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Abstract

Molecular descriptors have been explored extensively. From these studies, it is known that a large number of descriptors are
strongly correlated and capture similar characteristics of molecules. In this paper, we evaluate 919 Dragon-descriptors of 6
different categories by means of clustering. Also, we analyze these different categories of descriptors also find a subset of
descriptors which are least correlated among each other and, hence, characterize molecular graphs distinctively.
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Introduction

Molecular descriptors map molecular structures to the reals by

taking physical, chemical or structural information into account

[1]. A large number of descriptors have been developed to

describe different properties of molecular graphs. Therefore, these

descriptors can be classified into different categories depending

what kind of information is used (e.g., physical, chemical or

structural information) to define such a measure. The commercial

software package Dragon [2] (version 6.0.26) contains 4885

molecular descriptors which are classified into 29 categories.

The problem of analyzing molecular descriptors by applying

clustering techniques has been already explored [3–6]. These are

usually based on using principal component analysis (PCA) and

correlation-based methods for the identification of different

descriptors. For example, Todeschini et al. [6] and Basak et al.

[3] evaluated descriptors on a rather small collection of molecular

graphs using PCA and ranked them based on the intercorrelation.

In order to find similarities between molecular descriptors, Basak

et al. [4,5] used a PCA-based clustering technique on both a

hydrocarbon dataset and mixed chemical compounds. Taraviras

et al. [7] performed a cluster analysis with 240 descriptors by using

different clustering algorithms. The weak point of the just sketched

approaches is that the corresponding study has not been

performed on a large scale (large data sets) and with distinct

descriptors belonging to several categories. Also, the optimal

number of different descriptors (dimension) has not been validated

statistically. In this paper, we overcome these problems.

A thorough evaluation of the vast amount of developed

descriptors [1] is required to identify categories of descriptors

which capture structural information differently. In our analysis

we evaluate 6 categories (see next section) of structural descriptors

by means of clustering. The main contribution of this paper is to

explore the dimension of the descriptor space, i.e., how many

different descriptors exist among all which have been introduced

so far. Here, we put the emphasis on 919 structural descriptors

from Dragon. In particular, we find that only a very few

descriptors are different. In this context that means they are

least correlated and, therefore, capture structural information

differently.

Methods and Results

Molecular Descriptors
To perform our study, we used six categories of descriptors

implemented in Dragon (version 6.0.26) which are defined as

follows:

1. Connectivity indices [1]: These indices are calculated from

the vertex-degree of a molecular graph. The Randić index [8]

is a prominent example thereof.

2. Edge adjacency indices [1]: These indices are based on the

edge adjacency matrix of a graph. The resulting descriptor-

value is the sum of all edge entries of the adjacency matrix of a

graph. Balaban et al. [9] developed several indices by using

graph-theoretical matrices.

3. Topological indices [1]: These structural graph measures

which take various structural features into account, e.g.,

distances and eigenvalues. The term topological index has been

firstly coined by Hosoya [10]. The first and the second Zagreb

indices [11] are prominent examples thereof.

4. Walk path counts [1]: These indices are defined by counting

paths or walks of a graph. Here, the term walk refers to random

walks which is based on using a probability measure. We point

out that such indices have been listed by Todeschini and

Consonni [1].

5. Information indices [1]: These measures are based on using

Shannon’s entropy. To assign a probability value to a graph,

Dragon uses so-called partition-based methods [12] by using
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several graph invariants such as vertices, edges, vertex degrees

and distances have been used [12]. The so-called topological

information content [13] and the Bonchev-Trinajstić index

[14] are prominent examples of partition-based information

indices. So-called partition-independent information-theoretic

measures for graphs have been developed by Dehmer [12].

6. 2D Matrix-based [1]: These descriptors are calculated based

on the elements of so-called graph-theoretical matrices [15] by

using several algebraic operations. The Balaban-like indices

inferred from the adjacency matrix [2,9] are important

examples of this category.

We want to emphasize that the term ’Topological indices’ is

here misleading and ambiguous. For example, typical information

indices are based on structural features of a graph by using

Shannon’s entropy. So, they represent topological indices too. The

same holds for all other groups which have been defined by using

structural features of molecular structures and, therefore, they are

topological indices as well, see [1,9,16–19].

Data
In order to evaluate the above mentioned 6 categories of

descriptors, we use 3 data sets namely:

1. MS2265 contains (non-isomorphic) molecular structures (only

skeletons, i.e., without vertex- and edge labels) inferred from

the NIST spectral database [20].

2. C15 contains exhaustively generated (non-isomorphic) tree

structures with 15 vertices each [20].

3. N8 contains exhaustively generated (non-isomorphic) graphs

with 8 vertices each [21].

To perform our analysis, we calculate the descriptor values for

these three datasets. We removed those descriptors which give

constant and erroneous values by using the three data sets. The

erroneous values are produced by those descriptors for which we

have not been able to calculate a descriptor value of a network

without additional physical or chemical information. Finally, we

the above mentioned six categories contain 24, 301, 57, 28, 40,

469 descriptors.

Clustering Techniques
Clustering is an unsupervised learning technique which aims to

find different groups or clusters of objects in data [22]. The groups

are described as a collection of objects which are closer to each

other than the rest of the objects [22]. An example thereof is

hierarchical clustering as groups of the objects are arranged in a

hierarchical order by a so-called dendogram. The objects which

are clustered in one group have a higher degree of similarity than

the objects which are clustered in different groups. Thus a

resulting clustering solution allows to determine clusters where

each cluster shows distinct property of the data. The similarity or

dissimilarity between two objects is usually determined by using a

Similarity/distance function which measures the similarity/

distance between data points of different objects. Examples are

the Euclidean distance, the Manhattan distance or the correlation-

based distance. A dissimilarity can be described as follows:

Several algorithms have been developed for cluster analysis

[22]. These algorithms can be divided into several categories

namely partition-based clustering, hierarchical clustering, density-

based clustering, grid-based clustering and fuzzy clustering

[22,23]. Thus k-means, soft k-means Clustering, k-medoids

Clustering [22] are some examples representing non-hierarchical

clustering methods. Hierarchical clustering itself can be divided

into two categories called agglomerative and divisive clustering

[22]. As known, several concrete methods thereof have been

developed such as single linkage, complete linkage and average

linkage, see [22].

In order to evaluate the descriptors, we perform hierarchical

clustering (average linkage) by using the mentioned Dragon

descriptors and the Spearman rank correlation as a distance

measure. Here, we denote the correlation matrix between

descriptors as S. Then, the distance between a pair of descriptors

is defined by.

dij~1{ESijE: ð1Þ

In order to choose a clustering method we use the cophenetic

correlation measure [24]. A high correlation coefficient shows that

the distance between the data points is well preserved by the

created dendogram of the hierarchical clustering solution. In our

analysis, the cophenetic correlation coefficient is highest for the

average clustering solution for all three data-set compared to other

clustering algorithms. We calculate the cophenetic correlation for

seven hierarchical clustering algorithms which are the Ward,

Single, Complete, Average, Mcquitty, Median and the Centroid-

method. The cophentic correlation coefficients for the average

clustering solutions for three data-sets are 0.84, 0.89 and 0.93.

Cluster Validity
Cluster validity [23,25] is used to evaluate the quality of

clustering solution (by using a certain clustering algorithm), e.g.,

the optimum number of clusters in the data, or whether the

resulting cluster solution fits the data. Known clustering validation

techniques are divided into three categories namely internal,

external and relative validity criteria. External validation criteria

evaluate clustering solutions with a predefined clustering structure.

Using internal validation criteria relates to find the optimal

number of clusters which is based on the intrinsic knowledge of

data. Relative validation criteria are used to compare two different

clustering solutions [23].

In order to perform analyses, we use external and internal

clustering validation criteria. For the external validation, we

compared the clustering solution with a predefined group of

clusters which serve as reference clusters. The external clustering

validity of a clustering solution with respect to the given reference

cluster is estimated by using the information-theoretic quantity

NMImax (normalized mutual information) [26,27] defined by

NMImax~
I(U ,V )

maxfH(U),H(V)g : ð2Þ

where

H(U)~{SR
i~1

ai

N
log

ai

N

� �
, ð3Þ

H(V )~{SC
i~1

bi

N
log

bi

N

� �
, ð4Þ

I(U ,V )~SR
i~1S

C
j~1

nij

N
log

nij=N

aibj=N2

� �
: ð5Þ
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Hereby, we assume that we have two clustering solutions U and

V which have R and C clusters. The overlap between these two

clusters is shown in the contingency Table 1. We calculated

NMImax for all three data-sets with different number of clusters.

The Optimal Number of Clusters
The optimal number of clusters (internal cluster validity) are

determined by consensus clustering [27,28] which has been here

performed as follows. Assume we evaluate N descriptors on a

dataset containing n molecular graphs. Thus we get n descriptor

values for each descriptor. First, we resample the data of sample-

size, pvn, B~100 times for N descriptors to generate B clustering

solutions Uk~fU1
k ,U1

k . . . UB
k g, for k clusters, where k~2,3,

. . . ,200. After that we calculate the consensus indices for each

Table 1. A contingency table which defines the overlap
between two cluster solutions, U and V .

U ; \ V ? V1 V2 . . . VC Sums

U1 n11 n12 . . . n1C a1

U2 n21 n22 . . . n2C a2

. . . . . . . .

. . . . . . . .

UR nR1 nR2 . . . nRC aR

Sums b1 b2 . . . bC N

doi:10.1371/journal.pone.0083956.t001

Figure 1. Hierarchical clustering using the average algorithm, MS2265 (left), C15 (middle), N8 (right). The total number of descriptors equals
919. They belong to 6 different categories which are as follows: connectivity indices (24), edge adjacency indices (301), topological indices (57), walk
path counts (28), information indices (40) and 2D Matrix-based (469).
doi:10.1371/journal.pone.0083956.g001
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cluster, k, which is defined as follows:

CI(Uk)~
SivjAM(Ui

k,U
j
k)

B(B{1)=2
: ð6Þ

As to the measure AM , we use the adjusted rand index ARI

[29] defined by.

ARI~

P
ij

nij

2

 !
{

P
i

ai

2

 !P
j

bj

2

 !" #
=

N

2

 !

1

2

X
i

ai

2

 !
z
X

j

bi

2

 !" #
{

X
i

ai

2

 !X
j

bj

2

 !" #
=

N

2

 ! :ð7Þ

The number of clusters k for which CI attains its maximum is

chosen as the optimal number of clusters, namely.

Figure 2. The normalized mutual information, NMImax, between reference clusters, RC, and the number of clusters, K , obtained by
hierarchical clustering for three data-sets MS2265 (left), C15 (right) and N8 (bottom). NMImax for each K has been generated by
sampling the data sets DB, where B~1, . . . ,100 (data set MS2265). The total number of descriptors equals 919. They belong to 6 different
categories which are as follows: connectivity indices (24), edge adjacency indices (301), topological indices (57), walk path counts (28), information
indices (40) and 2D Matrix-based (469).
doi:10.1371/journal.pone.0083956.g002
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koptimal~argmaxk~2,...,kmax CI(Uk): ð8Þ

Determining a Highly Correlated Subset of Descriptors
Let D be a set of descriptors and jDj is its cardinality. Let S be a

subset of D. The selected jDj~919 descriptors can be reduced to a

set of descriptors, S(D. The remaining jDj{jSj descriptors will

have a significant correlation with at least one of the descriptor in

the set S and the descriptors in S are not significantly correlated. If

two descriptors are showing a significant correlation with each

other, then we conclude that they capture structural information

similarly. In order to predict the significance of the correlation

between two descriptors, we perform the following approach:

Let M be a dataset of N descriptors and n samples. First, we

generate bootstrap datasets, Mk, k . . . B~500 possessing sample

size p~200, where pvn. Then, for each dataset, Mk, we perform

a correlation test [30,31] between each pair of descriptors and

obtained a p value pij for each pair. Thus, we test N(N{1)=2

hypotheses for all pairs. In order to control the false positives in the

multiple hypothesis testing problem, we use the bonferroni correction

method for multiple testing correction (MTC) [32] and obtained

adjusted p-values. For each pair these adjusted p-values are denoted

by qij . In order to decide whether the correlation between a pair is

significant, we choose a~0:00001. After applying the correlation

test and MTC, we obtain a binary matrix IMk
which is defined

follows:

IMk
(i,j)~

1 if qijv~a

0 if qijwa

�
ð9Þ

Finally we calculate a summary-statistic, T(i,j), for each pair of

descriptors by averaging the values, i.e.,

Figure 3. Consensus indices using the adjusted rand index for estimating the number of clusters in the data. These plots have been
generated by sampling the data sets B, where B~1, . . . ,100 for the three data sets, MS2265 (left), C15 (right), N8 (bottom). The dotted red line shows
the optimal number of clusters.
doi:10.1371/journal.pone.0083956.g003
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T(i,j)~

PB~500

k~1

IMk
(i,j)

B
: ð10Þ

In order to decide whether the correlation between two

descriptors is strong, we choose a cut-off threshold asum~0:99.

If for the summary-statistic between two descriptors holds the

inequality T(i,j)w~asum, then we define two descriptors to be

strongly correlated with each other. The descriptors in the set S

Table 2. The optimal number of clusters for the three data-sets obtained by using consensus indices (CI).

Data-set CI # of clusters (jPj) # Descriptors in each cluster

MS2265 0.942 5 jc1j~863, jc2j~22, jc3j~18, jc4j~1, jc5j~15

c15 0.9878 16 jc1j~764, jc2j~32, jc3j~12, jc4j~26, jc5j~2, jc6j~10, jc7j~9, jc8j~6, jc9j~6, jc10j~1, jc11j~1,
jc12j~1, jc13j~2, jc14j~6, jc15j~24, jc16j~17

N8 1.00 7 jc1j~834, jc2j~3, jc3j~12, jc4j~26, jc5j~27, jc6j~14, jc7j~3

The optimal numbers of clusters (for three data-sets) for a clustering solution P is represented by the set P~fc1,c2, . . . cjpjg, where jPj is the optimal number of clusters
in the data.
doi:10.1371/journal.pone.0083956.t002

Table 3. The descriptors in predicted clusters (rows) overlapping with different categories of descriptors.

MS2265

Number of cluster connectivity indices
edge adjacency
indices topological indices

walk path
counts information indices 2D Matrix-based

1 24 261 56 28 25 469

2 0 22 0 0 0 0

3 0 18 0 0 0 0

4 0 0 1 0 0 0

5 0 0 0 0 15 0

C15

1 17 214 51 22 34 426

2 4 21 3 2 0 2

3 3 6 1 2 0 0

4 0 26 0 0 0 0

5 0 2 0 0 0 0

6 0 10 0 0 0 0

7 0 9 0 0 0 0

8 0 6 0 0 0 0

9 0 6 0 0 0 0

10 0 1 0 0 0 0

11 0 0 1 0 0 0

12 0 0 1 0 0 0

13 0 0 0 2 0 0

14 0 0 0 0 6 0

15 0 0 0 0 0 24

16 0 0 0 0 0 17

N8

1 24 287 56 28 14 425

2 0 2 1 0 0 0

3 0 12 0 0 0 0

4 0 0 0 0 26 0

5 0 0 0 0 0 27

6 0 0 0 0 0 14

7 0 0 0 0 0 3

doi:10.1371/journal.pone.0083956.t003
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have been chosen as follows. Suppose a descriptor Di has a

maximum number of summary-statistics greater or equal asum (i.e.,

#(T(i,j)w~asum), where j~1 . . . i{1,iz1, . . . jDj), then the

descriptor Di is ranked first, and Di is included in the subset S.

Then we remove the descriptor Di and the other descriptors with

which Di has summary-statistic §asum. Then, we apply the same

procedure to the remaining descriptors until we find any

descriptor having maximum number of summary-statistics with

remaining descriptors §asum. Note that some of the descriptors do

not have any summary-statistic greater than §asum with any of the

other descriptors. These descriptors are described as lowly

correlated descriptors and such descriptors are also included in

the subset S.

This procedure reduces jDj descriptors to jSj descriptors. That

means starting with a set of D descriptors, we hypothesize that the

set S identify structural properties of a graph class distinctly. The

remaining jDj{jSj descriptors are showing stronger similarity

(correlation) with at least one of the descriptor of set S.

Interpretation of the Results
The clustering of descriptors for three datasets is shown by

Figure 1. In this figure, the six categories of descriptors are shown

in different colors. The figure indicates that the descriptors of each

categories have not been clustered correctly regarding their

respective groups. For the external validity of the resulting

clustering solution, we estimated NMImax (normalized mutual

information) [26] between reference cluster, RC~fc1,c2,c3,c4,c5,
c6g (the descriptors of six categories, jRCj~6, and fjc1j~
24,jc2j~301,jc3j~57,jc4j~28,jc5j~40,jc6j~469g are consid-

ered as the groups of the reference cluster) and the number of

clusters of the clustering solution by cutting at different heights.

Figure 4. Levelplot of the correlation between the subset S for the three data sets, MS2265 (left), C15 (right), N8 (bottom).
doi:10.1371/journal.pone.0083956.g004
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The estimated normalized mutual information is calculated by

sampling the data B~200 times. Results for the three data-sets

(average NMI) are shown in Figure 2. The average normalized

mutual information plot between the reference cluster and the

clusters created by performing average hierarchical clustering

shows that they are quite dissimilar, that is the predicted clusters

and the reference cluster are not similar at all. Also, the descriptors

of different categories are strongly correlated with each other.

Next, we predict the optimal number of clusters, P~fc1,c2, . . .
cjPjg by using consensus indices measure for different number of

clusters generated by a clustering solution. The plots for the

consensus indices for the three data sets are shown in Figure 3.

The consensus indices are calculated for k~2, . . . ,200 clusters.

CI for different number of clusters for the three data-sets does not

show an absolute maximum. Therefore we selected the first local

maxima which gives the optimal number of clusters. The optimal

number of clusters are shown with a dotted red line in the Figure 3.

The consensus indices (CI ) for the optimal number of clusters (jPj)
and the total number of descriptors (jcij, where i~1, . . . ,jPj) in

each cluster for the three data-sets, MS2265, C15 and N8 are shown

in Table 2. The optimal number of clusters are very little for all

three data-sets and for all data-sets. The first cluster is the largest

one which contains more than 80% of 919 descriptors. The

cardinalities of the remaining clusters are smaller as they contain

much less descriptors. The largest cluster for all three datasets

contains descriptors from all six categories which means that most

of the descriptors from different categories have a strong

correlation among the descriptors and, therefore, they measure

structural information similarly.

As a next step, we examine the so-called overlap between the

optimal number of clusters shown in Table 2 and the six categories

of descriptors. That means we have to determine how many

different descriptors are distributed over different groups (belong-

ing to the optimal number of clusters). This distribution over

different clusters could give some information namely which

category might capture structural information of the graphs more

uniquely than others. The results are shown in Table 3 and we are

going to interpret these results as follows. The intersection of the

descriptors between the optimal clusters and the categories of

descriptors show that the edge adjacency indices are grouped into

different cluster for all three data-sets in comparison to the

remaining categories. The 2D Matrix-based descriptors are

grouped into different clusters by using C15 and N8. The

information indices are grouped into two different clusters by

using all three data-sets. The measures from the category walk

path counts and topological indices are grouped into different

clusters by using C15 only. This shows that these descriptors

behave differently on trees. The overlap indicates that the group of

edge adjacency indices contains more descriptors which capture

structural information of the graphs differently compared to other

categories.

Next, we find a subset of descriptors S(D, jDj~919. The

main idea is to find a smaller set of descriptors which are little

correlated with each and, hence, those graph measures captures

structural information uniquely. If they would be strongly

correlated, they would capture similar structural information of

the graphs. Importantly, the remaining descriptors have much

stronger correlation with them. The procedure to obtain a subset

of descriptors S(D is described in the section ’Methods and

Results’. We obtained jSj~f19,22,18g for MS2265,C15,N8

datasets shown in Table 4. The levelplot of correlation for the

subset of descriptors of three data-sets are shown in Figure 4. For

all three data-sets, we can clearly see that the descriptors of these

subsets are not strongly correlated. These subset of descriptors for

all three data-set might detect structural features of the molecular

graphs uniquely.

Moreover we now examine for all data-sets which descriptors

from S (shown in Table 4) belong to which group out of the six

categories of descriptors. The results are summarized in Table 5.

For each data-set, we start with a different number of descriptors

for the different categories. The subset S does not contain any

descriptor from the connectivity indices for all three data-sets,

however, only two descriptors from walk path counts are contained

in S by using C15. Two, four and three descriptors from the

category topological indices are contained in S for all three data-sets.

Three, two and three descriptors from the category information

indices are in S for three data-sets. Seven, three and three

descriptors from the category 2D Matrix-based are in S for three

data-sets. Seven, eleven and seven descriptors from the category

edge adjacency indices are in S for MS2265, C15, N8. These are the

maximal numbers of descriptors compared to other categories of

descriptors. The large occurrence of the descriptors from the

category edge adjacency indices shows again that these descriptors

quantify structural information more uniquely than others.

Table 4. Given the subset S; then, the remaining jDj{jSj descriptors have at least one pair for which the summary statistic T(i,j)
is greater than asum~0:99 with jSj descriptors.

Data-set Names of the descriptors

MS2265 SM3_L, H_Dt, AVS_B.v., SM02_EA.dm., Eig11_AEA.bo., SpMAD_AEA.ed., CIC2, Eig13_AEA.bo., AVS_B.s., SM06_AEA.dm., Eig14_AEA.dm.,
MAXDP, J_Dz.v., BIC4, SpDiam_AEA.dm., SpMAD_X, PJI2, SpPosA_B.m., IDDE

C15 SM2_B.s., PW4, Chi1_EA.ri., SM02_EA.dm., VE1_A, IC2, CENT, SM13_AEA.bo., Eig03_EA.bo., SM03_AEA.dm., VE3_Dz.p., piPC05,
Eig04_AEA.bo., SpDiam_AEA.dm., piPC06, Eig02_AEA.dm., IVDE, MAXDP, PJI2, Eig05_AEA.dm., Chi0_EA.dm., Eig07_AEA.ed.

N8 QW_L, TIE, VE3_B.i., BIC1, VE3_Dz.i., Eig10_AEA.dm., SpPosLog_B.m., SM03_AEA.dm., Eig11_AEA.ri., SM04_AEA.dm., CSI, VE1_Dt,
Eig08_EA.ed., SpMaxA_AEA.bo., Yindex, Ram, IVDE, Chi1_EA.dm

doi:10.1371/journal.pone.0083956.t004

Table 5. The number of descriptors of S which belong to six
different categories by using three data sets.

Descriptor category MS2265 C15 N8

Connectivity indices 0 0 0

Edge adjacency indices 7 11 7

Topological indices 2 4 3

Walk path counts 0 2 0

Information indices 3 2 3

2D Matrix-based 7 3 5

doi:10.1371/journal.pone.0083956.t005
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Also, we examine the overlap between the descriptors from S

and the descriptors in the found clusters; the intersections between

them are shown in Table 6. Interestingly, at least one descriptor

(for all data-sets) overlap with the descriptors of each cluster,

except for the ninth cluster by using C15. The overlap with the

found clusters show that the measures contained in S (for three

data-sets) have the potential to quantify unique structural features

of molecular graphs.

Summary and Conclusions

In this paper, we have evaluated 919 Dragon descriptors to

investigate to what extent these measures quantify structural

information of molecular graphs uniquely. From our analysis, it is

clear that measures which are strongly correlated are not useful as

they capture structural information similarly. From this, the

question of determining the usefulness or quality of topological

indices arises.

We found by calculating the information-theoretic quantity

NMI that the used six categories of descriptors are strongly

correlated with other categories of descriptors. This indicates that

despite being categorized into different groups, these descriptors

are providing similar information. From this, one can conclude

that many of them they have been introduced in an unconsidered

manner. Again, the question how useful such indices are seems to

be quite important and deserves further attention.

By using all three data sets, the most suitable descriptor subset S

contains those measures which have the largest number of

significant correlations with the remaining descriptors but they

are not significantly correlated with each other. S forms a reduced

set of descriptors (the original sets contains 919 descriptors) and

their sizes are feasible approximations of the effective dimension of

the descriptor space by using all three datasets. For each individual

data set, we found the size of S to be 19 (MS2265 dataset), 18 (N8

dataset) and 22 (C15 dataset). Because most of the descriptors we

have used are redundant, i.e., they are highly correlated, the

estimation of the effective dimension is an intriguing problem. In

Table 6. The overlap between S and the predicted clusters (rows).

MS2265

Number of cluster Descriptors of S

1 SpMAD_AEA.ed., SpDiam_AEA.dm., Eig13_AEA.bo., Eig14_AEA.dm., MAXDP, IDDE, SM3_L, SpMAD_X, H_Dt, J_Dz.v., SpPosA_B.m., AVS_B.v.,
AVS_B.s.

2 SM02_EA.dm.

3 SM06_AEA.dm., Eig11_AEA.bo.

4 PJI2

5 CIC2, BIC4

C15

1 SpDiam_AEA.dm., Eig03_EA.bo., Eig07_AEA.ed., Eig02_AEA.dm., PW4, IC2, SM2_B.s.

2 Chi1_EA.ri.

3 CENT, piPC05

4 SM02_EA.dm.

5 Chi0_EA.dm.

6 Eig04_AEA.bo.

7 SM13_AEA.bo.

8 SM03_AEA.dm.

9 _

10 Eig05_AEA.dm.

11 PJI2

12 MAXDP

13 piPC06

14 IVDE

15 VE1_A

16 VE3_Dz.p.

N8

1 Eig08_EA.ed., Eig10_AEA.dm., Eig11_AEA.ri., CSI, TIE, Yindex, QW_L, SpMaxA_AEA.bo., IVDE, SpPosLog_B.m.

2 Chi1_EA.dm., Ram

3 SM03_AEA.dm., SM04_AEA.dm.

4 BIC1

5 VE3_B.i.

6 VE3_Dz.i.

7 VE1_Dt

doi:10.1371/journal.pone.0083956.t006
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our context, the dimension is the number of different descriptors

among all. By performing our analysis, we obtained a lower bound

on the dimension of descriptors space regarding the different

classes. Note that these descriptors (the ones in S) depend on the

used data set. By inspecting these subsets, we see that the majority

thereof are from the category of the edge-adjacency indices. This

implies that the edge-adjacency based descriptors can capture

more structural diversity when quantifying structural properties of

molecular graphs. As another result of this paper, we see that it

would not be appropriate to select descriptors more or less

randomly for QSAR problems. Neither the random selection nor

using all available descriptors would be appropriate as demon-

strated in our paper. To tackle this problem, we suggested a

statistical analysis evidenced by using clustering. Again, we note

that our method applied to six categories of descriptors reduces the

descriptor space for three datasets. In this paper we have presented

a statistical approach by using correlation test to select a smaller

subset of descriptors which captures information similarly. By

employing bootstrapping and a probabilistic measure for the

selection process, we have identified the most informative set of

descriptors. As seen, a set of descriptors can cover a dataset best,

but studying this important issue in depth might be future work.
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