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Abstract

Background: Understanding protein complexes is important for understanding the science of cellular organization and
function. Many computational methods have been developed to identify protein complexes from experimentally obtained
protein-protein interaction (PPI) networks. However, interaction information obtained experimentally can be unreliable and
incomplete. Reconstructing these PPI networks with PPI evidences from other sources can improve protein complex
identification.

Results: We combined PPI information from 6 different sources and obtained a reconstructed PPI network for yeast through
machine learning. Some popular protein complex identification methods were then applied to detect yeast protein
complexes using the new PPI networks. Our evaluation indicates that protein complex identification algorithms using the
reconstructed PPI network significantly outperform ones on experimentally verified PPI networks.

Conclusions: We conclude that incorporating PPI information from other sources can improve the effectiveness of protein
complex identification.

Citation: Xu B, Lin H, Chen Y, Yang Z, Liu H (2013) Protein Complex Identification by Integrating Protein-Protein Interaction Evidence from Multiple Sources. PLoS
ONE 8(12): e83841. doi:10.1371/journal.pone.0083841

Editor: Jens Kleinjung, MRC National Institute for Medical Research, United Kingdom

Received June 11, 2013; Accepted November 18, 2013; Published December 27, 2013

Copyright: � 2013 Xu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by an award from China Scholarship Council, Ministry of Education, grants from National Science Foundation ABI: 0845523,
National Institute of Health R01LM009959A1, the Natural Science Foundation of China (numbers 60673039, 61070098 and 61272373), the National High Tech
Research and Development Plan of China (number 2006AA01Z151), the Fundamental Research Funds for the Central Universities (numbers DUT10JS09,
DUT13JB09) and Liaoning Province Doctor Startup Fund (number 20091015). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: xubofm@gmail.com

Introduction

A protein complex is a group of associated polypeptide chains

linked by noncovalent protein-protein interactions (PPIs). Protein

complexes have an important role in biological processes and

perform independent discrete biological functions, such as DNA

transcription, mRNA translation, and signal transduction [1].

Hence, identifying protein complexes in an organism is critical in

molecular biology. Protein complexes can be identified with high

accuracy using small-scale experimental techniques such as

immunoprecipitation, but such techniques are time-consuming

and tedious [2]. Recently, several high-throughput methods have

been used to detect PPIs on a larger scale, including the yeast 2-

hybrid system, mass spectrometry, and protein chips.

Computational approaches also can be applied to identify

protein complex information by searching densely connected

regions in a PPI network [3], a graphical map of an entire

organism’s interactome. This is constructed from existing PPI

knowledge by considering individual proteins as nodes and the

existence of a physical interaction between a pair of proteins as a

link. The existing PPI knowledge, however, is generally built using

information gathered with the high-throughput techniques men-

tioned above, which can be unreliable and incomplete [4].

Therefore, many recent studies have tried to combine PPI

information from multiple sources to improve the accuracy of

the PPI information. For example, a graph fragmentation

algorithm incorporated microarray gene expression profiles to

help refine the putative complexes [5]. With this method, the

running time is proportional to the number of samples and could

become a concern if the PPI network is large. Jung et al [6]

presented a simultaneous protein interaction network, which

deleted any mutually exclusive interactions based on domain

information. Ozawa et al [7] also considered the competition

between mutually exclusive interactions. They accounted for the

structural limitations of the proteins and determined whether the

proteins in the extracted complex could simultaneously bind to

each other. Xu et al [8] weighted PPI networks on the basis of the

semantic similarity of each protein pair in the Gene Ontology

project (GO). CMC (clustering based on maximal cliques) [9] used

an iterative scoring method to assign a weight to protein pairs,

which indicated the reliability of the interaction between the 2

proteins. Krogan et al [10] used high-throughput purification data

to predict protein complexes.

In the current paper, instead of using 1 or 2 sources to predict

protein complexes, we applied machine learning to predict PPI

pairs from 6 diverse sources and supplemented the reliable PPIs

with predicted PPI pairs. Since protein structures provided a

strong evidence for Protein-Protein Interactions prediction, we
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Figure 1. Flowchart of experimental method. There are 2 main steps in the method. The first is to rank protein pairs according to their
probabilities or confidence scores of being true protein-protein interaction (PPI) pairs by defining a machine learning task. The second is to apply the
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selected positive PPIs based on Domain-Domain interaction (DDI)

information and purified PPI datasets Krogan core [10] and

Collins [11]. 12K reliable positive PPIs are obtained for training

which are from Krogan, Collins and have DDI. However, it is rare

to find confirmed reports of noninteracting pairs, especially not on a

large scale. Hence, learning from positive and unlabeled data

(LPU) [12,13] is a good way to handle this problem. To increase

the reliability of predictions, an ensemble approach can be used

whereby predictions from multiple LPU classifiers are obtained by

alternating the number of unlabeled instances. We evaluated the

ability of our method to predict yeast protein complexes. Protein

pairs were represented using 18 features gathered from 6 sources.

We obtained a predicted PPI network through LPU whereby a

protein pair was considered to be positive if it is recorded in

Krogan core dataset, Collins and has reliable DDI evidence. All

other protein pairs were treated as unlabeled. We then built 5 LPU

classifiers and chose the top n pairs as the predicted PPI pairs.

Some popular protein complex identification algorithms COACH

(a core-attachment method) [14], CMC [9], CFinder [15],

MCODE [16], IPCA [17], MCL [18] and Clusterone [19] were

then applied on a reconstructed PPI network built upon reliable

PPIs and predicted PPI pairs. The data and algorithms are

available in our supporting website: http://202.118.75.18:8080/

PPINPredictor/. We also evaluated our LPU model and

compared the performances on reconstructed PPI network with

ones on the DIP [20], Krogan [10], BioGRID [21] PPI networks.

Methods

For a given organism, the proposed protein complex identifi-

cation approach contains 2 steps (Figure 1). The first step is to rank

protein pairs according to their probabilities or confidence scores

of being true PPI pairs by defining a machine learning task. The

second step is to apply the state-of-the-art protein complex

detection algorithms, but the PPI network is reconstructed with

reliable PPI and predicted PPI pairs. Here, we first describe

features considered to be PPI related and then present the detailed

LPU approach for ranking protein pairs. We then introduce 7

state-of-the-art protein complex detection algorithms.

Sources with PPI Evidence
The following sources are considered PPI-related features.

Gene ontology annotations. GO [22] contains 3 hierarchies

that hold terms defining the basic concepts of molecular function

(MF), biological processes (BP), and cellular components (CC),

respectively. GO terms are arranged in directed acyclic graphs.

Several GO Slims (ie, slim versions of GO) have been defined, in

which each contains several dozen high-level GO terms. If two

proteins have interaction relation, they always participate in the

same biology process or happened in the same cellular component,

some of them even have similar functions. So a protein pair with

similar GO annotations has a higher probability of being a PPI

pair. We used 2 different types of measures to calculate the

similarity of GO annotations for a protein pair. One type (Type I)

is based on organism-specific GO Slims. If 2 proteins in a pair

shared at least 1 common GO Slim term after removing trivial

root GO terms, we assigned a similarity value of 1; otherwise, the

value was 0. The other type (Type II) uses the semantic similarity

measure of Lord et al [23]. It is based on the hypothesis that a

term is more informative if it and its descendants have fewer

annotated genes or proteins in an ontology. For instance,

‘chaperone’, (GO:0003754) is a more informative term than

‘signal transducer’, (GO:0004871), because the former is used

several hundred times, while the latter is used several thousand

times. The similarity of GO annotation measure starts with a

probability measure of each term t. Let Dt be the collection of GO

terms that are either t or its descendants. Let A(t, c) be the

occurrence of t annotations given a collection c. The probability of

t in c, or p(t, c), is defined as:

p(t,c)~
X

d[Dt

A(d,c) ð1Þ

Let CA(t1, t2) be the lowest common ancestor set for terms t1 and

t2, since GO allows multiple parents for each term. The semantic

similarity of two GO terms is defined as:

sim(t1,t2,c)~{ ln ( min
t[CA(t1,t2)

fp(t,c)g) ð2Þ

The similarity of two genes or gene products is then defined as

the highest similarity between GO annotations for them. Here we

calculate BP, CC, MF similarity separately as three features. A

total of 6 features were defined by combining the 2 similarity types

and the 3 hierarchies.

Gene coexpression. The corresponding genes of the proteins

in a protein complex are expected to be coexpressed (ie, activated

and repressed under the same conditions) [24–26]. We defined a

feature to capture gene coexpression information of a protein pair

by using many microarray data series available in Gene

Expression Omnibus [27]. The value was set to be the Pearson

correlation coefficient of the 2 genes in those series.

Domain-Domain interaction. A protein domain is a

conserved part of a given protein sequence and structure that

can evolve, function, and exist independently of the rest of the

protein chain. Domains often suggest the propensity for the

proteins to interact or form a functional unit, such as protein

complex. If two proteins have more domain-domain interactions

(DDI), they have more possibility to have an interaction. So we

used one feature to capture DDI information for a protein pair. As

shown in Figure 2, we retrieved protein domain information from

UniprotKB [28] with query taxonomy 4932, if one protein has

domain information, it is represented by domain list, such as

protein YMR001C. We also downloaded DDI information from

InterDom [29], a putative domain-domain interaction (DDI)

database, in which each DDI pair is assigned a confidence score.

So protein pairs can be represented by DDI pairs, such as PPI

YMR001C and YDL003W in Figure 2. For each protein pair, we

calculated the sum of the confidence scores of all possible DDI

pairs as a DDI feature value.

STRING evidence. STRING [30] is a database of direct

(physical) and indirect (functional) protein interactions. These

known and predicted protein interactions are derived from 4

sources: genomic context, high-throughput experiments, coex-

state-of-the-art protein complex detection algorithm to a reconstructed PPI network. In the first part, we represented protein pairs based on 6
sources, then used learning from positive and unlabeled data (LPU) to predict PPIs. We also applied a five fold cross-validation for evaluating the LPU
model. In the second part, we applied some popular protein complexes detection methods (COACH, CMC, CFinder, MCODE, IPCA, MCL, Clusterone)
on a reconstructed PPI network to identify protein complexes.
doi:10.1371/journal.pone.0083841.g001
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pression (conserved), and prior knowledge. We consider it to be an

essential source, since it contains PPI information extracted from

the literature and several other sources. A score is assigned by

STRING for each protein pair to indicate the confidence of PPI.

We used that score as the feature to capture STRING-predicted

evidence of PPI information.

AP-MS experiments. Affinity purification combined with

mass spectrometry (AP-MS) is a powerful method for high-

throughput PPI identification. Affinity purification consists of first

tagging a protein of interest (bait) by genetically inserting a small

peptide sequence (tag) onto the recombinant bait protein. The bait

protein is affinity purified, together with its interacting partners

(preys), which are identified using mass spectrometry. The partners

can have either a direct physical interaction with the bait or an

indirect physical interaction mediated by a protein complex. AP-

MS experiments provide direct information about co-complex

relationships among proteins. However, proteins in the same

protein complex may be missed in the screen (false-negatives) if

they fail to bind tightly enough, whereas other proteins may be

copurified if they bind nonspecifically to the bait (false-positives).

Because of these false-negatives, false-positives and the datasets are

large, computational methods have been developed to isolate true

protein complexes out of the purification results. These compu-

tational methods typically convert the co-complex relationships in

the AP-MS data into binary PPIs. They proposed different

measurements to assigns a reliability score to every protein pair in

converting multirelationships into binary interactions, such as

socio-affinity index by Gavin [31]. It is based on the log-odds of

the number of times two proteins were observed together in a

purification, relative to the expected frequency of co-occurrence of

two proteins in purifications. The higher the score are, the more

reliable of the candidate PPIs. Here we downloaded the candidate

PPIs with reliable score from Gavin [31], Krogan [10], Collins

[11] and Hart [32], each reliability measurements result can be

defined a AP-MS feature [10,32–34].

PPI network properties. Not every interaction pair is

present in curated PPI networks. We consider a protein pair to

have a higher probability of being a PPI pair if they have many

common neighbors in a PPI network. We use the Czekanowski-

Dice distance (CD-distance) to capture such information. Given a

pair of proteins X and Y in an interaction graph G, CD-DistG(X,Y)

Figure 2. The score of Domain-Domain interaction for each protein pair. Calculating DDI value based on UniprotKB and InterDom datasets.
doi:10.1371/journal.pone.0083841.g002

Table 1. The average Lift value of fixed-size way and group-
way for LPU model based on five-fold cross-validationa.

Average 1:1 1:2 1:4 1:6 1:8

Top 1000 1371.13 1362.2 1264.4 1201.92 1266.86 1240.84

Top 2000 1081.43 1018.77 981.95 961.13 1005.16 1011.48

Top 3000 928.09 846.15 831.28 825.95 862.29 891.54

Top 4000 823.35 738.74 727.59 735.4 753.78 797.27

Top 5000 731.94 656.37 648.71 663.14 664.51 713.5

Top 6000 652.71 592.41 588.44 599.6 600.04 645.76

Top 7000 585.66 537.16 538.86 548.63 545.86 582.98

Top 8000 530.67 493.21 496.37 500.46 501.37 529.81

Top 9000 482.87 454.23 459.31 461.84 463.18 483.05

Top 10000 441.72 421.79 425.88 429.11 428.05 442.29

Abbreviations: LPU, learning from positive and unlabeled data.
aThe numbers in bold and italic are the highest value in each evaluation.
doi:10.1371/journal.pone.0083841.t001
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is defined as the proportion of partners that the 2 proteins have in

common:

CD{DistG(X ,Y )~
2 � DNG(X )\NG(Y )D
DNG(X )DzDNG(Y )D

ð3Þ

where NG(X) and NG(Y) are the set of neighbors for X and Y. CD-

distance, originally proposed by Brun et al [35] to predict

function, was later shown to effectively assess the reliability of

high-throughput interaction data [36].

Learning from Positive and Unlabeled Data
Using machine learning to predict a protein pair to be a PPI

pair (or not) requires a training set containing pairs that are

annotated as positive or negative. The positive pairs can be

obtained from curated knowledge sources with protein structure

evidence, whereas a confirmed report of noninteracting pairs is

difficult to obtain. We randomly selected unlabeled protein pairs

to act as negative pairs, since only one in several hundred potential

protein pairs actually contain interacting partners. Thus, over 99%

of our random data is indeed noninteracting, which is probably

better than the accuracy of most training data. This randomly

sampling negatives way is popular applied in LPU (Learning from

positive and unlabeled data) model for many researches and got a

good performance, such as ref. [37], ref. [12] and ref. [13]. So

LPU (Learning from positive and unlabeled data) model can be

applied for our task. The class distribution in the training set can

affect the performance of the resulting systems, so we used the

following strategy to generate multiple negative examples. For a

Figure 3. Performances of CFinder based on different protein-protein interaction networks. The Recall, Precision and F-value of CFinder
based on DIP, BioGRID, Krogan and our selected reliable protein-protein interaction (PPI) network supplementing with top 1000, top 2000, top 3000,
top 4000 and top 50000 predicted PPI.
doi:10.1371/journal.pone.0083841.g003

Figure 4. Performances of COACH based on different protein-protein interaction networks. The Recall, Precision and F-value of COACH
based on DIP, BioGRID, Krogan and our selected reliable protein-protein interaction (PPI) network supplementing with top 1000, top 2000, top 3000,
top 4000 and top 50000 predicted PPI.
doi:10.1371/journal.pone.0083841.g004
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given set of PPI pairs, multiple sets of negatives were sampled

using different class distributions; the ratios of positives and

negatives were set to be {1:1, 1:2, 1:4, …, 1:2*n}. We repeated the

strategy m times and constructed m6(n+1) classifiers for a chosen

machine learning algorithm. Each of the classifiers assigns a score

to each of the unlabeled pairs, in which the score measures the

possibility or confidence of a pair being positive. We then rank the

unlabeled pairs by the sum of the m6(n+1) scores; those ranked

high are considered to be predicted PPI pairs.

Protein Complex Identification Algorithms
After acquiring predicted PPI pairs, existing computational

methods developed to identify protein complexes from PPI

networks can be used. We employed 7 state-of-the-art protein

complex identification algorithms here: COACH [14], CMC [9],

CFinder [15], MCODE [16], IPCA [17], Clusterone [19] and

MCL [18].

COACH [14] is based on a core-attachment [38] method and

detects protein complexes from PPI networks. It mines protein

complex cores from neighborhood graphs and forms protein

complexes by including attachments into cores. Proteins placed in

the same protein complex core are functionally similar and tend to

be colocalized [39].

CMC [9] finds complexes from the weighted PPI network based

on maximal cliques. It first uses an iterative scoring method

(AdjustCD) to assign weight to protein pairs. The weight of a

protein pair indicates the reliability of the interaction between the

2 proteins. It then generates all the maximal cliques from the

weighted PPI networks. It finally removes or merges highly

overlapped clusters based on their interconnectivity to determine

protein complexes.

Adamcsek et al. [15] provided a software called CFinder to find

functional modules in PPI networks. CFinder detects the k-clique

percolation clusters as functional modules using a Clique

Percolation Method [40]. In particular, a k-clique is a clique with

k nodes and two k-cliques are adjacent if they share (k –1) common

nodes. A k-clique percolation cluster is then constructed by linking

all the adjacent k-cliques as a bigger subgraph.

MCODE algorithm proposed by Bader et al. [16] is one of the

first computational methods to detect protein complexes based on

the proteins’ connectivity values in the PPI network. MCODE first

weighs every node based on their local neighborhood densities,

and then selects seed nodes with high weights as initial clusters and

augments these clusters by outward traversing from the seeds. In

addition, MCODE has an optional post-processing step with

operations such as filtering non-dense subgraphs and generating

overlapping clusters.

IPCA [17] is a modified DPClus [41] algorithm which expands

clusters starting from seeded vertices. It per-forms a better

performance than DPClus since it proposes a new topological

structure for protein complexes, which is a combination of

subgraph diameter (or average vertex distance) and subgraph

density.

Clusterone [19] algorithm consists of three major steps (Online

Methods). First, starting from a single seed vertex, a greedy

procedure adds or removes vertices to find groups with high

cohesiveness. In the second step, they quantify the extent of

overlap between each pair of groups and merge those for which

the overlap score [16] is above a specified threshold. In the third

step, they discard complex candidates that contain less than three

proteins or whose density is below a given threshold. Note that

their method can detect potentially overlapping protein complex-

es.

MCL [18] (Markov Clustering) is a method that identify protein

complexes by simulating random walks in PPI networks. It

contains two steps: expansion and inflation. The expansion step

assigns new probabilities for all pairs of nodes, while the inflation

step changes the probabilities for all these walks in the graph.

Iterative expansion and inflation will separate the PPI network into

many parts as protein complexes.

Experiments

Performance Evaluation
We followed existing approaches [39,42,43] to evaluate the

experimental performance. Equation 4 calculates the neighbor-

hood affinity score NA(p,b) between a predicted cluster p MP and a

real complex b MB, where P is the set of predicted complexes by a

Figure 5. Performances of CMC based on different protein-protein interaction networks. The Recall, Precision and F-value of CMC based
on DIP, BioGRID, Krogan and our selected reliable protein-protein interaction (PPI) network supplementing with top 1000, top 2000, top 3000, top
4000 and top 50000 predicted PPI.
doi:10.1371/journal.pone.0083841.g005
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computational method and B is the set of real ones in the

benchmark.

NA(p,b)~
DVp\VbD2

DVpD|DVbD
ð4Þ

In equation 4, |Vp| is the number of proteins in the predicted

complexes and |Vb| is the number of proteins in the real complex.

If NA(p,b)$v, a real complex and a predicted complex are

considered to be matching (v is usually set as 0.20 or 0.25) [3].

After all real complexes and predicted clusters have their best

match calculated according to their NA scores, precision, recall,

and F-measure are applied to assess the methods:

Ncp~DfpDp[P,Ab[B,NA(p,b)§vgD ð5Þ

Ncb~DfbDb[B,Ap[P,NA(p,b)§vgD ð6Þ

Pr ecision~
Ncp

DPD
ð7Þ

Recall~
Ncb

DBD
ð8Þ

Figure 6. Performances of MCODE based on different protein-protein interaction networks. The Recall, Precision and F-value of MCODE
based on DIP, BioGRID, Krogan and our selected reliable protein-protein interaction (PPI) network supplementing with top 1000, top 2000, top 3000,
top 4000 and top 50000 predicted PPI.
doi:10.1371/journal.pone.0083841.g006

Figure 7. Performances of IPCA based on different protein-protein interaction networks. The Recall, Precision and F-value of IPCA based
on DIP, BioGRID, Krogan and our selected reliable protein-protein interaction (PPI) network supplementing with top 1000, top 2000, top 3000, top
4000 and top 50000 predicted PPI.
doi:10.1371/journal.pone.0083841.g007
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F~2| Pr ecision|Recall=( Pr ecisionzRecall) ð9Þ

Ncp is the number of predicted complexes that match at least 1

real complex, and Ncb is the number of real complexes that match

at least 1 predicted complex [3].

There are lots of negative protein-protein interactions in the real

world, we prefer to obtain the candidate PPI with high probability

to be true. Since the prediction scores of a classifier indicates the

probability of being positive in descending order, we chose Lift

[44] which measures how fast to obtain positive PPI. When

ranking the results of a classifier based on its prediction score, the

precision in top n is called estimated precision (EP). The baseline

precision (BP) is the ratio of the number of positives over the total

number of samples in the data set. The Lift is calculated using,

Lift~EP=BP ð10Þ

which shows the relative utility of the classifier.

Experiment Data
We evaluated our approach by performing a yeast protein

complex identification task. We downloaded yeast protein

interaction data from DIP [20], Krogan [10], BioGRID [21]

PPI data for comparing the quality of our reconstructed PPI

network. Krogan core [10] and Collins [11] datasets are also

downloaded as candidate positive PPIs. We also retrieved 7,018

Figure 8. Performances of Clusterone based on different protein-protein interaction networks. The Recall, Precision and F-value of
Clusterone based on DIP, BioGRID, Krogan and our selected reliable protein-protein interaction (PPI) network supplementing with top 1000, top 2000,
top 3000, top 4000 and top 50000 predicted PPI.
doi:10.1371/journal.pone.0083841.g008

Figure 9. Performances of MCL based on different protein-protein interaction networks. The Recall, Precision and F-value of MCL based
on DIP, BioGRID, Krogan and our selected reliable protein-protein interaction (PPI) network supplementing with top 1000, top 2000, top 3000, top
4000 and top 50000 predicted PPI.
doi:10.1371/journal.pone.0083841.g009

Protein Complexes Identification
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yeast proteins from the Saccharomyces Genome Database [45] and

generated 24.6 million protein pairs. The yeast protein complex

data were downloaded from a public repository (http://wodaklab.

org/cyc2008/) with a total of 408 manually curated heteromeric

protein complexes. After filtering out complexes composed of a

single or a pair of proteins, the final benchmark set contains a total

of 231 protein complexes.

The GO website was accessed in September 2011 to retrieve

GO annotations and GO Slim terms for yeast. A total of 161

microarray data series for yeast (using platform PL90), consisting

of 2,015 samples, were downloaded from Gene Expression

Omnibus (accessed September 2011). The expression measures

were log transformed, and a Pearson correlation coefficient was

computed for each protein pair. We retrieved yeast protein

domain information from UniProtKB [33] and DDI confidence

scores from InterDom [46]. There are 7 computational results

from AP-MS datasets for yeast [10,32–34]; each assigns a

reliability score to every protein pair in converting multirelation-

ships into binary interactions. We used those scores directly as

features.

Evaluation of LPU Model
Because many protein pairs do not have PPI evidence from

sources other than Gene Expression Omnibus and GO annota-

tions, we used the following heuristics to filter out protein pairs:

1. There is only PPI evidence from Gene Expression Omnibus

and GO annotation;

2. For the GO hierarchies BP and CC, Type I GO features have

a value of 0 and Type II GO features have a value less than

0.002; and

3. The Pearson correlation coefficient is less than 0.5.

We obtained 4.64 million protein pairs according to the

heuristics. Note that many of our features have numeric values.

We applied discretization according to the value distribution

(approximately equal frequency), which yielded a vector contain-

ing 281 elements for every pair.

Considering the protein structure is solid evidence, we integrate

Domain-Domain interaction information for selecting reliable

positive PPIs. As Krogan and Collins provided a purified PPIs and

many methods utilized their datasets for protein complexes

identification [19], we also selected candidate positive PPIs based

on theirs. We considered the PPI as a reliable positive PPI which is

recorded in Krogan core dataset, Collins dataset and its DDI value

is above 0. We got 12477 reliable positive PPIs based on this rules.

The unlabeled dataset is obtained by filtering out the positive PPIs

from protein pairs datasets (Unlabeled PPI data 2 as shown in

Figure 1). As mentioned above, it is difficult to find large amount

of non-interact protein pairs and the proportion of positives to

unlabeled is only one in several hundred. So LPU (Learn from

positive and unlabeled data) is a proper way to deal this.

Considering class distribution in the training set can impact the

performance of the resulting systems, so we used following two

strategies to generate multiple negative examples. One we called

Table 2. Performance Comparison Based on Reconstructed
PPI Network (LPU), DIP, Krogan and BioGRIDa.

Method Evaluation Ours DIP Krogan BioGRID

COACH F-Value 0.565 0.447 0.465 0.375

Recall 0.642 0.655 0.539 0.772

Precision 0.505 0.339 0.409 0.248

IPCA F-Value 0.601 0.453 0.495 0.518

Recall 0.642 0.664 0.547 0.763

Precision 0.564 0.344 0.452 0.392

CMC F-Value 0.559 0.438 0.476 0.317

Recall 0.672 0.634 0.552 0.815

Precision 0.478 0.335 0.419 0.196

Clusterone F-Value 0.467 0.360 0.378 0.445

Recall 0.560 0.418 0.358 0.655

Precision 0.401 0.317 0.400 0.337

MCODE F-Value 0.434 0.181 0.211 0.081

Recall 0.341 0.116 0.129 0.052

Precision 0.598 0.407 0.571 0.190

CFinder F-Value 0.682 0.554 0.545 –

Recall 0.634 0.616 0.478 –

Precision 0.738 0.503 0.634 –

MCL F-Value 0.290 0.237 0.252 0.095

Recall 0.664 0.466 0.444 0.069

Precision 0.185 0.159 0.176 0.154

Abbreviations: LPU, learning from positive and unlabeled data.
aCFinder did not get results on BioGRID data within 48 hours. The numbers in
bold and italic are the highest value in each evaluation.
doi:10.1371/journal.pone.0083841.t002

Table 3. The Biology Significance Comparison Based on
Reconstructed PPI Network (LPU), DIP, Krogan and BioGRIDa.

Method Evaluation Ours DIP Krogan BioGRID

COACH MF 0.509 0.253 0.372 0.317

BP 0.570 0.347 0.404 0.402

CC 0.362 0.139 0.154 0.240

IPCA MF 0.588 0.280 0.395 0.450

BP 0.646 0.400 0.482 0.564

CC 0.492 0.134 0.182 0.363

CMC MF 0.401 0.197 0.295 0.141

BP 0.470 0.239 0.280 0.160

CC 0.258 0.087 0.096 0.087

Clusterone MF 0.244 0.173 0.240 0.160

BP 0.277 0.191 0.248 0.175

CC 0.150 0.059 0.124 0.112

MCODE MF 0.411 0.237 0.388 0.224

BP 0.383 0.288 0.429 0.293

CC 0.187 0.153 0.265 0.190

CFinder MF 0.668 0.344 0.519 –

BP 0.726 0.414 0.535 –

CC 0.541 0.185 0.270 –

MCL MF 0.094 0.097 0.118 0.044

BP 0.098 0.105 0.106 0.066

CC 0.055 0.049 0.042 0.044

Abbreviations: BP, biological processes; CC, cellular components; MF, molecular
function;
aCFinder did not get results on BioGRID data within 48 hours. The numbers in
bold and italic are the highest value in each evaluation.
doi:10.1371/journal.pone.0083841.t003
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group-way, another called fixed-size way. The group-way sampled

multiple sets of negatives using different class distributions: the

ratios of positives and negatives are set to be {1:1, 1:2, 1:4, …,

1:2n}. While the fixed-size way sampled them using same class

distributions. We divided the positives into five folds and did a five-

fold cross-validation for evaluating our LPU model. Each fold is

selected as testing data in turn and the other 4 folds are for

training. The testing fold is added to Unlabeled PPI data 2 for

testing (called Unlabeled PPI data 1). Then we sampled 5 different

size negative datasets based on Unlabeled PPI data 1. As shown in

Figure 1, we got 25 different negative datasets for testing our

model. Each row contained five same size negative datasets (fixed-

size way) but five different testing dataset; each column contained

five different size negative datasets (group-way) but same testing

dataset. In order to find a proper way of generating negative

datasets, we compared performances of these two ways by SVM.

We calculated the average Lift value of each row and column

separately as shown in Figure 1. For instance, the five models in

first column gave five scores for each protein pair, we considered

the sum of five scores as final score for each protein pair and got

one Lift value. The average Lift value of five columns is calculated

for comparison. While in the first row, the testing sets are different

for five models, we got five Lift values for one fixed-size way and

the average Lift value of five models is calculated for comparison.

PPI Prediction
After evaluating the LPU, we selected group-way for predicting

PPI. The parameters m and n in LPU were set to 5 and 4,

respectively, with a total of 25 LPU classifiers constructed. The

machine learning algorithm used was Support Vector Machine

(SVM) implementation in libSVM 3.0. As shown in Figure 1, each

of the classifiers assigns a score to each of the unlabeled pairs, in

which the score measures the possibility or confidence of a pair to

be positive. We then ranked the unlabeled pairs by the sum of the

25 scores from SVM, and those ranked high were considered to be

predicted PPI pairs. Because the files are very large, the protein

pairs with PPI evidence are shown in our supporting website

(http://202.118.75.18:8080/PPINPredictor/).

Protein Complex Identification
We chose seven different popular methods to assess the

performance of our methods. COACH, CMC, CFinder, Cluster-

one, MCODE, MCL and IPCA were implemented on the existed

popular PPI networks and our new reconstructed networks

respectively. We evaluated their performances on the Krogan,

DIP and BioGRID PPI networks and compared them with our

reconstructed PPI network built upon our purified reliable PPIs

and predicted PPI pairs (12k+1000, 12k+2000, 12k+3000,

12k+4000 and 12k+5000).

Results and Discussion

Evaluation of LPU Model
For the fixed-size way (as shown in the Figure 1), we got five Lift

values for each size. The average Lift values are calculated for

comparison. For the group-way (as shown in the Figure 1), five

results in the same column are added for each protein pair. The

average Lift values of five columns are calculated for comparison.

The Lift values of six results are shown in Table 1. In the fixed-

way result (Column3–7), we found that the negative datasets which

have the same size with the positives got the highest value in top

1000 and top 2000, but it got low performance above 2000. The

highest Lift values of fixed-size way from top 2000 to 10000 are

obtained when the ratios of positives and negatives are set to be

1:8, but they did not get good performance in other comparisons.

The group-way got highest Lift value from top 1000 to top 8000

comparing with all fixed-size way. This is probably because one

time size negative is too small to represent most of negatives. While

more times negative datasets maybe too big, they can contain

some positive PPI. Since the group-way which contains five

different size negative datasets, so the results are not sensitive to

the one exactly size. They can get a best performance. In brief,

when we want to get robust performance, we repeated m times

group-way to train models. In this identifying protein complexes

task, we used five group-way to generate negative datasets as

described in the paper.

Performances of Protein Complexes Detection Methods
For evaluating our method, we selected different size recon-

structed networks for protein complexes detection and compared

their performances with other existed popular PPI networks.

Figure 3, 4, 5, 6, 7, 8, 9 show the performances of seven methods

when selecting different networks (CFinder did not get results on

BioGRID network in 48 hours). The F-value and precision of all

these seven methods on our network are higher than on other

existed popular networks. It indicates that many predicted PPI

pairs are true PPI pairs and that incorporating them into the PPI

network can improve protein complex identification. The recall

based on our network is lower than BioGRID, this is probably

because the BioGRID data set is very big and much more protein

complexes can be detected from it. But the precision and F-value

on BioGRID are very low. Meanwhile, we listed the best

performances of each method achieved on our networks in

Table 2. The highest F-value of COACH, IPCA, CMC,

Clusterone, MCODE, CFinder and MCL achieved on our

network are 0.565, 0.601, 0.559, 0.467, 0.434, 0.682 and 0.29,

respectively. The highest Precision of COACH, IPCA, CMC,

Clusterone, MCODE, CFinder and MCL achieved on our

network are 0.505, 0.564, 0.478, 0.401, 0.598, 0.738 and 0.185,

respectively.

Besides the above measurement, it also shows the same

improvement in GO annotation analysis. We count the number

of clusters with p-value [47] less than 0.01, a threshold which

Table 4. The comparison of protein pairs relevance in DIP,
BioGRID, Krogan and our reconstructed networks
supplementing with top 2000, 4000, 6000, 8000 and 10000
predicted PPIa.

GO_CC GO_BP GO_MF Co-express

12k+1000 0.893 0.896 0.66 0.988

12k+2000 0.889 0.892 0.657 0.988

12k+3000 0.884 0.889 0.653 0.988

12k+4000 0.879 0.884 0.648 0.987

12k+5000 0.876 0.88 0.643 0.987

DIP 0.791 0.741 0.541 0.962

Krogan 0.776 0.795 0.576 0.935

BioGRID 0.782 0.817 0.594 0.932

Abbreviations: GO, Gene Ontology; BP, biological processes; CC, cellular
components; LPU, learning from positive and unlabeled data; MF, molecular
function;
aThe numbers in bold and italic are the highest value in each evaluation.
doi:10.1371/journal.pone.0083841.t004
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represents significant biological sense and compute the proportion

of clusters which achieve low p-value. The proportion of clusters

from various methods with low p-value are shown in Table 3. The

biological significance of detected protein complexes from MCL is

very low in all networks. This is probably because its detection

method is only based on network structure without considering

biology property. MCODE did not get a higher biological

significance in CC (cellular components) on our networks.

However, all the other methods achieved higher biological

significance on our network than on the other 3 datasets. It

indicates that protein complex identification algorithms achieve

better performance when reconstructing PPI networks by com-

bining PPI evidence from multiple sources.

Performances of Reconstructed Networks
We also evaluated our predicted PPIs through statistical analysis

based on GO annotation. Since interacting proteins are likely

involved in similar biological processes, they are expected to have

similar functional annotations in gene ontology. Therefore, we

measure the functional relevance between any pair of proteins that

are connected by an edge using the semantic similarity between

the GO terms annotated with the proteins, using a popular

method [23]. Results shown the proportion of protein pairs in the

PPI network whose similarity is above 0.5 in three branch of GO

(BP, CC, MF) (Table 4). As the number of selected PPI increase,

the relevance decrease slightly in BP and MF. But they are still

higher than PPI in DIP, Krogan and BioGRID. We also measured

the Pearson correlation coefficient between the gene expression

profiles of every pair of genes, using Gene Expression Omnibus

(accessed September 2011) data. We calculated proportion of

protein pairs whose value is above 0.5 for each network. Results

show that the PPI in our network are more functional relevance

than other networks. All these indicate that our network not only

have similar functions, but also have highly coexpressed. We gave

a list of our predicted PPI networks in our website: http://202.

118.75.18:8080/PPINPredictor/.

In summary, our method gets a higher quality network for

protein complexes detection. This illustrates that our approach of

integrating PPI evidence from multiple sources is effective in

protein complexes detection. These sources include different types

of information, so it is more comprehensive than the existing

methods that only consider GO ontology or DDI information.

The integration of PPI information from multiple sources enables

us to obtain more PPI pairs and enhance true PPI information.

From our selected reliable positive PPI supplementing with

predicted PPI, it addresses the false negative and false positive

problem in the existing PPI network, hence improves the

performance for protein complex identification. We plan to

evaluate the contribution of each individual source towards

protein complex identification in the future.

Conclusion

We have integrated PPI information from multiple sources into

protein complex identification. The evaluation of our method

indicates that incorporating PPI information sources significantly

improves the performance of protein complex identification

algorithms. Future work includes evaluation of the contribution

of each individual source toward protein complex identification.

Additionally, we plan to incorporate additional features such as

high-level structure information into the protein complex predic-

tion task.
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