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Abstract

Knowledge of how a population of cancerous cells progress through the cell cycle is vital if the population is to be treated
effectively, as treatment outcome is dependent on the phase distributions of the population. Estimates on the phase
distribution may be obtained experimentally however the errors present in these estimates may effect treatment efficacy
and planning. If mathematical models are to be used to make accurate, quantitative predictions concerning treatments,
whose efficacy is phase dependent, knowledge of the phase distribution is crucial. In this paper it is shown that two
different transition rates at the G1-S checkpoint provide a good fit to a growth curve obtained experimentally. However, the
different transition functions predict a different phase distribution for the population, but both lying within the bounds of
experimental error. Since treatment outcome is effected by the phase distribution of the population this difference may be
critical in treatment planning. Using an age-structured population balance approach the cell cycle is modelled with
particular emphasis on the G1-S checkpoint. By considering the probability of cells transitioning at the G1-S checkpoint,
different transition functions are obtained. A suitable finite difference scheme for the numerical simulation of the model is
derived and shown to be stable. The model is then fitted using the different probability transition functions to experimental
data and the effects of the different probability transition functions on the model’s results are discussed.
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Introduction

The cell cycle is an ordered set of events that a cell undergoes

from its birth until it divides into two daughter cells [1]. In

eukaryotic cells the cell cycle may be broken down into four

distinct phases, namely G1, S, G2 and M. After birth, a cell enters

the longest of the phases, the G1 (Gap 1) phase, during which the

cell takes on nutrients needed to complete the rest of the cycle.

Once the cell has absorbed enough nutrients it may proceed round

the cell cycle leaving the G1 phase and entering the S (Synthesis)

phase. Not all cells leave the G1 phase to enter the S phase, a

number of cells enter a quiescent period where they remain viable

but leave the cell cycle for a short time, these cells enter the G0

(Gap 0) phase. During the S phase a cell replicates its DNA, at the

end of which they have effectively doubled their DNA content.

Once DNA synthesis is completed the cell enters the G2 (Gap 2)

phase. During the G2 a cell grows in size and prepares for mitosis.

Upon leaving G2 the final phase M (Mitosis) is entered. It is during

the mitotic phase that the cell divides, producing two daughter

cells. Due to the processes involved in cell division, cells in the M
phase are especially vulnerable to radiotherapy. It should be noted

that the M phase may be broken down further into several sub

phases, however this is of no consequence for the model discussed

herein. The actual length of the cell cycle is variable, this

variability mainly occurs in the length of time cells spend in the G1

phase which is governed by the way in which cells ‘transition’ from

the G1 phase to the S phase [2]. Once a cell commits itself to DNA

synthesis (i.e. enters the S phase) it must continue the cell cycle

until division is complete, the ‘transition’ from the G1 phase to the

S phase is irreversible.

Chemotherapy drugs can be divided into several types, each of

which target a specific process within the cell cycle such as RNA

synthesis or cell division. Hence the efficacy of many chemother-

apy drugs (e.g. [3], [4] and [5]) is dependent on the cell cycle

phase. The radiosensitivity of cells is also phase dependent (e.g.

[6], [7] and [8]) with cells in the M (mitotic) phase having their

chromosomes arranged in a line prior to separation making them

particularly sensitive to ionising radiation. Due to the phase

dependent nature of chemotherapy drugs and radiotherapy

knowledge of how the cells progress through the different phases

is crucial.

There have been a number of mathematical models developed

for populations of cells progressing round the cell cycle. Systems of

ordinary differential equations may be used to model the growth

kinetics of populations of cells however these are too simplistic to

capture the intrinsic properties of the cell cycle, but are often an

invaluable first step in understanding the kinetics of a population

of cells. To adequately model crucial properties of a population of

cells such as age, mass or DNA distribution a system of partial

differential equations is needed.

Many partial differential equation models share the same

fundamental population balance structure as detailed in [9], [10]

and [11]. These models may broadly be grouped in terms of which
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property of the cell is used to structure the model, the main

properties used being DNA ([12], [13], [14], [15] and [16]), age

([17], [18], [19] and [20]) and mass ([17], [21], [19]).

There are advantages of using a DNA or mass structured model

in as much that these quantities may be easily determined

experimentally, however such a model contains no information

about the age of a particular cell and as such it is possible for cells

to remain in the cycle for an infinite amount of time. By use of an

age-structured model it is possible to control the length of time a

cell may remain in the cell cycle, in particular the G1 phase.

Another advantage of age structuring is that, if growth rates and

nutrient uptake rates for a given cell line are known, it is possible to

determine the mass and DNA content of a cell from its age,

however given the cells DNA content or mass it is not possible to

determine a cell’s age as there is not a one-to-one mapping

between age and DNA or mass.

Analysis has been undertaken to determine the existence and

stability of steady size/DNA distributions [22] which may occur

under specific circumstances using an age structured model.

Population balance models have been used not only on healthy,

unperturbed cell lines but also to model the effects of various

treatments to cancer cell populations [15], [18], [16] and [23].

In this paper, an age structured cell cycle model is considered

together with two different functions governing the movement

between the G1 and S phases. Whilst, different functions have

been used in the past [18], [20] and [24] little has been done to

study the effects of different functions on the phase distributions of

cells. It is shown that it is possible to obtain very similar growth

curves using different transition functions with the fundamental

difference being in the phase distributions for the cells. Although

the differences in the phase distributions lie within the range of

experimental error for many techniques such as conventional flow

cytometry it may be significant in terms of treatment optimisation.

The purpose of this paper is to understand how different transition

rules may effect the phase distribution of the cells and that whilst

the motivation for this analysis is the phase dependent nature of

certain treatments these have not been included within the model.

This paper is outlined as follows. The age structured model is

presented in Section 1 together with a brief overview of the

derivation of a generalised transition function in Section 2. Two

specific transition functions are then considered. In Section 3 the

numerical scheme used for computations is derived. Section 4 sees

the age structured model with different transition functions

compared with experimental data. The experimental data

concerns a batch experiment which was conducted using a

mouse-mouse hybridoma cell line (mm321) [25]. The findings of

this paper are then summarised together with ideas for future

work.

Model Outline

1 Age structured model
The model considered in this paper is divided into three, age-

structured sections, G1a, G1b and MAIN as depicted in Figure 1.

The MAIN compartment contains cells in the S, G2 and M
phases of the cell cycle, it is at the end of this compartment cell

division occurs.

The G1a section contains cells which have just undergone

division. Cells that are in G1a are not able to progress further

round the cell cycle until a fixed time period has elapsed, this

represents the minimum age a cell can start replicating its DNA.

This is biologically realistic as new cells are normally unable to

immediately start replicating their DNA. Once cells have

progressed to G1b they undergo transition to the MAIN

compartment at a rate h(v), which is often a function of how

long the cell has spent in G1b. It may also be a function of other

factors which effect a cell’s progression round the cell cycle such as

nutrient levels, the presence of certain drugs, temperature etc. The

MAIN compartment is of fixed duration and can be thought of as

merely a time delay from when a cell leaves G1b until cell division

and entry of the new daughter cells into G1a. All compartments

within this model are of a limited duration, the MAIN and G1a

compartments are of a fixed duration and the duration of G1b

varies from zero to some maximum value, TG1b
. Biologically, any

cells remaining in G1b at the end of TG1b
would either die or enter

a quiescent phase. Cells in a quiescent phase may be able to rejoin

the cycle at a later time. Neither of these scenarios is modelled

here.

In this model the non dimensionalised equations governing the

population density of cells n in each phase are given by

LnG1a

Lt
z

LnG1a

Lt
~0, ð1Þ

LnG1b

Lt
z

LnG1b

Lt
zh(v)nG1b

~0, ð2Þ

LnMAIN

Lt
z

LnMAIN

Lt
~0: ð3Þ

With the corresponding boundary conditions

nG1a
(t,0)~2nMAIN (t,TMAIN ),

nG1b
(t,0)~nG1a

(t,TG1a
),

nMAIN (t,0)~

ðTG1b

0

nG1a
(t,t̂t)h(v(t̂t))d t̂t:

ð4Þ

To complete the model the cell distribution at time t~0 needs to

be specified, as we are concerned with the system once it has

reached exponential growth and steady ‘phase’ distribution this

Figure 1.Overview of a three compartment age structured
model.
doi:10.1371/journal.pone.0083477.g001

G1 - S Checkpoint Effects on a Cell Cycle Model

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e83477



condition is not important, however for completeness it may be

assumed there is a uniform feed of cells into the start of the cell

cycle for the first k hours,

nG1a
(t,0)~c, tvk hours: ð5Þ

This model is of a similar structure to most population balance

age-structured models such as those presented in [18] and [20]

amongst others. In [20] the MAIN phase is split into three parts

S,G2 and M, but since our focus is on the total cell population and

the fraction of cells in G1, this difference has no impact. A further

difference is in the way that [20] model the transition from G1, and

this will be discussed in greater detail below. In [18], in addition,

the G1 phase is modelled as a single compartment rather than

divided into two, G1a and G1b.

2 G1-S Transition functions
The probability of a cell leaving the G1b phase and entering the

S phase via the transition rule is given by some probability

distribution function f (x) where x is the variable that determines

how likely cells are to undergo transition. Figure 2 gives a

graphical representation of such a probability distribution function

with phase age tG1b
acting as the variable controlling the transition

probability. Note that phase age is the length of time a cell spends

in a particular phase, For the rest of this paper the subscripts have

been removed from the age variable for ease and only used in the

case of any ambiguity as to the phase referenced.

If t varies by a small amount, dt, then the probability of cells

whose age is between t and tzdt transitioning can be

approximated by f (t)dt. Assuming all cells are capable of

transitioning given enough nutrients, the total area under the

probability distribution curve is one. Therefore the probability that

a cell of age t has not yet transitioned is given by 1{
Ð t

0
f (t’)dt’.

So the fraction of cells, who have not gone through transition, who

go through transition when their age changes from t to tzdt is

given by

f (t)dt

1{
Ð t

0
f (t’)dt’

: ð6Þ

Another way of considering the number of cells going through

transition is via a transition rate h(t). If the fraction of cells who

leave in the time period t,tzdt)½ is given by h(t)dt, then by

definition this must be equal to equation (6). Therefore, in the limit

dt?0,

h(t)~
f (t)

1{
Ð t

0
f (t’)dt’

dt

dt
: ð7Þ

since a cell ages at the same rate as time passes t(t)~t{c where c

is a constant therefore dt
dt

~1 hence equation (7) simplifies to

h(t)~
f (t)

1{
Ð t

0
f (t’)dt’

: ð8Þ

If the cumulative probability of cells transitioning, F (t), is

considered then equation (8) may be expressed as

h(t)~
F ’(t)

1{F (t)
, ð9Þ

where the dash notation denotes the derivative with respect to t. It

is this form of the transition rate which will be used herein.

2.1 Specific transition rules. In this paper, we consider two

different transition functions, the first assumes that the transition

rate is constant, h~c, and is therefore independent of the time

spent in the G1b phase. Note the transition rate h~c corresponds

to a cumulative probability of transition given by 1{ect. This is

the same form of transition discussed in [18]. This transition rule is

not biologically realistic as it implies all cells in G1b have an equal

probability of progressing to the S phase regardless of how long

they have spent acquiring nutrients and preparing for DNA

synthesis.

The second form of transition function that we consider is a

sigmoidal transition function. This seems biologically reasonable

since this implies that the probability of cells progressing to the S
phase immediately after entering G1b is low due to the limited

amount of nutrients they have absorbed. Once the mass of

nutrients absorbed reaches some critical value then the probability

of transition is likely to increase considerably, however there will

always be a few cells which do not progress to the S phase

regardless of nutrient uptake, thus the sigmoidal function attains a

maximum value just under one. It should be noted that a

sigmoidal cumulative probability function is in keeping with the

phase transition seen in cell populations which have been

modelled using the kinetics and chemical processes within the

cell [26] and [27]. Here we propose a new sigmoidal transition

rule governing the probability of transition is proposed, which

unlike the one considered in [24] may be non-dimensionalised so

there is only one independent parameter, reducing the number of

parameters that need to be fitted.

Since a very small proportion of cells of G1 phase age zero it is

reasonable to expect that the cumulative distribution function

should be non-zero at tG1b
~0. Furthermore, as discussed earlier,

some cells will not transition and enter a quiescent state so the

cumulative distribution for G1b remains less than one for all tG1b
.

Therefore, the the cumulative distribution function given by

F (t,t)~1{
1

1ze
h(

Cc(t,t)
Cmax

{1
2

)
, ð10Þ

is considered. Here, h is related to the maximum and minimum

values of the cumulative distribution function and Cmax is related

to the steepness of the sigmoidal function and Cc(t,t) represents

Figure 2. Probability distribution of transition, f (t) showing the
probability that a cell of age t has not yet transitioned (shaded
region) and the probability a cell of age t will transition in the
time interval t to tzdt (dark region).
doi:10.1371/journal.pone.0083477.g002
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the amount of glutamine a cell of age tG1b
has absorbed at time t.

It then follows that, for h sufficiently large,

h(t,t)~
h

Cmax

LCc(t,t)

Lt

e
h(

Cc(t,t)
Cmax

{1
2

)

1ze
h(

Cc(t,t)
Cmax

{1
2
)
: ð11Þ

It is reasonable to assume that the rate of change of glutamine is

constant, provided there is a high amount of glutamine available.

By making this assumption then
LCc(t,t)

Lt
~R and Cc~tR (It is

assumed that the cell has not taken absorbed any glutamine prior

to entering the G1b phase, i.e. Cc~0 at t~0:). Hence,

h(t)~
Rh

Cmax

e
h( tR

Cmax
{1

2
)

1ze
h( tR

Cmax
{1

2
)
: ð12Þ

The corresponding non-dimensional form of this equation is given

by

h(t)~
e

(~tt{h
2
)

1ze
(~tt{h

2
)
, ð13Þ

which only has the single parameter h which needs to be fitted. In

[28] the following expression for the fraction of cells of age t
remaining in the G1b phase, n(t,t), for a given intra cellular

glutamine concentration CG1b(t,tG1b) is proposed

nG1b(t,tG1b)

nG1b(t{tG1b,0)
~

(CG1b(t,tG1b){SMax)2

S2
Max

, ð14Þ

where SMax is the maximum glutamine content a cell can have

before being forced to go through transition. This leads to the

transition function

h(t,tG1b)~
2

SMax{CG1b(t,tG1b)

LCG1b(t,tG1b)

LtG1b

: ð15Þ

Note
LCG1b(t,tG1b)

LtG1b
is assumed to always be §0 so that the

cumulative glutamine never decreases. It can be seen that when

CG1b(t,tG1b)?SMax, the probability of transition becomes infinite.

Despite this singularity at CG1b(t,tG1b)~SMax this transition

function still provides a very good fit to experimental data [20].

The reasons why this is the case are discussed below.

Numerical Methods

The system of differential equations governing the simplified

system described in Section 1 may be solved analytically for

specific initial conditions and short time intervals. However, in

order to be able to study and manipulate the model for different

transition functions for longer time intervals involving many cell

cycles it is necessary to use numerical techniques.

3 Derivation of Numerical scheme
In this section a finite difference scheme analogous to the Lax-

Wendroff scheme is derived. The Lax-Wendroff scheme was

chosen as it is a second order explicit method and as such yields

high accuracy for relatively large time steps where there is a rapid

change or discontinuity such as the initial flow of cells into the

main cycle.

For the G1b phase equation (2) may be written as

ntznt~{hn, ð16Þ

Note for ease the time and age dependence has been omitted

together with the phase subscript. Subscripts now denote the

partial derivatives. Also h is a function of t only, furthermore, if the

sigmoidal form of the transition rule given in equation (13) is used

then

ht~h{h2: ð17Þ

Rearranging and differentiating equation (16) gives

nt~{nt{hn, ð18aÞ

ntt~{ntt{hnt, ð18bÞ

ntt~{ntt{hnt{htn: ð18cÞ

Which, upon using the Taylor expansion together with (17) yields

n(tzdt,t)~n 1{dthz
(dt)2

2
h

 !
znt {dtz(dt)2h

� �

zntt
(dt)2

2
zO(dt3):

ð19Þ

Finally, standard formulae for the first and second derivatives of n
with respect to t are used, namely

dn

dt

����
i,j

~
ni,jz1{ni,j{1

2dt
, ð20Þ

d2n

dt2

����
i,j

~
ni,j{1{2ni,jzni,jz1

(dt)2
, ð21Þ

where ni,j is the cell density of cells aged ½jts,(jz1)ts) in the time

interval ½its,(iz1)ts) where ts and ts are the length of the

discretised elements. This leads to the finite difference scheme

niz1,j~ni,j 1{
(dt)2

(dt)2
{dthi,jz

(dt)2

2
hi,j

 !

zni,jz1
(dt)2

2(dt)2
{

dt

2dt
z

(dt)2

2dt
hi,j

 !

zni,j{1
(dt)2

2(dt)2
z

dt

2dt
{

(dt)2

2dt
hi,j

 !
:

ð22Þ

Because of the ‘dispersive’ nature of any numerical difference

scheme if dt=dt additional errors are introduced at each time

step. For example if at t~0 all cells are age zero and the age step is

set to e and the time step set to e
2
, then after evolving the system for

one time step there would be cells whose age is e, this clearly makes

G1 - S Checkpoint Effects on a Cell Cycle Model
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no sense. Similarly if the time step is set to 2e after one step there

are no cells present whose age is 2e since tƒe for all cells. Hence,

additional interpolation is required if the age and time steps are

not equal. By setting dt~dt~a equation(24) becomes

niz1,j~ni,j
a2

2
{a

� �
hi,j

� �
zni,jz1

a

2
hi,j

	 

zni,j{1 1{

a

2
hi,j

	 

: ð23Þ

3.1 Stability of the numerical system. For a numerical

scheme to produce accurate solutions to a partial differential

equation, not only must the error at each time step be small

enough, any errors must not grow exponentially, i.e. the numerical

scheme must also be stable. If the nutrient supply is unlimited and

uptake is uniform then the cell cycle may be simplified into two

‘phases’, G1b on it’s own and the remaining phases all put together.

A two compartment model is not suitable for analysing the

dynamics of a population of cells as too much information is lost

by combining the MAIN phase and G1a phases of the model

discussed in Section 1, in particular the timing of the cell division.

However, a two compartment model is sufficient for conducting a

stability analysis. Once the system has reached steady growth (i.e.

no further input from G1’) then it may be represented as shown in

Figure 3 where X and Y represent the two ‘phases’. To perform

the stability analysis the time step matrix is constructed, the norm

of which is shown to be bounded. It is helpful to start by defining

some notation.

Notation. If the numerical scheme is discretised into elements

of time of length ts and age elements of length ts then let cells in

phase X of age [½its,(iz1)ts) in the time interval [½jts,(jz1)ts) be

denoted by X i
j . Also let all cells in phase X in the time interval

[½mts,(mz1)ts� be denoted by Xm, where Xm is now a column

vector. Also assume the time line is moved such that at

t~t0, t’~0, where t’ is the time used for the purposes of the

subscript; for convenience the 0 notation is now dropped.

Construction of time step matrix. Let the maximum

durations of the X and Y phases be Nts and Kts respectively

then at time t~t0,

X 0
0 cells entering X ,

X N{1
0 cells in x dying due to old age at the next time step,

Y 0
0 cells entering Y ,

Y K{1
0 cells leaving Y and doubling at the next time step:

ð24Þ

Clearly,

X 0
a ~2Y K{1

a{1 : ð25Þ

Also the cells entering Y are a function of the cells who were in X

at the previous time step, therefore

Y 0
a ~h(Xa{1), ð26Þ

where h(v) is the probability of transition from X to Y . since

nothing happens to the cells during their time in Y , it can be

thought of as merely a time delay phase, therefore

Y j
a~Y

j{1
a{1 for 1ƒjvK : ð27Þ

Note, the inequality is strictly less than K as cells of age Kts have

undergone division and the offspring are now in X 0
a .

Assuming a finite central difference scheme is used for

calculating the cell densities in the X phase then

X i
a~f (X i{1

a{1,X i
a{1,X iz1

a{1) for 1ƒjvN, ð28Þ

and

X N
a ~f (X N{1

a{1 ,X N
a{1): ð29Þ

From equations (25) and (27) it is clear that

X 0
a ~2Y K{1

a{1 ~2Y K{2
a{2 ~ . . . ~2Y 0

a{K : ð30Þ

Now using equation (26) yields

X 0
a ~2h(X 0

a{K{1): ð31Þ

Equations (25–29) may be expressed in matrix notation as

X 0
mz1

X 1::N{2
mz1

X N{1
mz1

Y 0
mz1

Y 1::K{1
mz1

2
6666664

3
7777775
~M

X 0
m

X 1::N{2
m

X N{1
m

Y 0
m

Y 1::K{1
m

2
6666664

3
7777775

, ð32Þ

where M is an (NzK)|(NzK) matrix. To prove the numerical

scheme is stable it is sufficient to show [29] that the norm of M in

equation (32) satisfies

Mk kƒ1zka, ð33Þ

where dt~dt~a and k is a constant independent of a. It can be

shown that if the trapezium rule is used for approximating

equation (26) then the norm of M is given by

Figure 3. Two Compartment Model.
doi:10.1371/journal.pone.0083477.g003

Table 1. Parameters from [20].

Parameter Notation Value

Maximum age in G1a phase TG1a 2.5 hours

Maximum age in G1b phase TG1b 10 hours

Maximum age in S phase TS 5 hours

Maximum age in G2zM phase TG2zM 4 hours

doi:10.1371/journal.pone.0083477.t001
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Mk k~supf2,a
XN{2

j~1

h(j)z
a

2
(h(0)zh(N{2))g: ð34Þ

For the transition functions considered h is monotonically

increasing so

a
XN{2

j~1

h(j)z
a

2
(h(0)zh(N{2))ƒa

ðXtmax

0

h(t)dt, ð35Þ

it is therefore sufficient to show a
ÐXtmax

0
h(t)dt remains bounded.

For the sigmoidal transition rule

ðXtmax

0

e
t{h

2

� �
1ze

t{h
2

� � dt~ ln 1ze
t{h

2

	 
h iXtmax

0
, ð36Þ

which for typical h values this is approximately equal to

ln 1ze
Xtmax {h

2

	 

. For Xtmaxƒ

h
2

then

ln 1ze
Xtmax {h

2

	 

&1ze

Xtmax {h
2ƒ2: ð37Þ

For Xtmaxw
h
2

then

Figure 4. Growth curves produced by using a constant transition rule (a) and a sigmoidal transition rule (b) fitted against
experimental batch data presented in [20].
doi:10.1371/journal.pone.0083477.g004

Figure 5. Proportions of cells in each phase using a constant transition rule (a) and a sigmoidal transition rule (b).
doi:10.1371/journal.pone.0083477.g005
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ln 1ze
Xtmax {h

2

	 

&Xtmax{

h

2
: ð38Þ

Thus, in all cases Mk k remains bounded. In most cases

Xtmax{ h
2

� �
av1, this leads to a stronger constraint on the bound

i.e. Mk kƒ2.

Results

In Section 4 it is shown that regardless of whether a constant or

a sigmoidal transition rule is used, it is possible to fit the model to a

growth curve from experimental data. It is then shown in Section 5

that whilst the different transition functions result in the same

growth curve, the fraction of cells in each phase differs.

4 Model validation
Experimental data from [25] was chosen and concerns a batch

experiment which was conducted using a mouse-mouse hybrid-

oma cell line (mm321). In this experiment 28% of the starting cell

population did not divide but remained viable, 36% of the starting

population were evenly distributed in the S phase of the cell cycle

and the remaining 36% were initially at the beginning of the G1b

phase. For the purposes of modelling it was assumed the cells

starting in the G1b phase were of a phase age between zero and

two hours. The numerical scheme described in Section 3, was

implemented using both sigmoidal and constant transition rules.

Parameters for the length of different phases were taken from [20],

and are stated in Table 1. The h and c parameters were allowed to

vary in the sigmoidal and constant transition rules respectively,

until a best fit had been obtained. Several starting values for h and

c were used in the optimizations of the fits to ensure the global best

fits had been found for each transition rule and that the results

were not a local minimum. Optimizations were carried out using

Matlab’s [30] least squares curve fitting algorithm lsqcurvefit. The

Matlab code for these optimizations is available from [31].

As can be seen in Figure 4, both the constant transition rule

(Figure 4a) and the sigmoidal rule (Figure 4b) provide a good fit to

the experimental data resulting in residual norm values of 0.1 and

0.2 respectively. The parameters in Table 1 were varied by

Figure 7. Sigmoidal transition function (a) with the corresponding cumulative probability of transition (b) as a function of G1b age.
doi:10.1371/journal.pone.0083477.g007

Figure 6. Constant transition function (a) with the corresponding cumulative probability of transition (b) as a function of G1b age.
doi:10.1371/journal.pone.0083477.g006
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+20%. Different values for the Table 1 parameters resulted in

different values for the fitted parameters (h and c) values but did

not significantly change the goodness of the fit shown in Figure 4

with no residual norms exceeding 0.2. Note that the model did not

impose any restrictions on the available nutrients, indicating

nutrients were not a limiting factor for cell growth over the course

of the experiment. This suggests, that if population growth is the

only concern, that a constant transition rule is sufficient.

5 The effect of the transition function
Although the effect of the different transition rules is not

apparent in the fitting to the experimental growth curve, here we

show that the transition rule does impact on the phase distribution

of cells.

In the experimental data used to fit the model the initial

population of cells was partially synchronised using a thymidine

double block. This partial synchronisation meant the initial

population of cells was situated in the S phase and the latter

part of the G1 phase, G1b. It therefore seems reasonable to assume

most cells will initially progress round the cycle in a group this

would result in the phase distribution being oscillatory. The

oscillations would be expected to decay slowly as the synchronicity

of the cell population was lost. Such oscillations may be one cause

for apparent ‘errors’ in phase distributions obtained from such

experiments as the timing of observations would need to occur at

known positions on the oscillation, the period of which may not

be known. To fully appreciate the differences these transition

functions have on the underlying model properties the percentages

of cells in each compartment may be compared once transient

oscillations have decayed and the system has reached a steady

state of phase distributions. The time scale required for the

transient oscillations to have decayed sufficiently is of the order of

500 hours and as such it is not feasible to obtain experimental

data.

In order to investigate this, the mathematical model was

numerically integrated using the same parameters and initial

conditions used in Section 4 for long enough that a steady phase

distribution had been obtained. The results are shown in Figure 5.

These two sets of results differ in two key ways. Firstly, both

simulations initially show an oscillation in the phase distribution,

however the rate of decay of the oscillations depends on the

transition function chosen, with the oscillations decaying much

more slowly for a sigmoidal transition function. The difference in

the decay rates may be appreciated by considering the area under

the cumulative probability function for the different transition

functions (Figures 6 and 7). For a steep sigmoidal probability

distribution function the area under the curve initially increases

slowly then has a rapid increase for a short time interval then

returns to a slow increase as shown in Figure 7. This rapid increase

would result in the majority of the population remaining in a

group as it progressed round the cycle, with each complete cycle

dispersing slightly due to the ages corresponding to a low

probability of transition. With the value of the constant transition

function used in this simulation the area under the corresponding

cumulative probability distribution function does not change as

rapidly as with the sigmoidal function as shown in Figure 6. This

results in the population of cells transitioning more evenly, leading

to a more rapid de-synchronisation. Secondly, once the transient

oscillations have decayed the percentages of cells in each of the

model’s ‘phases’ differ: in the sigmoidal transition rule there are

20.2%, 33.3% and 46.5% in the G1a, G1b and MAIN phases

respectively, whereas in the constant transition rule these change

to 22.6%, 24.4% and 53.0%.

Discussion

In this paper an age-structured cell cycle model has been

considered with particular emphasis on the G1-S checkpoint. By

considering the probability of cells transitioning at the G1-S

checkpoint, different transition functions have been obtained. A

suitable numerical scheme for the resulting PDEs has been derived

and shown to be numerically stable. This numerical scheme has

then been used to look at the effects of the different transition

functions on the phase distribution of the cell population.

The model shows there is a noticeable change in the proportion

of cells in each phase for the two different transition functions

considered. The sigmoidal transition function predicts 53.5% of

the cell population being in the G1 phase, whilst the constant

transition function places 47.0% of cells in the G1 phase.

As mentioned previously the efficacy of chemotherapy treat-

ments and the radiosensitivity of cells varies according to a cell’s

position in the cell cycle. Since the relationship between cell phase

and efficacy may be non-linear a small difference in phase

distribution may produce a large change in the efficacy of

treatments resulting in the model producing results outside

the bounds of experimental error. Therefore, the difference in

the phase distributions produced by this model, using the different

transition functions, will effect the model’s ability to accurately

represent the effects of a given treatment on a population of cells.

Consequently, it is important to ascertain the correct transition

function if such models are to be used to give a quantitative

prediction of the cell population’s response to treatments.

Improvements in techniques may reduce the level of potential

error in phase distributions obtained experimentally, this may

allow some transition functions to be discounted.

It may also be possible to rigorously derive the form of the

transition function for a population of cells by considering the

chemical kinetics of a single cell [26].

Whilst there is no consensus on the error on cell phase

distributions obtained using flow cytometry [32] the difference in

phase distributions produced by the model with the different

transition rules lie within the typical bounds of current experi-

mental error ([33], [34] and [32]). As noted in Section 5 the

difficulty of measuring the phase distribution may be compounded

by underlying oscillations induced by the blocking. Thus, the form

of the probability distribution function controlling the G1{S
checkpoint in an age structured population balance model has

little impact on the models ability to fit to experimental data. The

lack of effect of the form of the probability transition function

explains why the quadratic transition function used in [20] fitted

experimental data despite having a singularity. As such a

simplified transition function may be used to gain a qualitative

understanding of the dynamics of a population of cells.

Author Contributions

Conceived and designed the experiments: GSC DJBL ACS NFK.

Analyzed the data: GSC DJBL ACS. Contributed reagents/materials/

analysis tools: GSC DJBL ACS. Wrote the paper: GSC DJBL ACS.

References

1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, et al. (1994) Molecular Biology of

the Cell, 3rd Edition. Garland Publishing, New York.

2. Smith J, Martin L (1973) Do cells cycle? Proc Nat Acad Sci USA 70: 1263–1267.

3. Bhuyan BK, Scheidt LG, Fraser TJ (1972) Cell cycle phase specificity of

antitumor agents. Cancer research 32: 398–407.

G1 - S Checkpoint Effects on a Cell Cycle Model

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e83477



4. Lopes NM, Adams EG, Pitts TW, Bhuyan BK (1993) Cell kill kinetics and cell

cycle effects of taxol on human and hamster ovarian cell lines. Cancer

chemotherapy and pharmacology 32: 235–242.

5. Owa T, Yoshino H, Yoshimatsu K, Nagasu T (2001) Cell cycle regulation in the

g1 phase: a promising target for the development of new chemotherapeutic

anticancer agents. Current medicinal chemistry 8: 1487–1503.

6. Brugarolas J, Chandrasekaranl C, Gordoni J, Beachil D, Jacks T (1995)

Radiation-induced cell cycle. Nature 377: 12.

7. Marples B,Wouters B, Collis S, Chalmers A, Joiner M(2004) Low-dose hyper-

radiosensitivity: a consequence of ineffective cell cycle arrest of radiation-

damaged g2-phase cells. Radiation research 161: 247–255.

8. Yao K, Komata T, Kondo Y, Kanzawa T, Kondo S, et al. (2003) Molecular

response of human glioblastoma multiforme cells to ionizing radiation: cell cycle

arrest, modulation of cyclin-dependent kinase inhibitors, and autophagy. Journal

of neurosurgery 98: 378–384.

9. Eakman J, Fredrickson AG, Tsuchiya H (1966) Statistics and dynamics of

microbial cell populations. Chemical Engineering Progess, Symposium Series

69: 37–49.

10. Fredrickson AG, Tsuchiya H (1963) Continuous propogation of micro

organisms. AIChE Journal 9: 359–468.

11. Fredrickson AG, Ramkrishna D, Tsuchiya H (1967) Statistics and dynamics of

correct pro- caryotic cell populations. Mathematical Biosciences 1: 327–374.

12. Liu YH, Bi JX, Zeng AP, Yuan JQ (2007) A population balance model

describing the cell cycle dynamics of myeloma cell cultivation. Biotechnology

Progress 23: 1198–1209.

13. Basse B, Baguley BC, Marshall ES, van Brunt WRJB, Wake G, et al. (2003) A

mathematical model for analysis of the cell cycle in cell lines derived from

human tumors. Journal of Mathematical Biology 47: 295–312.

14. Basse B, Baguley BC, Marshall ES, Wake G, Wall DJN (2005) Modelling the

flow of cy-tometric data obtained from unperturbed human tumour cell lines:

parameter fitting and comparison. Bulletin of Mathematical Biology 67: 815–

830.

15. Jackiewicz Z, Zubik-Kowal B, Basse B (2009) Finite-difference and pseudo-

spectral methods for the numerical simulations of in vitro human tumor cell

population kinetics. Mathematical Biosciences and Engineering 6: 561–572.

16. Basse B, Baguley BC, Marshall ES, van Brunt WRJB, Wake G, et al. (2004)

Modelling cell death in human tumour cell lines exposed to the anticancer drug

paclitaxel. Journal of Mathematical Biology 49: 329–357.

17. Liou JJ, Srienc F, Fredrickson AG (1997) Solutions of a population balance

models based on a successive generations approach. Chemical Engineering

Science 52: 1529–1540.

18. Basse B, Ubezio P (2007) A generalised age-and phase-structured model of

human tumour cell populations both unperturbed and exposed to a range of
cancer therapies. Bulletin of Mathematical Biology 69: 1673–1690.

19. Chapman SJ, Plank M, James A, Basse B (2007) A nonlinear model of age and

size-structured populations with applications to cell cycles. The ANZIAM
Journal 49: 151–169.

20. Faraday DBF, Hayter F, Kirkby NF (2001) A mathematical model of the cell
cycle of a hybridoma cell line. Biochemical Engineering Journal 7: 49–68.

21. Mantzaris NV, Liou JJ, Daoutidis P, Srienc F (1999) Numerical solution of a

mass structured cell population balance model in an environment of changing
substrate concentration. Journal of Biotechnology 71: 157–174.

22. Begg RE, Wall DJN, Wake GC (2008) The steady-staes of a multi-compartment,
age-size distribution model of cell-growth. European Journal of Applied

Mathematics 19: 435–458.
23. Billy F, Clairambault J, Fercoq O (2013) Optimisation of cancer drug treatments

using cell population dynamics. Mathematical Methods and Models in

Biomedicine.
24. Slater G (2004) Mathematical Modelling of Periodic Feeding in Continuous

Cultures of Schiz-zosaccharomyces pombe. Ph.D. thesis.
25. Hayter P (1989) An investigation into the factors that af-fect monoclonal

antibody production by hybridomas in culture. http://ethos.bl.uk/OrderDetails.

do?did = 14&uin = uk.bl.ethos.329033.
26. Novak B, Tyson JJ (2004) A model for restriction point control of the

mammalian cell cycle. Journal of Theoretical Biology.
27. Powathil GG, Gordon KE, Hill LA, Chaplain MAJ (2013) Modelling the effects

of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy:
Biology insights from a hybrid multiscale cellular automaton model. Journal of

Theoretical Biology.

28. Faraday D (1994) The mathematical modelling of the cell cycle of a hybridoma
cell line. Ph.D. thesis.

29. Smith GD (2003) Numerical Solution of Partial Differential Equations Finite
Difference Meth- ods. Oxford University Press.

30. Mathworks. Matlab R22012a.

31. Chaffey GS, Kirkby NF, Skeldon AC, Lloyd DJB (2013) Simple Matlab Model.
http://www.magsoft.co.uk/Programs/SMM/default.html.

32. Darzynkiewicz Z (2011) Critical Aspects in Analysis of Cellular DNA Content,
John Wiley & Sons, Inc.

33. Dean PN, Gray JW, Dolbeare FA (1982) The analysis and interpretation of dna
distributions measured by flow cytometry. Cytometry 3: 188–195.

34. Lacombe F, Belloc F, Bernard P, Boisseau MR (1988) Evaluation of four

methods of dna distribution data analysis based on bromodeoxyuridine/dna
bivariate data. Cytometry 9: 245–253.

G1 - S Checkpoint Effects on a Cell Cycle Model

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e83477


