q

Q{Qj

Q{1
: ð6Þ

The z-score is defined as the difference between the observed

number of co-occurrences in the data, Qij , and the expected

number of co-occurrences at random as given in (5), scaled by the

standard deviation according to (6),

zij~
Qij{vQijw

s(Qij)
: ð7Þ

Normalized mutual information
For discrete variables xi and yj with a joint probability

distribution given by P(xi,yj), the mutual information is defined as

I(x,y):
X

i

X
j

p(xi,yj) ln
p(xi,yj)

p(xi)p(yj)

� �
, ð8Þ

where p(xi) and p(yj) denote the (marginal) probability

distributions of xi and yj respectively. If the two variables are

independent, p(xi,yj)~p(xi)p(yj), thus, I(x,y) becomes 0. The

above quantity is very closely related to the entropy of the random

variables,

I(x,y)~H(x)zH(y){H(x,y), ð9Þ

Figure 4. Subgraph from the hierarchy between IMDb tags. The results were obtained by running Algorithm B on a filtered sample of films
from IMDb, tagged by keywords describing the content of the movies. Here we show only a smaller subgraph between the descendants of ‘‘murder’’,
where stubs correspond to further direct descendants not shown in the figure, and the size of the nodes indicate the total number of descendants on
a logarithmic scale.
doi:10.1371/journal.pone.0084133.g004
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where H(x)~{
X

i
p(xi) ln p(xi) and H(y)~{

X
j
p(yj)

ln p(yj) correspond to the entropy of x and y, while H(x,y)~

{
P

ij p(xi,yj) ln p(xi,yj) denotes the joint entropy. Based on (9),

the NMI can be defined as

Inorm(x,y):
2I(x,y)

H(x)zH(y)
: ð10Þ

This way the NMI is 1 if and only x and y are identical, and 0 if

they are independent.

Data
Protein data. Both the exact DAG describing the hierarchy

between protein functions and the corresponding input data set

given by proteins tagged with known function annotations were

taken from the Gene Ontology [56]. The hierarchy of protein

function is composed of three separate DAGs, corresponding to

‘‘molecular function’’, ‘‘biological process’’ and ‘‘cellular compo-

nent’’. We concentrated on molecular functions, where the

complete DAG has altogether 6,469 tags. However, a considerable

part of these annotations are rather rare, thus, reconstructing the

complete hierarchy would be a very hard task due to the lack of

information. Therefore, we took a smaller subgraph, namely the

branch starting from ‘‘catalytic activity’’, counting 4,181 tags, most

of which are relatively more frequent.

For the data set of proteins, tagged with their known molecular

function annotations, we took the monthly (quality controlled)

release as in 2012.08.01. For simplicity, we neglected proteins

lacking any tags appearing in the exact hierarchy, and deleted all

annotations which are not descendants of ‘‘catalytic activity’’. The

resulting smaller data set contained 5,913,610 proteins, each

having on average 3.7 tags. This data set, (together with the

corresponding exact DAG) is available at (http://hiertags.elte.hu).

Flickr data
Flickr provides the possibility for searching photos by tags, thus,

as a first step we downloaded photos resulting from search queries

over a list of 68,812 English nouns, yielding altogether 2,565,501

photos, (the same photo can appear multiple times as a result for

the different queries). At this stage we stored all the tags of the

photos and the anonymous user id of the photo owners as well.

Next, the set of tags on the photos had to be cleaned: only English

nouns were accepted, and in case of parts of a compound word

appeared beside the compound word on the same photo, the

smaller parts were deleted, leaving only the complete compound

word. Since our algorithms rely on the weighted network of co-

appearances, we applied a further filtering: a link was accepted

only if the corresponding tags co-appeared on photos belonging to

at least 10 different users. The resulting tag co-appearance

network had 25,441 nodes, encoding information originating from

1,519,030 photos. We made the list of weighted links between the

tags available at (http://hiertags.elte.hu).

IMDb data
We have downloaded the data from the IMDb Web site[59],

and used the ‘‘keywords.list.gz’’ data file, listing the keywords

associated with the different movies. The goal of the keywords is

helping the users in searching amongst the movies, and keywords

can pertain to any part, scene, subject, gender, etc. of the movie.

Although keywords can be given only by registered users, there is

no restriction what so ever for registering, and the submitted

information is processed by the "Database Content Team" of the

IMDb site. The version of the original data we are used here

contained 487,356 movie titles and 136,204 different keywords.

However, to improve the quality of the data set, we restricted our

studies to keywords appearing on at least a 100 different movies,

leaving 336,223 movies and 6,358 different keywords in the data

set. This cleaned version is available at (http://hiertags.elte.hu).

Discussion

We introduced a detailed framework for tag hierarchy

extraction in tagging systems. First, we have defined quality

Figure 5. Generating tags on virtual objects by random walks
on the hierarchy. The objects in this approach are represented simply
by collections of tags. For a given collection, the first tag is picked at
random, (illustrated in red), while the rest of the tags are obtained by
implementing a short undirected random walk on the DAG, starting
from the first tag, (illustrated in purple).
doi:10.1371/journal.pone.0084133.g005

Table 2. Quality measures of the reconstructed hierarchies for the ‘‘easy’’ synthetic data set.

rE rA rI rU rM Ie,r Ilin

algorithm A 67% 00% 0% 0% 0% 91% 99%

algorithm B 100% 100% 0% 0% 0% 100% 100%

P. Heymann & H. Garcia-Molina 99% 100% 0% 0% 0% 93% 99%

P. Schmitz 0% 0% 0% 0% 100% 0% 0%

When generating the data set, the frequency of the initial tags was decreasing linearly as a function of the level depth in the exact hierarchy. We show the same quality
measures as in Table 1.: the ratio of exactly matching links, rE , the ratio of acceptable links, rA , the ratio of inverted links, rI , the ratio of unrelated links, rU , the ratio of
missing links, rM , the normalized mutual information between the exact- and the reconstructed hierarchies, Ie,r , and the linearized mutual information, Ilin . The different

rows correspond to results obtained from algorithm A, (1st row), algorithm B, (2nd row), the method by P. Heymann & H. Garcia-Molina (3d row), and the algorithm by P.

Schmitz (4th row).
doi:10.1371/journal.pone.0084133.t002
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measures for hierarchy extraction methods based on comparing

the obtained results to a pre-defined exact hierarchy. A part of

these quantities were simply given by fractions of links fulfilling

some criteria, (e.g., exactly matching, inverted, etc.). However we

also defined the NMI between the exact- and the reconstructed

hierarchies, providing a quality measure which is sensitive also to

the position of the non-matching links in the hierarchy. This was

illustrated by our experiments comparing a hierarchy to its

randomized counterpart, where the NMI showed a significantly

faster decay when the rewiring was started at the top of the

hierarchy, compared to the opposite case of starting from the leafs.

Furthermore, we developed a synthetic, computer generated

benchmark system for tag hierarchy extraction. This tool provides

versatile possibilities for testing hierarchy extraction algorithms

under controlled conditions. The basic idea of our benchmark is

generating collections of tags associated to virtual objects based on

a pre-defined hierarchy between the tags. By running a tag

hierarchy extraction algorithm on the generated synthetic data,

the obtained result can be compared to the pre-defined exact

hierarchy used in the data generation process. According to our

experiments on the benchmark, by changing the parameters

during the generation of the synthetic data, we can enhance or

decrease the difficulty of the tag hierarchy reconstruction.

In addition, we developed two novel tag hierarchy extraction

algorithms based on the network approach, and tested them both

on real systems and computer generated benchmarks. In case of

the tagged protein data the similarity between the obtained protein

function hierarchy and the hierarchy given by the Gene Ontology

was very encouraging, and the hierarchy between the English

words obtained for the Flickr and IMDb data sets seemed also

quite meaningful. The computer generated benchmark system we

have set up provides further possibilities for testing tag hierarchy

extraction algorithms in general. By changing the parameters

during the input generation we can enhance or decrease the

difficulty of the tag hierarchy reconstruction.

Our methods were compared to current state of the art tag

hierarchy extraction algorithms by P. Heymann & H. Garcia-

Molina and by P. Schmitz. Interestingly, the rank of the

algorithms according to the introduced quality measures was

varying from system to system. In case of the protein data set

algorithm A was slightly ahead of the others, while the rest of the

methods achieved more or less the same quality. In turn, for the

easy synthetic test data, algorithm B and the algorithm by P.

Heymann & H. Garcia-Molina reached almost perfect recon-

struction, with algorithm A left slightly behind, and the algorithm

by P. Schmitz achieving very poor marks. However, when

changing to the hard synthetic test data, a large difference was

observed between the quality of the obtained results, as algorithm

B significantly outperformed all other methods.

The different ranking of the algorithms for the included

examples indicates that tag hierarchy extraction is a non-trivial

problem where a system can be challenging for one given

approach and easy for another method and vice versa. Neverthe-

less the results obtained indicate that tag hierarchy extraction is a

very promising direction for further research with a great potential

for practical applications.

Supporting Information

File S1 File S1 provides more details on our algorithms
and similarity measures, together with further results
on the studied real systems and the synthetic bench-
mark.

(PDF)
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7. Ghosal G, Zlatić V, Caldarelli G, Newman MEJ (2009) Random hypergraphs

and their applications. Phys Rev E 79: 066118.
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