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Abstract

Background: The Smith-Waterman algorithm, which produces the optimal pairwise alignment between two
sequences, is frequently used as a key component of fast heuristic read mapping and variation detection tools for
next-generation sequencing data. Though various fast Smith-Waterman implementations are developed, they are
either designed as monolithic protein database searching tools, which do not return detailed alignment, or are
embedded into other tools. These issues make reusing these efficient Smith-Waterman implementations impractical.
Results: To facilitate easy integration of the fast Single-Instruction-Multiple-Data Smith-Waterman algorithm into
third-party software, we wrote a C/C++ library, which extends Farrar’s Striped Smith-Waterman (SSW) to return
alignment information in addition to the optimal Smith-Waterman score. In this library we developed a new method to
generate the full optimal alignment results and a suboptimal score in linear space at little cost of efficiency. This
improvement makes the fast Single-Instruction-Multiple-Data Smith-Waterman become really useful in genomic
applications. SSW is available both as a C/C++ software library, as well as a stand-alone alignment tool at: https://
github.com/mengyao/Complete-Striped-Smith-Waterman-Library.
Conclusions: The SSW library has been used in the primary read mapping tool MOSAIK, the split-read mapping
program SCISSORS, the MEI detector TANGRAM, and the read-overlap graph generation program RZMBLR. The
speeds of the mentioned software are improved significantly by replacing their ordinary Smith-Waterman or banded
Smith-Waterman module with the SSW Library.
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Introduction

The Smith-Waterman-Gotoh algorithm (SW) [1,2] is the most
influential algorithm for aligning a pair of sequences. It is an
essential component of the majority of aligners from the
classical BLAST [3] to the more recent mappers. Although
most of these aligners do not use SW directly to align a
sequence to the whole genome sequence due to the quadratic
time complexity of SW, they extensively use it for seed
extension and for constructing the final alignment, and spend
significant amount of CPU time on this algorithm. Due to the
critical role of SW, many efforts have been made to accelerate
SW, taking the advantages of special hardware such as single
instruction multiple data (SIMD), field-programmable gate array
(FPGA) and graphics processing unit (GPU) [4–6]. Among the
three, SIMD based algorithms are most frequently used
because they are compatible with most modern x86 CPUs.
SIMD acceleration methods can be further divided into intra-

sequence parallelization [7] and inter-sequence parallelization
[8]. Inter-sequence parallelization is only useful when many
pairs of sequencing reads are aligned simultaneously; intra-
sequence parallelization however parallelizes for each single
pairwise alignment, so it can be used more flexibly in various
applications such as that needs aligning a single read against a
potentially large genome reference sequence. Farrar’s Striped
SW [9] with SWPS3’s [10] improvement is the fastest intra-
sequence parallelized SIMD implementation running on x86
processors with the Streaming SIMD Extensions 2 (SSE2)
instruction set. Indeed, Farrar’s algorithm has been embedded
in several popular genomic sequence mapping tools, such as
BWA-SW [11], Bowtie2 [12], Novoalign (http://
www.novocraft.com/) and Stampy [13].

Though striped SW is tens of times faster than a standard
SW implementation, only a few aligners have used this more
advanced algorithm. There are several practical obstacles.
Firstly, implementing a striped SW requires good
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understanding of SSE2 instructions and the more complex
algorithm, which may take significant development time.
Secondly, the original striped SW only gives the optimal
alignment score but does not report the position or the detailed
alignment, the information necessary for using SW as a
component to construct the final alignment. How to report the
position and alignment without affecting speed is non-trivial.
Thirdly, while a few implementations report position and
alignment, they are tightly integrated in a larger project and
cannot be easily reused in other programs. Fourthly, when
aligning a short read against a long sequence, we would like to
know suboptimal alignments such that we can tell if the optimal
position is trustworthy. Most existing libraries have not
addressed this issue.

Although striped SW has been published for six years, we
are still in lack of a fast, versatile and standalone library. This
leads us to develop the SSW library, a light weighted but
comprehensive C/C++ library for pairwise sequence alignment
with the striped SW algorithm.

Results and Discussion

Implementation
To build a light-weight and easily reusable SIMD SW library

for the genomic application development community, we made
the SSW Library. It extends the Striped SW and SWPS3’s
SIMD implementations to provide the mapping location and
detailed alignment information (traceback), without
performance penalty. Though these features are crucial when
integrating SW into other genomic analysis systems, among
the existing SIMD SW implementations only SSEARCH
provides them, and as discussed in the Performance: Short-
Read Genomic Alignment section its performance in typical
genomic alignment contexts is poor. The SSW library can also
return the heuristic suboptimal (second-best) alignment score
and location without additional computational cost, which
enables the use of the method in contexts that exploit this
information in mapping-quality estimation. We describe our
efficient implementation of these features in the Methods
section.

Usage
The SSW library is an application program interface (API)

that can be used as a component of C/C++ software to perform
optimal protein or genome sequence alignment. The library
returns the SW score, alignment location and traceback of the
optimal alignment, and the alignment score and location of the
suboptimal alignment. We provide the library with an
executable alignment tool that can be used directly to perform
protein or DNA alignments. It is a demonstration of the API
usage and a practical tool for accurate whole viral or bacterial
genome alignment. Moreover, since this tool is sufficiently fast
and memory-efficient for alignment to very large reference
genome sequences, e.g. the human genome, it can also be
used to validate alignments produced by heuristic read
mappers. The instructions of how to install and run the library is
described in the README file at the software website (https://

github.com/mengyao/Complete-Striped-Smith-Waterman-
Library). A test data set is also provided there.

Performance
Protein Database Search.  We compared SSW’s

performance (with and without returning the detailed alignment,
SSW-C and SSW, respectively) to Farrar’s accelerated SW
and SSEARCH (version 36.3.5c) on a Linux machine with
2GHz x86 64 AMD processors. We ran each program on a
single thread. Since the optimal alignment scores for long DNA
sequences given by SWPS3 are not consistent with others’, we
did not benchmark its running time here.

To measure the speed of protein database searching, we
aligned five protein sequences (Q6GZW9 (75 aa), P14942 (192
aa), P42357 (551 aa), P07756 (1283 aa), and P19096 (2154
aa)) against the Uni-Prot Knowledgebase release 2013_09
(including Swiss-Prot and TrEMBL, a total of 13,823,121,038
aa residues in 43,362,837 sequences), by all four algorithms
(see Figure 1). Since SSEARCH did not return alignment
results against the entire Uni-Prot database, we were only able
to test it against one quarter of the TrEMBL sequences
(3,872,274,471 aa in 10,705,468 sequences). The command
lines used for the database search are given in Table S1 in File
S1. Our SSW algorithm is the fastest or equally fast to
SSEARCH across the entire protein sequence length range we
tested.

We also compared the CPU SW implementations with one of
the most popular GPU implementations, CUDASW++ [4,5]. We
were unable to obtain access to a system with a GPU card
supporting CUDASW++ 3.0, so we ran CUDASW++ 2.0 (on a
GeForce GTX 480 graphics card with 1.5G memory) for the
comparison. Since our GPU host machine does not have
sufficient storage for a larger protein database, such as
TrEMBL, we aligned the five query proteins against the Swiss-
Prot database (release 2013_09). The total running times in
seconds of SSW, SSW-C, Farrar’s, SSEARCH, and CUDASW
++ 2.0 are 310.10, 597.35, 424.27, 270.94 and 66.75
respectively. This GPU SW is about four fold faster than the
fasted CPU SW. However, we did see the difficulty of using
GPU SW, e.g. hardware is not easy found and installation is
not ordinary.

Short-Read Genomic Alignment.  To benchmark genome
sequence alignment, we tested the programs with both
simulated data and real sequencing reads. We selected 1Kb -
10Mb regions from human genome chromosome 8, and using
an Illumina read simulator (http://www.seqan.de/projects/
mason/) we generated a thousand 100 bp-long sequences
from these regions. We then aligned these reads back to their
corresponding reference sequences with each of the five
algorithms (including our naïve Smith-Waterman, https://
github.com/wanpinglee/SmithWaterman) and compared their
running times (see Figure 2). Each program was run on a
single thread on a Linux machine with 2G MHz x86_64 AMD
processors. Two SW parameter settings are employed in the
experiments: setting 1 (scores of match, mismatch, gap open
and extension are 2, -1, -2, and -1 respectively) and setting 2
(scores of match, mismatch, gap open and extension are 1, -3,
-5, and -2 respectively). The command lines used for read
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alignments are shown in Table S2 in File S1. Our SSW
algorithm and Farrar’s accelerated version are equally fast for
the whole reference length spectrum.

For the comparisons on real sequencing datasets, we
aligned four sets of a thousand reads representing three
different sequencing technologies against four different
reference genomes: (1) Applied Biosystems (ABI) capillary
reads (1,388 bp average length) against the severe acute
respiratory syndrome (SARS) virus (29,751 bp); (2) Ion Torrent
reads (236 bp) against E. coli (4.94 × 103 bp); (3) Illumina
reads (100 bp) against T. gondii (6.08 × 107 bp); and (4)
Illumina reads against human genome chromosome 1 (2.49 ×
108 bp) as shown in Figure 3. The same SW parameter

settings as the tests on the simulated data sets are used in the
experiment. The detailed genome and read information is
described in Appendix S1 in File S1. The command lines used
for read alignments are shown in Table S2 in File S1. These
results indicate that even while returning a full optimal
alignment and one suboptimal score, our SSW algorithm is just
as fast as Farrar’s accelerated version.

We note that the relative performance of SSEARCH against
our method is worst when working with short target DNA
sequences, which is exactly the context in which pairwise
alignment is most likely to be used.

Figure 1.  Running time of different SW implementations for protein database search.  5 query proteins were searched
against the whole Uni-Prot database (left) and one quarter of the TrEMBL database (right). Running time is shown on the y-axis for
SSW without (blue) and with (red) detailed alignment, Farrar’s implementation (green) and SSEARCH (pink). All SW
implementations used the BLOSUM50 scoring matrix with gap open penalty -12 and extension penalty -2.
doi: 10.1371/journal.pone.0082138.g001

Figure 2.  Running time of different SW implementations for simulated genomic read alignment.  Running time of aligning
1,000 simulated Illumina reads to human reference sequences of various lengths. The log-scaled running time is shown on the y-
axis for SSW without (blue) and with (red) detailed alignment, Farrar’s implementation (green), SSEARCH (pink) and an ordinary
SW implementation (black). All SW implementations were tested under two sets of SW parameters: scores of match, mismatch, gap
open and extension are 2, -1, -2, and -1 respectively (left), and scores of match, mismatch, gap open and extension are 1, -3, -5,
and -2 respectively (right).
doi: 10.1371/journal.pone.0082138.g002
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Applications
Here we demonstrate the utility of our SSW library as a

component of four different biologically meaningful
applications.

Primary short-read mapper.  To provide highly accurate
alignments, most short-read mappers integrate an SW
algorithm for a final “polishing” step. This step is especially
important for aligning reads containing short insertions and
deletions. Even though each SW run is short, it may be applied
hundreds of millions of times within a single run of a mapper,
and therefore even small inefficiencies result in wasteful
resource usage. To quantify time savings with SSW, we
compared the performance of our new method with the existing
SW implementation within the MOSAIK mapping program [14],
which uses SW for the final read alignments. We found that the
SSW library achieves a two-fold speedup of the entire MOSAIK
compared with the current banded SW implementation within it
(see Table 1). Notably, MOSAIK is a multi-threaded program
and thus the SSW component in MOSAIK is running in parallel.

Secondary short-read mapper.  Primary read mappers are
often unable to map or properly align reads in structural variant
(SV) regions, e.g. in regions of deletions, insertions, inversions,
or translocations. Therefore, we developed a split-read aligner

program, SCISSORS (https://github.com/wanpinglee/scissors)
to map reads across structural variation event boundaries
(breakpoints), rescuing reads not mapped, or inaccurately
mapped by primary mapping approaches. We used our SSW
library to align “orphaned” or severely “clipped” fragment-end
read mates (in the case of read pairs where one end-mate is
aligned with high mapping quality, but the other mate is either
unmapped or mapped with many unaligned or “clipped-off”
bases) to the genomic regions indicated by the well-mapped
mates’ coordinates. Inclusion of the SW mapping routines of
our SSW library makes accurate and fast split-read alignment
for SV detection possible. The split-read mapping functionality,
using our SSW library, has also been implemented in the
TANGRAM SV detection tool (https://github.com/jiantao/
Tangram). TANGRAM is used intensively in the 1000
Genomes Project [15,16] to accurately detect MEIs (mobile
element insertions) (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
technical/working/20120815meicalls/BC/). In SCISSORS and
TANGRAM, SSW is also called in multi-threaded way.

Read-overlap graph generation.  To evaluate evidence for
putative SV and large INDEL calls generated by assembly
methods, we can employ a read-overlap graph generated by
exhaustive pairwise alignment of a set of reads which co-

Figure 3.  Running time of different SW implementations for real genomic read alignment.  Running time of aligning 1,000
real sequencing reads to various microorganism genomes and the human chromosome 1 are shown. Farrar’s implementation
cannot handle long sequences as human chromosome 1, so its corresponding running time is not shown here. The log-scaled
running time is shown on the y-axis for SSW without (blue) and with (red) detailed alignment, Farrar’s implementation (green),
SSEARCH (pink) and an ordinary SW implementation (black). All SW implementations were tested under two sets of SW
parameters: scores of match, mismatch, gap open and extension are 2, -1, -2, and -1 respectively (left), and scores of match,
mismatch, gap open and extension are 1, -3, -5, and -2 respectively (right).
doi: 10.1371/journal.pone.0082138.g003

Table 1. Comparison of the running time (seconds) between the banded SW engined MOSAIK and the SSW engined
MOSAIK.

 Illumina 100 bp 454
Banded SW 70145.760 240535.730
SSW 38927.380 98198.990

We aligned three million Illumina 100 bp reads and one million 454 reads against the human genome.
doi: 10.1371/journal.pone.0082138.t001
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localize in a specific genomic region. We tested the effect of
the SSW library in this application against a standard SW
implementation (https://github/ekg/smithwaterman). To do the
speed comparison test, we generated read-overlap graphs for
the genomic region 20:21026000-21027500 using 22,543
reads (70 bp long) from 191 African samples in the 1000
Genomes Project dataset. The sample identifiers are listed in
Appendix S2 in File S1. The running time of the read-overlap
graph generation program RZMBLR (https://github.com/ekg/
rzmblr") embedded with an ordinary SW (1795.66 seconds) is
about twice of that embedded with our SSW library (973.02
seconds).

Conclusions

We developed and made available a fast SW library using
SIMD acceleration. By returning not only the optimal alignment
score but also the actual alignment, as well as a secondary
optimal or suboptimal alignment score, the SSW library is
suitable for inclusion into other heuristic genomic sequence
analysis programs requiring local SW alignment. The most
significant utility of our development, however, is that our
algorithms can be readily integrated into C/C++ software
without modification of the source code, accelerating
development for larger software tools. SSW has already been
adopted in four programs developed by our group: the primary
read mapping tool MOSAIK, the split-read mapping program
SCISSORS, the MEI detector TANGRAM, and the read-
overlap graph generation program RZMBLR.

Methods

Our algorithmic improvements focused on speeding up the
Farrar’s implementation and gaining access to the optimal

alignment (in addition to the optimal achievable score), as well
as the score of the best secondary alignment. For speedup, we
adopted the “lazy F loop” improvement proposed by SWPS3
[7]. Furthermore we obtained additional alignment information
compared to SWPS3 without slowing down the original
algorithm: (1) we record the optimal alignment ending positions
during the SIMD SW calculation and generate the detailed
alignment by a reversed SIMD SW and a banded SW. When
the score matrix is filled by the SIMD SW calculation, we store
the maximal score of each column in a “max” array and record
the complete column that has the maximal score of the whole
matrix. Next, we locate the optimal alignment ending position
on the reference and the query by seeking the maximal score
in the array and the recorded column respectively. The
reversed SIMD SW locates the best alignment beginning
position from the ending position by calculating a much smaller
scoring matrix. Then, the banded SW (whose band is defined
by the beginning and ending positions) generates the detailed
alignment. Since the alignment generation using the reversed
SIMD SW and the banded SW only calculates a very small
portion of the whole SW scoring matrix when the query
sequence is much shorter than the target, in most cases of
genome sequence alignment the corresponding time cost is
trivial (2). We determine the secondary alignment score by
seeking the second largest score in the “max” array. To avoid a
similar sub-alignment of the primary alignment returned, we
mask the elements in the region of the primary alignment of the
“max” array and locate the second largest score from the
unmasked elements (Figure 4). As a crucial step for locating
the alignment position and estimating the suboptimal score, the
“max” array generation is completed by adding an SSE2
command in the inner loop of Farrar’s implementation and
another command in the outer loop, so that this additional time
consumption is limited.
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Figure 4.  Illustration of alignment traceback and suboptimal alignment score determination.  An example SW score matrix is
shown (penalties for match, mismatch, gap open and extension are 2, -1, -2, and -1 respectively). The bottom row indicates the
maximum score for each column. The algorithm locates the optimal alignment ending position (the black cell with score 9) using the
array of maximum scores, and then traces back to the alignment start position (the black cell with score 2) by searching a much
smaller, locally computed score matrix (circled by the black rectangle). Finally, a banded SW calculates the detailed alignment by
searching the shaded sub-region. The scores connected by solid arrows belong to the optimal alignment. The max array records the
largest score of each column. After the optimal alignment score (marked by “best”) is found, its neighborhood is masked, and the
second largest score is reported outside the masked region (marked by 2nd best). The scores connected by dashed-line arrows
trace the suboptimal alignment.
doi: 10.1371/journal.pone.0082138.g004
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